1
|
Gan Y, Cui J, Nie A, Yang Y, Zhao X. Revealing the influence of Lacticaseibacillus paracasei C5 on the flavor formation of bread dough by metagenomics and flavouromics. Int J Food Microbiol 2025; 437:111220. [PMID: 40286758 DOI: 10.1016/j.ijfoodmicro.2025.111220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/01/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
This study investigated the impact of L. paracasei C5 on the generation of flavor compounds in bread through metagenomics and flavouromics. Metagenomic profiling revealed that L. paracasei C5 facilitated carbohydrate, amino acid, and lipid metabolism in the dough. Correlative analyses between specific microbial species and flavor compounds demonstrated a positive association between L. paracasei and key flavor compounds in bread, such as 2-nonenal,(E)-, 2-octenal,(E)-, benzeneacetaldehyde, and hexanoic acid, ethyl ester. A predictive network outlining the metabolic pathways responsible for L. paracasei C5 sourdough bread flavor compounds was established, elucidating the microbial annotation of pertinent genes and enzymes. The findings underscored the synergistic role of L. paracasei and S. cerevisiae in enhancing the activity of encoded enzymes involved in carbohydrate degradation, acetyl-CoA synthesis, succinate conversion, acyl-CoA production, transaminases, alcohol dehydrogenase, and carboxylesterases. These results offer novel insights into the mechanisms by which L. paracasei C5 augments bread flavor.
Collapse
Affiliation(s)
- Yuxin Gan
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, Liaoning Province, China
| | - Jinxi Cui
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, Liaoning Province, China
| | - Aoxuan Nie
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, Liaoning Province, China
| | - Yuxia Yang
- School of Food Science and Technology, Henan University of Technology, Zhengzhou 450052, Henan Province, China
| | - Xiuhong Zhao
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, Liaoning Province, China.
| |
Collapse
|
2
|
Revelo-Romo DM, Hurtado Gutiérrez NH, Hidalgo Troya A, Amaya-Gómez CV, Flórez-Martínez DH, Overmann J, Villegas Torres MF, González Barrios AF. Omics approaches to explore the coffee fermentation microecosystem and its effects on cup quality. Food Res Int 2025; 206:116035. [PMID: 40058902 DOI: 10.1016/j.foodres.2025.116035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 02/14/2025] [Accepted: 02/21/2025] [Indexed: 05/13/2025]
Abstract
The cultivation and postharvest processing of coffee constitute the basis of the subsistence and traditional culture for rural family-owned farms, as well as for the economic success of commercial enterprises in many coffee-producing countries worldwide. The quality of the final beverage is determined by a multitude of variables. A key post-harvest factor is the spontaneous fermentation of the coffee beans, conducted directly on the farm, to remove the mucilage that firmly adheres to the beans. The effect of this fermentation step on the aromatic profile of the coffee is not yet sufficiently understood. All of the above have drawn the attention of researchers on the application of various omics approaches to elucidate fermentation processes in more detail. These approaches have been used to study the fermentation of Arabica (Coffea arabica) beans, as this species is economically most important worldwide. It is known that Arabica mild coffee is obtained through the wet method, which involves fermenting depulped coffee beans using various strategies and then washing the fermented coffee with clean water. In contrast, the fermentation of Canephora coffee beans has been much less studied using omics technologies. This review highlights the trends and future research in coffee fermentation based on a scientometric analysis, supplemented by a traditional systematic literature review. It highlights the composition of the coffee fermentation microbiome, as elucidated by metagenomics applications, in light of several factors that can influence its structure. Additionally, it considers the metabolites associated with microbial metabolism that can influence the chemical composition of coffee beans and, consequently, the cup quality. In this way, this review evidences the promising path in understanding microbial functions in coffee fermentation and in particular in the development of microbial inocula and in the refinement of fermentation processes to improve coffee quality.
Collapse
Affiliation(s)
- Dolly Margot Revelo-Romo
- Grupo de Investigación en Bioelectroquímica (BEQ), Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Doctorado en Ciencias Agrarias, Universidad de Nariño, Calle 18, Cra. 50 Campus Torobajo, Pasto, 520002, Colombia.
| | - Nelson Humberto Hurtado Gutiérrez
- Grupo de Investigación en Productos de Importancia Biológica (GIPIB) y BEQ, Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Nariño, Calle 18, Cra. 50 Campus Torobajo, Pasto, 520002, Colombia.
| | - Arsenio Hidalgo Troya
- Grupo de Investigación en Salud Pública. Departamento de Matemáticas y Estadística, Facultad de Ciencias Exactas y Naturales, Universidad de Nariño, Calle 18, Cra. 50 Campus Torobajo, Pasto 520002, Colombia.
| | - Carol V Amaya-Gómez
- Grupo de Bioprospección de Biomoléculas y Microorganismos con Interés Agropecuario, Centro de Investigación La Libertad, Corporación Colombiana de Investigación Agropecuaria, Agrosavia, Colombia.
| | - Diego Hernando Flórez-Martínez
- Grupo de Investigación en Estudios Socioeconómicos, Sede Central, Corporación Colombiana de Investigación Agropecuaria, Agrosavia, Colombia.
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganism and Cell Cultures. Braunschweig, Germany, and Technical University of Braunschweig, Braunschweig, Germany.
| | | | - Andrés Fernando González Barrios
- Grupo de Diseño de Productos y Procesos (GDPP), Departamento de Ingeniería Química y de Alimentos, Universidad de los Andes, Colombia.
| |
Collapse
|
3
|
Cui R, Zhang C, Pan ZH, Hu TG, Wu H. Probiotic-fermented edible herbs as functional foods: A review of current status, challenges, and strategies. Compr Rev Food Sci Food Saf 2024; 23:e13305. [PMID: 38379388 DOI: 10.1111/1541-4337.13305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Recently, consumers have become increasingly interested in natural, health-promoting, and chronic disease-preventing medicine and food homology (MFH). There has been accumulating evidence that many herbal medicines, including MFH, are biologically active due to their biotransformation through the intestinal microbiota. The emphasis of scientific investigation has moved from the functionally active role of MFH to the more subtle role of biotransformation of the active ingredients in probiotic-fermented MFH and their health benefits. This review provides an overview of the current status of research on probiotic-fermented MFH. Probiotics degrade toxins and anti-nutritional factors in MFH, improve the flavor of MFH, and increase its bioactive components through their transformative effects. Moreover, MFH can provide a material base for the growth of probiotics and promote the production of their metabolites. In addition, the health benefits of probiotic-fermented MFH in recent years, including antimicrobial, antioxidant, anti-inflammatory, anti-neurodegenerative, skin-protective, and gut microbiome-modulating effects, are summarized, and the health risks associated with them are also described. Finally, the future development of probiotic-fermented MFH is prospected in combination with modern development technologies, such as high-throughput screening technology, synthetic biology technology, and database construction technology. Overall, probiotic-fermented MFH has the potential to be used in functional food for preventing and improving people's health. In the future, personalized functional foods can be expected based on synthetic biology technology and a database on the functional role of probiotic-fermented MFH.
