1
|
Vepštaitė-Monstavičė I, Lukša-Žebelovič J, Apšegaitė V, Mozūraitis R, Lisicinas R, Stanevičienė R, Blažytė-Čereškienė L, Serva S, Servienė E. Profiles of Killer Systems and Volatile Organic Compounds of Rowanberry and Rosehip-Inhabiting Yeasts Substantiate Implications for Biocontrol. Foods 2025; 14:288. [PMID: 39856953 PMCID: PMC11765129 DOI: 10.3390/foods14020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Yeasts produce numerous antimicrobial agents such as killer toxins, volatile organic compounds (VOCs), and other secondary metabolites, establishing themselves in developing natural and sustainable biocontrol strategies for agriculture and food preservation. This study addressed the biocontrol potential of yeasts, isolated from spontaneous fermentations of rosehips (Rosa canina L.) and rowanberries (Sorbus aucuparia L.), focusing on their killer phenotypes and VOCs production. Yeasts were isolated using spontaneous fermentations with Hanseniaspora uvarum and Metschnikowia pulcherrima identified as the dominant species, comprising approximately 70% of the yeast population. Among 163 isolated strains, 20% demonstrated killing activity, with Saccharomyces cerevisiae exhibiting the strongest killing efficiency, as well as Pichia anomala and M. pulcherrima showing broad-spectrum antagonistic activity. This study identified dsRNA-encoded killer phenotypes in S. cerevisiae, S. paradoxus, and Torulaspora delbrueckii, revealing multiple distinct killer toxin types. The biocontrol potential of wild berry-inhabiting yeasts was demonstrated in a real food system, grape juice, where the S. cerevisiae K2-type killer strain significantly reduced fungal contaminants. The selected H. uvarum, M. pulcherrima, S. cerevisiae, and S. paradoxus yeast strains representing both berries were applied for VOC analysis and identification by gas chromatography-linked mass spectrometry. It was revealed that the patterns of emitted volatiles are yeast species-specific. Statistically significant differences between the individual VOCs were observed among killing phenotype-possessing vs. non-killer S. paradoxus yeasts, thus revealing the involvement of killer systems in multi-level biocontrol enablement. The performed studies deepen our understanding of potential yeast biocontrol mechanisms, highlight the importance of produced antimicrobials and volatiles in ensuring antagonistic efficacy, and prove the relevance of isolated biocontrol yeasts for improving food safety.
Collapse
Affiliation(s)
- Iglė Vepštaitė-Monstavičė
- Life Sciences Center, Vilnius University, Saulėtekio av. 7, 10257 Vilnius, Lithuania; (I.V.-M.); (S.S.)
- Nature Research Centre, Akademijos str. 2, 08412 Vilnius, Lithuania; (J.L.-Ž.); (V.A.); (R.M.); (R.L.); (R.S.); (L.B.-Č.)
| | - Juliana Lukša-Žebelovič
- Nature Research Centre, Akademijos str. 2, 08412 Vilnius, Lithuania; (J.L.-Ž.); (V.A.); (R.M.); (R.L.); (R.S.); (L.B.-Č.)
| | - Violeta Apšegaitė
- Nature Research Centre, Akademijos str. 2, 08412 Vilnius, Lithuania; (J.L.-Ž.); (V.A.); (R.M.); (R.L.); (R.S.); (L.B.-Č.)
| | - Raimondas Mozūraitis
- Nature Research Centre, Akademijos str. 2, 08412 Vilnius, Lithuania; (J.L.-Ž.); (V.A.); (R.M.); (R.L.); (R.S.); (L.B.-Č.)
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18B, 10691 Stockholm, Sweden
| | - Robertas Lisicinas
- Nature Research Centre, Akademijos str. 2, 08412 Vilnius, Lithuania; (J.L.-Ž.); (V.A.); (R.M.); (R.L.); (R.S.); (L.B.-Č.)
| | - Ramunė Stanevičienė
- Nature Research Centre, Akademijos str. 2, 08412 Vilnius, Lithuania; (J.L.-Ž.); (V.A.); (R.M.); (R.L.); (R.S.); (L.B.-Č.)
| | - Laima Blažytė-Čereškienė
- Nature Research Centre, Akademijos str. 2, 08412 Vilnius, Lithuania; (J.L.-Ž.); (V.A.); (R.M.); (R.L.); (R.S.); (L.B.-Č.)