Collapse
Affiliation(s)
- Rui Cui
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Cong Zhang
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Zhen-Hui Pan
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Teng-Gen Hu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| |
Collapse
|
4
|
Arrieta-Echeverri MC, Fernandez GJ, Duarte-Riveros A, Correa-Álvarez J, Bardales JA, Villanueva-Mejía DF, Sierra-Zapata L. Multi-omics characterization of the microbial populations and chemical space composition of a water kefir fermentation. Front Mol Biosci 2023; 10:1223863. [PMID: 37849822 PMCID: PMC10577418 DOI: 10.3389/fmolb.2023.1223863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023] Open
Abstract
In recent years, the popularity of fermented foods has strongly increased based on their proven health benefits and the adoption of new trends among consumers. One of these health-promoting products is water kefir, which is a fermented sugary beverage based on kefir grains (symbiotic colonies of yeast, lactic acid and acetic acid bacteria). According to previous knowledge and the uniqueness of each water kefir fermentation, the following project aimed to explore the microbial and chemical composition of a water kefir fermentation and its microbial consortium, through the integration of culture-dependent methods, compositional metagenomics, and untargeted metabolomics. These methods were applied in two types of samples: fermentation grains (inoculum) and fermentation samples collected at different time points. A strains culture collection of ∼90 strains was established by means of culture-dependent methods, mainly consisting of individuals of Pichia membranifaciens, Acetobacter orientalis, Lentilactobacillus hilgardii, Lacticaseibacillus paracasei, Acetobacter pomorum, Lentilactobacillus buchneri, Pichia kudriavzevii, Acetobacter pasteurianus, Schleiferilactobacillus harbinensis, and Kazachstania exigua, which can be further studied for their use in synthetic consortia formulation. In addition, metabarcoding of each fermentation time was done by 16S and ITS sequencing for bacteria and yeast, respectively. The results show strong population shifts of the microbial community during the fermentation time course, with an enrichment of microbial groups after 72 h of fermentation. Metataxonomics results revealed Lactobacillus and Acetobacter as the dominant genera for lactic acid and acetic acid bacteria, whereas, for yeast, P. membranifaciens was the dominant species. In addition, correlation and systematic analyses of microbial growth patterns and metabolite richness allowed the recognition of metabolic enrichment points between 72 and 96 h and correlation between microbial groups and metabolite abundance (e.g., Bile acid conjugates and Acetobacter tropicalis). Metabolomic analysis also evidenced the production of bioactive compounds in this fermented matrix, which have been associated with biological activities, including antimicrobial and antioxidant. Interestingly, the chemical family of Isoschaftosides (C-glycosyl flavonoids) was also found, representing an important finding since this compound, with hepatoprotective and anti-inflammatory activity, had not been previously reported in this matrix. We conclude that the integration of microbial biodiversity, cultured species, and chemical data enables the identification of relevant microbial population patterns and the detection of specific points of enrichment during the fermentation process of a food matrix, which enables the future design of synthetic microbial consortia, which can be used as targeted probiotics for digestive and metabolic health.
Collapse
Affiliation(s)
| | - Geysson Javier Fernandez
- Infectious Diseases Biology and Control Group (BCEI), Universidad de Antioquia UdeA, Medellín, Colombia
| | | | - Javier Correa-Álvarez
- Research Group CIBIOP, School of Applied Sciences and Engineering, Universidad EAFIT, Medellín, Antioquia, Colombia
| | | | | | - Laura Sierra-Zapata
- Research Group CIBIOP, School of Applied Sciences and Engineering, Universidad EAFIT, Medellín, Antioquia, Colombia
| |
Collapse
|
5
|
Șerban LR, Păucean A, Chiș MS, Pop CR, Man SM, Pușcaș A, Ranga F, Socaci SA, Alexa E, Berbecea A, Semeniuc CA, Mureșan V. Metabolic Profile of Einkorn, Spelt, Emmer Ancient Wheat Species Sourdough Fermented with Strain of Lactiplantibacillus plantarum ATCC 8014. Foods 2023; 12:foods12051096. [PMID: 36900613 PMCID: PMC10001257 DOI: 10.3390/foods12051096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The continuous development of bakery products as well as the increased demands from consumers transform ancient grains into alternatives with high nutritional potential for modern wheat species. The present study, therefore, follows the changes that occur in the sourdough obtained from these vegetable matrices fermented by Lactiplantibacillus plantarum ATCC 8014 during a 24 h. period. The samples were analyzed in terms of cell growth dynamics, carbohydrate content, crude cellulose, minerals, organic acids, volatile compounds, and rheological properties. The results revealed significant microbial growth in all samples, with an average value of 9 log cfu/g but also a high accumulation of organic acids with the increase in the fermentation period. Lactic acid content ranged from 2.89 to 6.65 mg/g, while acetic acid recorded values between 0.51 and 1.1 mg/g. Regarding the content of simple sugars, maltose was converted into glucose, and fructose was used as an electron acceptor or carbon source. Cellulose content decreased as a result of the solubilization of soluble fibers into insoluble fibers under enzymatic action, with percentages of 3.8 to 9.5%. All sourdough samples had a high content of minerals; the highest of which-Ca (246 mg/kg), Zn (36 mg/kg), Mn (46 mg/kg), and Fe (19 mg/kg)-were recorded in the einkorn sourdough.
Collapse
Affiliation(s)
- Larisa Rebeca Șerban
- Department of Food Engineering, Faculty of Food Sciences and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Adriana Păucean
- Department of Food Engineering, Faculty of Food Sciences and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
- Correspondence:
| | - Maria Simona Chiș
- Department of Food Engineering, Faculty of Food Sciences and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Carmen Rodica Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5, Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Simona Maria Man
- Department of Food Engineering, Faculty of Food Sciences and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Andreea Pușcaș
- Department of Food Engineering, Faculty of Food Sciences and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Floricuța Ranga
- Faculty of Food Science and Technology, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Sonia Ancuța Socaci
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5, Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Ersilia Alexa
- Department of Food Control, Faculty of Agro-Food Technologies, University of Life Sciences “King Michael I of Romania”, 119 Aradului Avenue, 300641 Timişoara, Romania
| | - Adina Berbecea
- Department of Soil Sciences, Faculty of Agriculture, University of Life Sciences “King Michael I of Romania”, 119 Aradului Avenue, 300641 Timişoara, Romania
| | - Cristina Anamaria Semeniuc
- Department of Food Engineering, Faculty of Food Sciences and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Vlad Mureșan
- Department of Food Engineering, Faculty of Food Sciences and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Probiotics in the Sourdough Bread Fermentation: Current Status. FERMENTATION 2023. [DOI: 10.3390/fermentation9020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Sourdough fermentation is an ancient technique to ferment cereal flour that improves bread quality, bringing nutritional and health benefits. The fermented dough has a complex microbiome composed mainly of lactic acid bacteria and yeasts. During fermentation, the production of metabolites and chemical reactions occur, giving the product unique characteristics and a high sensory quality. Mastery of fermentation allows adjustment of gluten levels, delaying starch digestibility, and increasing the bio-accessibility of vitamins and minerals. This review focuses on the main steps of sourdough fermentation, the microorganisms involved, and advances in bread production with functional properties. The impact of probiotics on human health, the metabolites produced, and the main microbial enzymes used in the bakery industry are also discussed.
Collapse
|
7
|
Seis Subaşı A, Ercan R. The effects of wheat variety, sourdough treatment and sourdough level on nutritional characteristics of whole wheat bread. J Cereal Sci 2023. [DOI: 10.1016/j.jcs.2023.103637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Lopez CM, Rocchetti G, Fontana A, Lucini L, Rebecchi A. Metabolomics and gene-metabolite networks reveal the potential of Leuconostoc and Weissella strains as starter cultures in the manufacturing of bread without baker’s yeast. Food Res Int 2022; 162:112023. [DOI: 10.1016/j.foodres.2022.112023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/04/2022]
|
9
|
The Effects of Processing Technologies on Nutritional and Anti-nutritional Properties of Pseudocereals and Minor Cereal. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Ramírez Rojas AA, Swidah R, Schindler D. Microbes of traditional fermentation processes as synthetic biology chassis to tackle future food challenges. Front Bioeng Biotechnol 2022; 10:982975. [PMID: 36185425 PMCID: PMC9523148 DOI: 10.3389/fbioe.2022.982975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022] Open
Abstract
Microbial diversity is magnificent and essential to almost all life on Earth. Microbes are an essential part of every human, allowing us to utilize otherwise inaccessible resources. It is no surprise that humans started, initially unconsciously, domesticating microbes for food production: one may call this microbial domestication 1.0. Sourdough bread is just one of the miracles performed by microbial fermentation, allowing extraction of more nutrients from flour and at the same time creating a fluffy and delicious loaf. There are a broad range of products the production of which requires fermentation such as chocolate, cheese, coffee and vinegar. Eventually, with the rise of microscopy, humans became aware of microbial life. Today our knowledge and technological advances allow us to genetically engineer microbes - one may call this microbial domestication 2.0. Synthetic biology and microbial chassis adaptation allow us to tackle current and future food challenges. One of the most apparent challenges is the limited space on Earth available for agriculture and its major tolls on the environment through use of pesticides and the replacement of ecosystems with monocultures. Further challenges include transport and packaging, exacerbated by the 24/7 on-demand mentality of many customers. Synthetic biology already tackles multiple food challenges and will be able to tackle many future food challenges. In this perspective article, we highlight recent microbial synthetic biology research to address future food challenges. We further give a perspective on how synthetic biology tools may teach old microbes new tricks, and what standardized microbial domestication could look like.
Collapse
|
11
|
Calabrese FM, Ameur H, Nikoloudaki O, Celano G, Vacca M, Junior WJFL, Manzari C, Vertè F, Di Cagno R, Pesole G, De Angelis M, Gobbetti M. Metabolic framework of spontaneous and synthetic sourdough metacommunities to reveal microbial players responsible for resilience and performance. MICROBIOME 2022; 10:148. [PMID: 36104726 PMCID: PMC9472446 DOI: 10.1186/s40168-022-01301-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND In nature, microbial communities undergo changes in composition that threaten their resiliency. Here, we interrogated sourdough, a natural cereal-fermenting metacommunity, as a dynamic ecosystem in which players are subjected to continuous environmental and spatiotemporal stimuli. RESULTS The inspection of spontaneous sourdough metagenomes and transcriptomes revealed dominant, subdominant and satellite players that are engaged in different functional pathways. The highest microbial richness was associated with the highest number of gene copies per pathway. Based on meta-omics data collected from 8 spontaneous sourdoughs and their identified microbiota, we de novo reconstructed a synthetic microbial community SDG. We also reconstructed SMC-SD43 from scratch using the microbial composition of its spontaneous sourdough equivalent for comparison. The KEGG number of dominant players in the SDG was not affected by depletion of a single player, whereas the subdominant and satellite species fluctuated, revealing unique contributions. Compared to SMC-SD43, SDG exhibited broader transcriptome redundancy. The invariant volatilome profile of SDG after in situ long-term back slopping revealed its stability. In contrast, SMC-SD43 lost many taxon members. Dominant, subdominant and satellite players together ensured gene and transcript redundancy. CONCLUSIONS Our study demonstrates how, by starting from spontaneous sourdoughs and reconstructing these communities synthetically, it was possible to unravel the metabolic contributions of individual players. For resilience and good performance, the sourdough metacommunity must include dominant, subdominant and satellite players, which together ensure gene and transcript redundancy. Overall, our study changes the paradigm and introduces theoretical foundations for directing food fermentations. Video Abstract.