| | - Saulius Serva
- Life Sciences Center, Vilnius University, Saulėtekio av. 7, 10257 Vilnius, Lithuania; (I.V.-M.); (S.S.)
| | - Elena Servienė
- Nature Research Centre, Akademijos str. 2, 08412 Vilnius, Lithuania; (J.L.-Ž.); (V.A.); (R.M.); (R.L.); (R.S.); (L.B.-Č.)
| |
Collapse
|
2
|
He Y, Degraeve P, Oulahal N. Bioprotective yeasts: Potential to limit postharvest spoilage and to extend shelf life or improve microbial safety of processed foods. Heliyon 2024; 10:e24929. [PMID: 38318029 PMCID: PMC10839994 DOI: 10.1016/j.heliyon.2024.e24929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
Yeasts are a widespread group of microorganisms that are receiving increasing attention from scientists and industry. Their diverse biological activities and broad-spectrum antifungal activity make them promising candidates for application, especially in postharvest biocontrol of fruits and vegetables and food biopreservation. The present review focuses on recent knowledge of the mechanisms by which yeasts inhibit pathogenic fungi and/or spoilage fungi and bacteria. The main mechanisms of action of bioprotective yeasts include competition for nutrients and space, synthesis and secretion of antibacterial compounds, mycoparasitism and the secretion of lytic enzymes, biofilm formation, quorum sensing, induced systemic resistance of fruit host, as well as the production of reactive oxygen species. Preadaptation of yeasts to abiotic stresses such as cold acclimatization and sublethal oxidative stress can improve the effectiveness of antagonistic yeasts and thus more effectively play biocontrol roles under a wider range of environmental conditions, thereby reducing economic losses. Combined application with other antimicrobial substances can effectively improve the efficacy of yeasts as biocontrol agents. Yeasts show great potential as substitute for chemical additives in various food fields, but their commercialization is still limited. Hence, additional investigation is required to explore the prospective advancements of yeasts in the field of biopreservation for food.
Collapse
Affiliation(s)
- Yan He
- Université Lyon, Université Claude Bernard Lyon 1, BioDyMIA Research Unit, ISARA, 155 Rue Henri de Boissieu, F-01000, Bourg en Bresse, France
| | - Pascal Degraeve
- Université Lyon, Université Claude Bernard Lyon 1, BioDyMIA Research Unit, ISARA, 155 Rue Henri de Boissieu, F-01000, Bourg en Bresse, France
| | - Nadia Oulahal
- Université Lyon, Université Claude Bernard Lyon 1, BioDyMIA Research Unit, ISARA, 155 Rue Henri de Boissieu, F-01000, Bourg en Bresse, France
| |
Collapse
|
3
|
Avîrvarei AC, Salanță LC, Pop CR, Mudura E, Pasqualone A, Anjos O, Barboza N, Usaga J, Dărab CP, Burja-Udrea C, Zhao H, Fărcaș AC, Coldea TE. Fruit-Based Fermented Beverages: Contamination Sources and Emerging Technologies Applied to Assure Their Safety. Foods 2023; 12:838. [PMID: 36832913 PMCID: PMC9957501 DOI: 10.3390/foods12040838] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/26/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
The food and beverage market has become broader due to globalization and consumer claims. Under the umbrella of consumer demands, legislation, nutritional status, and sustainability, the importance of food and beverage safety must be decisive. A significant sector of food production is related to ensuring fruit and vegetable conservation and utilization through fermentation. In this respect, in this review, we critically analyzed the scientific literature regarding the presence of chemical, microbiological and physical hazards in fruit-based fermented beverages. Furthermore, the potential formation of toxic compounds during processing is also discussed. In managing the risks, biological, physical, and chemical techniques can reduce or eliminate any contaminant from fruit-based fermented beverages. Some of these techniques belong to the technological flow of obtaining the beverages (i.e., mycotoxins bound by microorganisms used in fermentation) or are explicitly applied for a specific risk reduction (i.e., mycotoxin oxidation by ozone). Providing manufacturers with information on potential hazards that could jeopardize the safety of fermented fruit-based drinks and strategies to lower or eliminate these hazards is of paramount importance.