Collapse
Affiliation(s)
| | - Hana Ameur
- Faculty of Science and Technology, Libera Università Di Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Olga Nikoloudaki
- Faculty of Science and Technology, Libera Università Di Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Giuseppe Celano
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Mirco Vacca
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Wilson JFLemos Junior
- Faculty of Science and Technology, Libera Università Di Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Caterina Manzari
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Fabienne Vertè
- Puratos NV, Industrialaan 25, 1702, Groot-Bijgaarden, Belgium
| | - Raffaella Di Cagno
- Faculty of Science and Technology, Libera Università Di Bolzano, Piazza Università 5, 39100, Bolzano, Italy.
| | - Graziano Pesole
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Marco Gobbetti
- Faculty of Science and Technology, Libera Università Di Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| |
Collapse
|
12
|
Kang J, Xue Y, Chen X, Han BZ. Integrated multi-omics approaches to understand microbiome assembly in Jiuqu, a mixed-culture starter. Compr Rev Food Sci Food Saf 2022; 21:4076-4107. [PMID: 36038529 DOI: 10.1111/1541-4337.13025] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 01/28/2023]
Abstract
The use of Jiuqu as a saccharifying and fermenting starter in the production of fermented foods is a very old biotechnological process that can be traced back to ancient times. Jiuqu harbors a hub of microbial communities, in which prokaryotes and eukaryotes cohabit, interact, and communicate. However, the spontaneous fermentation based on empirical processing hardly guarantees the stable assembly of the microbiome and a standardized quality of Jiuqu. This review describes the state of the art, limitations, and challenges towards the application of traditional and omics-based technology to study the Jiuqu microbiome and highlights the need for integrating meta-omics data. In addition, we review the varieties of Jiuqu and their production processes, with particular attention to factors shaping the microbiota of Jiuqu. Then, the potentials of integrated omics approaches used in Jiuqu research are examined in order to understand the assembly of the microbiome and improve the quality of the products. A variety of different approaches, including molecular and mass spectrometry-based techniques, have led to scientific advances in the analysis of the complex ecosystem of Jiuqu. To date, the extensive research on Jiuqu has mainly focused on the microbial community diversity, flavor profiles, and biochemical characteristics. An integrative approach to large-scale omics datasets and cultivated microbiota has great potential for understanding the interrelation of the Jiuqu microbiome. Further research on the Jiuqu microbiome may explain the inherent property of compositional stability and stable performance of a complex microbiota coping with environmental perturbations and provide important insights to reconstruct synthetic microbiota and develop modern intelligent manufacturing procedures for Jiuqu.
Collapse
Affiliation(s)
- Jiamu Kang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yansong Xue
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaoxue Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Bei-Zhong Han
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Boyaci Gunduz CP, Agirman B, Gaglio R, Franciosi E, Francesca N, Settanni L, Erten H. Evaluation of the variations in chemical and microbiological properties of the sourdoughs produced with selected lactic acid bacteria strains during fermentation. Food Chem X 2022; 14:100357. [PMID: 35693452 PMCID: PMC9178471 DOI: 10.1016/j.fochx.2022.100357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/18/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022] Open
Abstract
Chemical, microbiological and VOCs profile showed the relevance of starter addition. MiSeq Illumina confirmed that Lactobacillus spp. constituted the major LAB group. Fructilactobacillus sanfranciscensis was the most isolated LAB species. Rapid acidifying LAB strains should be preferred for sourdough production. Number of VOCs increased in sourdoughs produced with starter culture.
This research aimed to analyze variations in chemical properties, microbiological characteristics and generated volatile organic compounds (VOCs) profile during sourdough fermentation. Sourdoughs were collected from different cities in Turkey at two different times and lactic acid bacteria (LAB) in the samples were identified with culture-independent and culture-dependent molecular methods. According to culture-dependent methodology, thirteen LAB species were identified. Lactobacillus spp. were identified as the major group according to MiSeq Illumina analysis. Technological potential of commonly isolated LAB species was evaluated. Due to high frequency of isolation, Fructilactobacillus sanfranciscensis and Lactiplantibacillus plantarum strains were better investigated for their technological traits useful in sourdough production. Experimental sourdoughs were produced with mono- and dual-culture of the selected strains and chemical properties and microbiological characteristics, as well as VOCs profile of the sourdoughs, were subjected to multivariate analysis which showed the relevance of added starter, in terms of acidification and VOCs profile.
Collapse
|
14
|
Wang Y, Zhang C, Liu F, Jin Z, Xia X. Ecological succession and functional characteristics of lactic acid bacteria in traditional fermented foods. Crit Rev Food Sci Nutr 2022; 63:5841-5855. [PMID: 35014569 DOI: 10.1080/10408398.2021.2025035] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fermented foods are important parts of traditional food culture with a long history worldwide. Abundant nutritional materials and open fermentation contribute to the diversity of microorganisms, resulting in unique product quality and flavor. Lactic acid bacteria (LAB), as important part of traditional fermented foods, play a decisive role in the quality and safety of fermented foods. Reproduction and metabolic of microorganisms drive the food fermentation, and microbial interaction plays a major role in the fermentation process. Nowadays, LAB have attracted considerable interest due to their potentialities to add functional properties to certain foods or as supplements along with the research of gut microbiome. This review focuses on the characteristics of diversity and variability of LAB in traditional fermented foods, and describes the principal mechanisms involved in the flavor formation dominated by LAB. Moreover, microbial interactions and their mechanisms in fermented foods are presented. They provide a theoretical basis for exploiting LAB in fermented foods and improving the quality of traditional fermented foods. The traditional fermented food industry should face the challenge of equipment automation, green manufacturing, and quality control and safety in the production.
Collapse
Affiliation(s)
- Yingyu Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, WuXi, China
| | - Chenhao Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, WuXi, China
| | | | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, WuXi, China
| | - Xiaole Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, WuXi, China
| |
Collapse
|
15
|
Itto-Nakama K, Watanabe S, Kondo N, Ohnuki S, Kikuchi R, Nakamura T, Ogasawara W, Kasahara K, Ohya Y. AI-based forecasting of ethanol fermentation using yeast morphological data. Biosci Biotechnol Biochem 2021; 86:125-134. [PMID: 34751736 DOI: 10.1093/bbb/zbab188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/25/2021] [Indexed: 11/12/2022]
Abstract
Several industries require getting information of products as soon as possible during fermentation. However, the trade-off between sensing speed and data quantity presents challenges for forecasting fermentation product yields. In this study, we tried to develop AI models to forecast ethanol yields in yeast fermentation cultures, using cell morphological data. Our platform involves the quick acquisition of yeast morphological images using a nonstaining protocol, extraction of high-dimensional morphological data using image processing software, and forecasting of ethanol yields via supervised machine learning. We found that the neural network algorithm produced the best performance, which had a coefficient of determination of >0.9 even at 30 and 60 min in the future. The model was validated using test data collected using the CalMorph-PC(10) system, which enables rapid image acquisition within 10 min. AI-based forecasting of product yields based on cell morphology will facilitate the management and stable production of desired biocommodities.
Collapse
Affiliation(s)
- Kaori Itto-Nakama
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Shun Watanabe
- Chitose Laboratory Corp., Biotechnology Research Center, Miyamae-ku, Kawasaki, Kanagawa, Japan
| | - Naoko Kondo
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Shinsuke Ohnuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Ryota Kikuchi
- Chitose Laboratory Corp., Biotechnology Research Center, Miyamae-ku, Kawasaki, Kanagawa, Japan
- Circular Bioeconomy Development, Office of Society Academia Collaboration for Innovation, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, Japan
| | - Toru Nakamura
- NRI System Techno Ltd., Hodogaya-ku, Yokohama, Kanagawa, Japan
| | - Wataru Ogasawara
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Ken Kasahara
- Chitose Laboratory Corp., Biotechnology Research Center, Miyamae-ku, Kawasaki, Kanagawa, Japan
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
16
|
Mechanistic Insight into Yeast Bloom in a Lactic Acid Bacteria Relaying-Community in the Start of Sourdough Microbiota Evolution. Microbiol Spectr 2021; 9:e0066221. [PMID: 34668750 PMCID: PMC8528097 DOI: 10.1128/spectrum.00662-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The spontaneous microbiota of wheat sourdough, often comprising one yeast species and several lactic acid bacteria (LAB) species, evolves over repeated fermentation cycles, which bakers call backslopping. The final product quality largely depends on the microbiota functions, but these fluctuate sometimes during the initial months of fermentation cycles due to microbiota evolution in which three phases of LAB relay occur. In this study, the understanding of yeast-LAB interactions in the start of the evolution of the microbiota was deepened by exploring the timing and trigger interactions when sourdough yeast entered a preestablished LAB-relaying community. Monitoring of 32 cycles of evolution of 6 batches of spontaneous microbiota in wheat sourdoughs revealed that sourdough yeasts affected the LAB community when the 2nd- or 3rd-relaying types of LAB genera emerged. In in vitro pairwise cocultures, all 12 LAB strains containing the 3 LAB-relaying types arrested the growth of a Saccharomyces cerevisiae strain, a frequently found species in sourdoughs, to various extents by sugar-related interactions. These findings suggest competition due to different affinities of each LAB and a S. cerevisiae strain for each sugar. In particular, maltose was the driver of S. cerevisiae growth in all pairwise cocultures. The functional prediction of sugar metabolism in sourdough LAB communities showed a positive correlation between maltose degradation and the yeast population. Our results suggest that maltose-related interactions are key factors that enable yeasts to enter and then settle in the LAB-relaying community during the initial part of evolution of spontaneous sourdough microbiota. IMPORTANCE Unpredictable evolution of spontaneous sourdough microbiota sometimes prevents bakers from making special-quality products because the unstable microbiota causes the product quality to fluctuate. Elucidation of the evolutionary mechanisms of the sourdough community, comprising yeast and lactic acid bacteria (LAB), is fundamental to control fermentation performance. This study investigated the mechanisms by which sourdough yeasts entered and settled in a bacterial community in which a three-phase relay of LAB occurred. Our results showed that all three layers of LAB restricted the cohabiting yeast population by competing for the sugar sources, particularly maltose. During the initial evolution of spontaneous sourdough microbiota, yeasts tended to grow synchronously with the progression of the lactic acid bacterial relay, which was predictably associated with changes in the maltose degradation functions in the bacterial community. Further study of ≥3 species’ interactions while considering yeast diversity can uncover additional interaction mechanisms driving the initial evolution of sourdough microbiota.
Collapse
|
17
|
De Vuyst L, Comasio A, Kerrebroeck SV. Sourdough production: fermentation strategies, microbial ecology, and use of non-flour ingredients. Crit Rev Food Sci Nutr 2021; 63:2447-2479. [PMID: 34523363 DOI: 10.1080/10408398.2021.1976100] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sourdough production is an ancient method to ferment flour from cereals for the manufacturing of baked goods. This review deals with the state-of-the-art of current fermentation strategies for sourdough production and the microbial ecology of mature sourdoughs, with a particular focus on the use of non-flour ingredients. Flour fermentation processes for sourdough production are typically carried out by heterogeneous communities of lactic acid bacteria and yeasts. Acetic acid bacteria may also occur, although their presence and role in sourdough production can be criticized. Based on the inoculum used, sourdough productions can be distinguished in fermentation processes using backslopping procedures, originating from a spontaneously fermented flour-water mixture (Type 1), starter culture-initiated fermentation processes (Type 2), and starter culture-initiated fermentation processes that are followed by backslopping (Type 3). In traditional recipes for the initiation and/or propagation of Type 1 sourdough productions, non-flour ingredients are often added to the flour-water mixture. These ingredients may be the source of an additional microbial inoculum and/or serve as (co-)substrates for fermentation. An example of the former is the addition of yoghurt; an example of the latter is the use of fruit juices. The survival of microorganisms transferred from the ingredients to the fermenting flour-water mixture depends on the competitiveness toward particular strains of the microbial species present under the harsh conditions of the sourdough ecosystem. Their survival and growth is also determined by the presence of the appropriate substrates, whether or not carried over by the ingredients added.