Collapse
Affiliation(s)
- Alexandra Costina Avîrvarei
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Liana Claudia Salanță
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Carmen Rodica Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Elena Mudura
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, I-70126 Bari, Italy
| | - Ofelia Anjos
- Instituto Politécnico de Castelo Branco, 6001-909 Castelo Branco, Portugal
- Forest Research Centre, School of Agriculture, University of Lisbon, 1349-017 Lisbon, Portugal
- Spectroscopy and Chromatography Laboratory, CBP-BI-Centro de Biotecnologia de Plantas da Beira Interior, 6001-909 Castelo Branco, Portugal
| | - Natalia Barboza
- Food Technology Department, University of Costa Rica, Ciudad Universitaria Rodrigo Facio, San Jośe 11501-2060, Costa Rica
- National Center of Food Science and Technology (CITA), University of Costa Rica, Ciudad Universitaria Rodrigo Facio, San Jośe 11501-2060, Costa Rica
| | - Jessie Usaga
- National Center of Food Science and Technology (CITA), University of Costa Rica, Ciudad Universitaria Rodrigo Facio, San Jośe 11501-2060, Costa Rica
| | - Cosmin Pompei Dărab
- Faculty of Electrical Engineering, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
| | - Cristina Burja-Udrea
- Industrial Engineering and Management Department, Faculty of Engineering, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China
| | - Anca Corina Fărcaș
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Teodora Emilia Coldea
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Agarbati A, Ciani M, Esin S, Agnolucci M, Marcheggiani F, Tiano L, Comitini F. Comparative Zymocidial Effect of Three Different Killer Toxins against Brettanomyces bruxellensis Spoilage Yeasts. Int J Mol Sci 2023; 24:ijms24021309. [PMID: 36674823 PMCID: PMC9866123 DOI: 10.3390/ijms24021309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Three killer toxins that were previously investigated, one excreted by Kluyveromyces wickerhamii and two by different strains of Wickerhamomyces anomalus, were produced at the pilot scale, lyophilized and characterized, and the formulates were assessed for their zymocidial effect against Brettanomyces bruxellensis spoilage yeast. A comparative analysis allowed the evaluation of the minimum inhibitory concentration (MIC) against a sensitive strain. Fungicidal and fungistatic concentrations were used to evaluate the cytocidal effect using a cytofluorimetric approach that confirmed the lethal effect of all lyophilized formulates against B. bruxellensis spoilage yeasts. Moreover, the potential killer toxins' cytotoxicity against human intestinal cells (Caco-2) were evaluated to exclude any possible negative effect on the consumers. Finally, the effective lethal effect of all three lyophilized killer toxins toward B. bruxellensis sensitive strain were tested. The results indicated that all of them acted without dangerous effects on the human epithelial cells, opening the way for their possible commercial application. In particular, D15 showed the lowest MIC and the highest activity, was evaluated also in wine, revealing a strong reduction of Brettamonyces yeast growth and, at the same time, a control of ethyl phenols production.
Collapse
Affiliation(s)
- Alice Agarbati
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Maurizio Ciani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
- Correspondence: (M.C.); (F.C.)
| | - Semih Esin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 37, 56123 Pisa, Italy
| | - Monica Agnolucci
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Francesca Comitini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
- Correspondence: (M.C.); (F.C.)
| |
Collapse
|
5
|
Shen Y, Bai X, Zhou X, Wang J, Guo N, Deng Y. Whole-Genome Analysis of Starmerella bacillaris CC-PT4 against MRSA, a Non- Saccharomyces Yeast Isolated from Grape. J Fungi (Basel) 2022; 8:1255. [PMID: 36547588 PMCID: PMC9784136 DOI: 10.3390/jof8121255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Starmerella bacillaris is often isolated from environments associated with grape and winemaking. S. bacillaris has many beneficial properties, including the ability to improve the flavor of wine, the production of beneficial metabolites, and the ability to biocontrol. S. bacillaris CC-PT4 (CGMCC No. 23573) was isolated from grape and can inhibit methicillin-resistant Staphylococcus aureus and adaptability to harsh environments. In this paper, the whole genome of S. bacillaris CC-PT4 was sequenced and bioinformatics analyses were performed. The S. bacillaris CC-PT4 genome was finally assembled into five scaffolds with a genome size of 9.45 Mb and a GC content of 39.5%. It was predicted that the strain contained 4150 protein-coding genes, of which two genes encoded killer toxin and one gene encoded lysostaphin. It also contains genes encoding F1F0-ATPases, Na(+)/H(+) antiporter, cation/H(+) antiporter, ATP-dependent bile acid permease, major facilitator superfamily (MFS) antiporters, and stress response protein, which help S. bacillaris CC-PT4 adapt to bile, acid, and other stressful environments. Proteins related to flocculation and adhesion have also been identified in the S. bacillaris CC-PT4 genome. Predicted by antiSMASH, two secondary metabolite biosynthesis gene clusters were found, and the synthesized metabolites may have antimicrobial effects. Furthermore, S. bacillaris CC-PT4 carried genes associated with pathogenicity and drug resistance. Overall, the whole genome sequencing and analysis of S. bacillaris CC-PT4 in this study provide valuable information for understanding the biological characteristics and further development of this strain.