Collapse
Affiliation(s)
- Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Andrea Comasio
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Simon Van Kerrebroeck
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
18
|
Păucean A, Mureșan V, Maria-Man S, Chiș MS, Mureșan AE, Șerban LR, Pop A, Muste S. Metabolomics as a Tool to Elucidate the Sensory, Nutritional and Safety Quality of Wheat Bread-A Review. Int J Mol Sci 2021; 22:ijms22168945. [PMID: 34445648 PMCID: PMC8396194 DOI: 10.3390/ijms22168945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 01/20/2023] Open
Abstract
Wheat (Triticum aestivum) is one of the most extensively cultivated and used staple crops in human nutrition, while wheat bread is annually consumed in more than nine billion kilograms over the world. Consumers’ purchase decisions on wheat bread are largely influenced by its nutritional and sensorial characteristics. In the last decades, metabolomics is considered an effective tool for elucidating the information on metabolites; however, the deep investigations on metabolites still remain a difficult and longtime action. This review gives emphasis on the achievements in wheat bread metabolomics by highlighting targeted and untargeted analyses used in this field. The metabolomics approaches are discussed in terms of quality, processing and safety of wheat and bread, while the molecular mechanisms involved in the sensorial and nutritional characteristics of wheat bread are pointed out. These aspects are of crucial importance in the context of new consumers’ demands on healthy bakery products rich in bioactive compounds but, equally, with good sensorial acceptance. Moreover, metabolomics is a potential tool for assessing the changes in nutrient composition from breeding to processing, while monitoring and understanding the transformations of metabolites with bioactive properties, as well as the formation of compounds like toxins during wheat storage.
Collapse
|
19
|
Lu S, Zheng F, Wen L, He Y, Wang D, Wu M, Wang B. Yeast engineering technologies and their applications to the food industry. FOOD BIOTECHNOL 2021. [DOI: 10.1080/08905436.2021.1942037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Siyan Lu
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Fei Zheng
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Liankui Wen
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Yang He
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Donghui Wang
- SBU of Agriculture, Sinochem Group Co., Ltd., Beijing, China
| | - Manyu Wu
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Bixiang Wang
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| |
Collapse
|
20
|
Isolation and Characterization of Lactic Acid Bacteria and Yeasts from Typical Bulgarian Sourdoughs. Microorganisms 2021; 9:microorganisms9071346. [PMID: 34206198 PMCID: PMC8306846 DOI: 10.3390/microorganisms9071346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 11/23/2022] Open
Abstract
Traditional sourdoughs in Bulgaria were almost extinct during the centralized food production system. However, a rapidly developing trend of sourdough revival in the country is setting the demand for increased production and use of commercial starter cultures. The selection of strains for such cultures is based on geographical specificity and beneficial technological properties. In this connection, the aim of this study was to isolate, identify and characterize lactic acid bacteria (LAB) and yeasts from typical Bulgarian sourdoughs for the selection of strains for commercial sourdough starter cultures. Twelve samples of typical Bulgarian sourdoughs were collected from different geographical locations. All samples were analyzed for pH, total titratable acidity and dry matter content. Enumeration of LAB and yeast was also carried out. Molecular identification by 16S rDNA sequence analysis was performed for 167 LAB isolates, and 106 yeast strains were identified by ITS1-5.8S-ITS2 rRNA gene partial sequence analysis. The LAB strains were characterized according to their amylolytic and proteolytic activity and acidification capacity, and 11 strains were selected for further testing of their antimicrobial properties. The strains with the most pronounced antibacterial and antifungal activity are listed as recommended candidates for the development of starter cultures for sourdoughs or other food products.
Collapse
|
21
|
Metagenetic Analysis for Microbial Characterization of Focaccia Doughs Obtained by Using Two Different Starters: Traditional Baker's Yeast and a Selected Leuconostoc citreum Strain. Foods 2021; 10:foods10061189. [PMID: 34070312 PMCID: PMC8225195 DOI: 10.3390/foods10061189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/03/2021] [Accepted: 05/21/2021] [Indexed: 11/28/2022] Open
Abstract
Lactic acid bacteria (LAB) decisively influence the technological, nutritional, organoleptic and preservation properties of bakery products. Therefore, their use has long been considered an excellent strategy to improve the characteristics of those goods. The aim of this study was the evaluation of microbial diversity in different doughs used for the production of a typical Apulian flatbread, named focaccia. Leavening of the analyzed doughs was obtained with baker’s yeast or by applying an innovative “yeast-free” protocol based on a liquid sourdough obtained by using Leuconostoc citreum strain C2.27 as a starter. The microbial populations of the doughs were studied by both a culture-dependent approach and metagenetic analyses. The flours used for dough preparation were also subjected to the same analyses. The metagenetic analyses were performed by sequencing the V5–V6 hypervariable regions of the 16S rRNA gene and the V9 hypervariable region of the 18S rRNA gene. The results indicate that these hypervariable regions were suitable for studying the microbiota of doughs, highlighting a significant difference between the microbial community of focaccia dough with baker’s yeast and that of the dough inoculated with the bacterial starter. In particular, the dough made with baker’s yeast contained a microbiota with a high abundance of Proteobacteria (82% of the bacterial population), known to be negatively correlated with the biochemical properties of the doughs, while the Proteobacteria in dough produced with the L. citreum starter were about 43.5% lower than those in flour and dough prepared using baker’s yeast. Moreover, the results show that the L. citreum C2.27 starter was able to dominate the microbial environment and also reveal the absence of the genus Saccharomyces in the dough used for the production of the “yeast-free” focaccia. This result is particularly important because it highlights the suitability of the starter strain for obtaining an innovative “yeast-free” product.
Collapse
|
22
|
Sourdough improves the quality of whole-wheat flour products: Mechanisms and challenges-A review. Food Chem 2021; 360:130038. [PMID: 34020364 DOI: 10.1016/j.foodchem.2021.130038] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022]
Abstract
Increasing the intake of whole-wheat flour (WWF) products is one of the methods to promote health. Sourdough fermentation is increasingly being used in improving the quality of WWF products. This review aims to analyze the effect of sourdough fermentation on WWF products. The effects of sourdough on bran particles, starch, and gluten, as well as the rheology, antinutritional factors, and flavor components in WWF dough/products are comprehensively reviewed. Meanwhile, sourdough fermentation technology has a promising future in reducing anti-nutritional factors and toxic and harmful substances in WFF products. Finally, researchers are encouraged to focus on the efficient strain screening and metabolic pathway control of sourdough for WWF products, as well as the use of bran pre-fermentation and integrated biotechnology to improve the quality of whole-wheat products. This review provides a comprehensive understanding of the effect of sourdough fermentation technology on wholemeal products to promote WWF production.
Collapse
|
23
|
Can we control microbiota in spontaneous food fermentation? – Chinese liquor as a case example. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
Kim KH, Chun BH, Kim J, Jeon CO. Identification of biogenic amine-producing microbes during fermentation of ganjang, a Korean traditional soy sauce, through metagenomic and metatranscriptomic analyses. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
25
|
Recent research advances of lactic acid bacteria in sourdough: origin, diversity, and function. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Balkir P, Kemahlioglu K, Yucel U. Foodomics: A new approach in food quality and safety. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.11.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Oshiro M, Zendo T, Nakayama J. Diversity and dynamics of sourdough lactic acid bacteriota created by a slow food fermentation system. J Biosci Bioeng 2021; 131:333-340. [PMID: 33358094 DOI: 10.1016/j.jbiosc.2020.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022]
Abstract
Sourdough is a naturally fermented dough that is used worldwide to produce a variety of baked foods. Various lactic acid bacteria (LAB), which can determine the quality of sourdough baked foods by producing metabolites, have been found in the sourdough ecosystem. However, spontaneous fermentation of sourdough leads to unpredictable growth of various micro-organisms, which result in unstable product quality. From an ecological perspective, many researchers have recently studied sourdough LAB diversity, particularly the elucidation of LAB community interactions and the dynamic mechanisms during the fermentation process, in response to requests for the control and design of a desired sourdough microbial community. This article reviews recent advances in the study of sourdough LAB diversity and its dynamics in association with unique characteristics of the fermentation system; it also discusses future perspectives for better understanding of the complex sourdough microbial ecosystem, which can be attained efficiently by both in vitro and in situ experimental approaches.
Collapse
Affiliation(s)
- Mugihito Oshiro
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Central Laboratory of Yamazaki Baking Company Limited, 3-23-27 Ichikawa, Ichikawa-shi, Chiba 272-8581, Japan.
| | - Takeshi Zendo
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jiro Nakayama
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
28
|
Yeast Biodiversity in Fermented Doughs and Raw Cereal Matrices and the Study of Technological Traits of Selected Strains Isolated in Spain. Microorganisms 2020; 9:microorganisms9010047. [PMID: 33375367 PMCID: PMC7824024 DOI: 10.3390/microorganisms9010047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Bakers use pure microorganisms and/or traditional sourdoughs as the leavening agent for making bread. The performance of each starter and the substances produced by the microorganisms greatly affect the dough rheology and features of breads. Modern sourdoughs inoculated with selected lactic acid bacteria and yeasts are microbiologically stable, safer than traditional sourdoughs, and easy to use. However, the commercial repertoire of baker’s yeasts is still limited. Therefore, there is a demand for new strains of yeast species, capable of conferring distinctive traits to breads made from a variety of agri-food matrices, in the design of innovative starters. In this context, we report the first comprehensive study on yeasts isolated from a wide range of fermented doughs, cereal flours, and grains of Spain. Nine yeast species were identified from 433 isolates, which were distributed among separate clades. Moreover, phenotypic traits of potential technological relevance were identified in selected yeast strains. Mother doughs (MDs) showed the greatest yeast biodiversity, whereas commercial Saccharomyces starters or related and wild strains often dominated the bakery doughs. A metataxonomic analysis of wheat and tritordeum MDs revealed a greater richness of yeast species and percentage variations related to the consistency, flour type, and fermentation time of MDs.
Collapse
|
29
|
Acin-Albiac M, Filannino P, Gobbetti M, Di Cagno R. Microbial high throughput phenomics: The potential of an irreplaceable omics. Comput Struct Biotechnol J 2020; 18:2290-2299. [PMID: 32994888 PMCID: PMC7490730 DOI: 10.1016/j.csbj.2020.08.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 01/01/2023] Open
Abstract
The phenotype-genotype landscape is a projection coming from detailed phenotypic and genotypic data under environmental pressure. Although phenome of microbes or microbial consortia mirrors the functional expression of a genome or set of genomes, metabolic traits rely on the phenotype. Phenomics has the potential to revolution functional genomics. In this review, we discuss why and how phenomics was developed. We described how phenomics may extend our understanding of the assembly of microbial consortia and their functionality, and then we outlined the novel applications within the study of phenomes using Omnilog platform together with a revision of its current application to study lactic acid bacteria (LAB) metabolic traits during food processing. LAB were proposed as a suitable model system to analyze and discuss the implementation and exploitation of this emerging omics approach. We introduced the 'phenotype switching', as a new phenotype microarray approach to get insights in bacterial physiology. An overview of methodologies and tools to manage and analyze the generated data was provided. Finally, pro and cons of pipelines developed so far, including the most innovative ones were critically analyzed. We propose an R pipeline, recently deposited, which allows to automatically analyze Omnilog data integrating the latest approaches and implementing the new concepts described here.
Collapse
Affiliation(s)
- Marta Acin-Albiac
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| | - Pasquale Filannino
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Marco Gobbetti
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| | - Raffaella Di Cagno
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| |
Collapse
|
30
|
FoodOmics as a new frontier to reveal microbial community and metabolic processes occurring on table olives fermentation. Food Microbiol 2020; 92:103606. [PMID: 32950142 DOI: 10.1016/j.fm.2020.103606] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 01/18/2023]
Abstract
Table olives are considered the most widespread fermented food in the Mediterranean area and their consumption is expanding all over the world. This fermented vegetable can be considered as a natural functional food thanks to their high nutritional value and high content of bioactive compounds that contribute to the health and well-being of consumers. The presence of bioactive compounds is strongly influenced by a complex microbial consortium, traditionally exploited through culture-dependent approaches. Recently, the rapid spread of omics technologies has represented an important challenge to better understand the function, the adaptation and the exploitation of microbial diversity in different complex ecosystems, such as table olives. This review provides an overview of the potentiality of omics technologies to in depth investigate the microbial composition and the metabolic processes that drive the table olives fermentation, affecting both sensorial profile and safety properties of the final product. Finally, the review points out the role of omics approaches to raise at higher sophisticated level the investigations on microbial, gene, protein, and metabolite, with huge potential for the integration of table olives composition with functional assessments.
Collapse
|
31
|
Adebo OA. African Sorghum-Based Fermented Foods: Past, Current and Future Prospects. Nutrients 2020; 12:E1111. [PMID: 32316319 PMCID: PMC7231209 DOI: 10.3390/nu12041111] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 11/26/2022] Open
Abstract
Sorghum (Sorghum bicolor) is a well-known drought and climate resistant crop with vast food use for the inhabitants of Africa and other developing countries. The importance of this crop is well reflected in its embedded benefits and use as a staple food, with fermentation playing a significant role in transforming this crop into an edible form. Although the majority of these fermented food products evolve from ethnic groups and rural communities, industrialization and the application of improved food processing techniques have led to the commercial success and viability of derived products. While some of these sorghum-based fermented food products still continue to bask in this success, much more still needs to be done to further explore evolving techniques, technologies and processes. The addition of other affordable nutrient sources in sorghum-based fermented foods is equally important, as this will effectively augment the intake of a nutritionally balanced product.
Collapse
Affiliation(s)
- Oluwafemi Ayodeji Adebo
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg (Doornfontein Campus), P.O. Box 17011 Johannesburg, Gauteng 2028, South Africa
| |
Collapse
|
32
|
Tamang JP, Cotter PD, Endo A, Han NS, Kort R, Liu SQ, Mayo B, Westerik N, Hutkins R. Fermented foods in a global age: East meets West. Compr Rev Food Sci Food Saf 2020; 19:184-217. [PMID: 33319517 DOI: 10.1111/1541-4337.12520] [Citation(s) in RCA: 235] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 12/11/2022]
Abstract
Fermented foods and alcoholic beverages have long been an important part of the human diet in nearly every culture on every continent. These foods are often well-preserved and serve as stable and significant sources of proteins, vitamins, minerals, and other nutrients. Despite these common features, however, many differences exist with respect to substrates and products and the types of microbes involved in the manufacture of fermented foods and beverages produced globally. In this review, we describe these differences and consider the influence of geography and industrialization on fermented foods manufacture. Whereas fermented foods produced in Europe, North America, Australia, and New Zealand usually depend on defined starter cultures, those made in Asia and Africa often rely on spontaneous fermentation. Likewise, in developing countries, fermented foods are not often commercially produced on an industrial scale. Although many fermented products rely on autochthonous microbes present in the raw material, for other products, the introduction of starter culture technology has led to greater consistency, safety, and quality. The diversity and function of microbes present in a wide range of fermented foods can now be examined in detail using molecular and other omic approaches. The nutritional value of fermented foods is now well-appreciated, especially in resource-poor regions where yoghurt and other fermented foods can improve public health and provide opportunities for economic development. Manufacturers of fermented foods, whether small or large, should follow Good Manufacturing Practices and have sustainable development goals. Ultimately, preferences for fermented foods and beverages depend on dietary habits of consumers, as well as regional agricultural conditions and availability of resources.
Collapse
Affiliation(s)
- Jyoti Prakash Tamang
- DAICENTER and Bioinformatics Centre, Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, Sikkim, India
| | - Paul D Cotter
- Food Biosciences, Principal Research Officer, Teagasc Food Research Centre, Moorepark, Fermoy and APC Microbiome Ireland, Cork, Ireland
| | - Akihito Endo
- Department of Food, Aroma and Cosmetic Chemistry, Tokyo University of Agriculture, Tokyo, Japan
| | - Nam Soo Han
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Remco Kort
- Department of Molecular Cell Biology, VU University Amsterdam, The Netherlands.,Yoba for Life foundation, Amsterdam, The Netherlands
| | - Shao Quan Liu
- Food Science and Technology Programme, National University of Singapore
| | - Baltasar Mayo
- Department of Microbiology and Chemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Nieke Westerik
- Department of Molecular Cell Biology, VU University Amsterdam, The Netherlands.,Yoba for Life foundation, Amsterdam, The Netherlands
| | - Robert Hutkins
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
33
|
Urien C, Legrand J, Montalent P, Casaregola S, Sicard D. Fungal Species Diversity in French Bread Sourdoughs Made of Organic Wheat Flour. Front Microbiol 2019; 10:201. [PMID: 30833935 PMCID: PMC6387954 DOI: 10.3389/fmicb.2019.00201] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/24/2019] [Indexed: 02/04/2023] Open
Abstract
Microbial communities are essential for the maintenance and functioning of ecosystems, including fermented food ecosystems. The analysis of food microbial communities is mainly focused on lactic acid bacteria (LAB), while yeast diversity is less understood. Here, we describe the fungal diversity of a typical food fermented product, sourdough bread. The species diversity of 14 sourdoughs collected from bakeries located all over France was analyzed. Bakeries were chosen to represent diverse bakery practices and included bakers and farmer-bakers. Both non-culture-based (pyrosequencing of Internal Transcribed Spacer 1 amplicons) and culture-based methods were used. While both identification methods were in agreement regarding the dominant yeast species of each sourdough, the ITS1 metabarcoding analysis identified an increased number of fungal species in sourdough communities. Two third of the identified sequences obtained from sourdoughs were Saccharomycetales, mostly in the Kazachstania genus. No Saccharomycetales species was shared by all the sourdoughs, whereas five other fungal species, mainly known plant pathogens, were found in all sourdoughs. Interestingly, Saccharomyces cerevisiae, known as “baker’s yeast,” was identified as the dominant species in only one sourdough. By contrast, five Kazachstania species were identified as the dominant sourdough species, including one recently described Kazachstania species, Kazachstania saulgeensis and an undescribed Kazachstania sp. Sourdoughs from farmer-bakers harbored Kazachstania bulderi, Kazachstania unispora and two newly described Kazachstania species, while sourdough from bakers mostly carried Kazachstania humilis as the dominant species. Such yeast diversity has not been found in sourdoughs before, highlighting the need to maintain different traditional food practices to conserve microbial diversity.
Collapse
Affiliation(s)
- Charlotte Urien
- GQE-Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Judith Legrand
- GQE-Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pierre Montalent
- GQE-Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Serge Casaregola
- Micalis Institute, INRA, AgroParisTech, CIRM-Levures, Université Paris-Saclay, Jouy-en-Josas, France
| | - Delphine Sicard
- GQE-Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France.,SPO, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| |
Collapse
|