Collapse
Affiliation(s)
- Yong Shen
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xue Bai
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xiran Zhou
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jiaxi Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Na Guo
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yanhong Deng
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
6
|
Bullé Rêgo ES, Santos DL, Hernández-Macedo ML, Padilha FF, López JA. Methods for the prevention and control of microbial spoilage and undesirable compounds in wine manufacturing. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Wine Spoilage Control: Impact of Saccharomycin on Brettanomyces bruxellensis and Its Conjugated Effect with Sulfur Dioxide. Microorganisms 2021; 9:microorganisms9122528. [PMID: 34946131 PMCID: PMC8705515 DOI: 10.3390/microorganisms9122528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 11/17/2022] Open
Abstract
The yeast Brettanomyces bruxellensis is one of the most dangerous wine contaminants due to the production of phenolic off-flavors such as 4-ethylphenol. This microbial hazard is regularly tackled by addition of sulfur dioxide (SO2). Nevertheless, B. bruxellensis is frequently found at low levels (ca 103 cells/mL) in finished wines. Besides, consumers health concerns regarding the use of sulfur dioxide encouraged the search for alternative biocontrol measures. Recently, we found that Saccharomyces cerevisiae secretes a natural biocide (saccharomycin) that inhibits the growth of different B. bruxellensis strains during alcoholic fermentation. Here we investigated the ability of S. cerevisiae CCMI 885 to prevent B. bruxellensis ISA 2211 growth and 4-ethylphenol production in synthetic and true grape must fermentations. Results showed that B. bruxellensis growth and 4-ethylphenol production was significantly inhibited in both media, although the effect was more pronounced in synthetic grape must. The natural biocide was added to a simulated wine inoculated with 5 × 102 cells/mL of B. bruxellensis, which led to loss of culturability and viability (100% dead cells at day-12). The conjugated effect of saccharomycin with SO2 was evaluated in simulated wines at 10, 12, 13 and 14% (v/v) ethanol. Results showed that B. bruxellensis proliferation in wines at 13 and 14% (v/v) ethanol was completely prevented by addition of 1.0 mg/mL of saccharomycin with 25 mg/L of SO2, thus allowing to significantly reduce the SO2 levels commonly used in wines (150–200 mg/L).
Collapse
|
8
|
Hernandez-Montiel LG, Droby S, Preciado-Rangel P, Rivas-García T, González-Estrada RR, Gutiérrez-Martínez P, Ávila-Quezada GD. A Sustainable Alternative for Postharvest Disease Management and Phytopathogens Biocontrol in Fruit: Antagonistic Yeasts. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122641. [PMID: 34961112 PMCID: PMC8708500 DOI: 10.3390/plants10122641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/18/2021] [Accepted: 11/26/2021] [Indexed: 05/06/2023]
Abstract
Postharvest diseases of fruits caused by phytopathogens cause losses up to 50% of global production. Phytopathogens control is performed with synthetic fungicides, but the application causes environmental contamination problems and human and animal health in addition to generating resistance. Yeasts are antagonist microorganisms that have been used in the last years as biocontrol agents and in sustainable postharvest disease management in fruits. Yeast application for biocontrol of phytopathogens has been an effective action worldwide. This review explores the sustainable use of yeasts in each continent, the main antagonistic mechanisms towards phytopathogens, their relationship with OMIC sciences, and patents at the world level that involve yeast-based-products for their biocontrol.
Collapse
Affiliation(s)
- Luis G. Hernandez-Montiel
- Centro de Investigaciones Biológicas del Noroeste, Calle Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz 23096, Mexico
- Correspondence: (L.G.H.-M.); (G.D.Á.-Q.)
| | - Samir Droby
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Center, P.O. Box 15159, Rishon LeZion 7505101, Israel;
| | - Pablo Preciado-Rangel
- Tecnológico Nacional de México, Instituto Tecnológico de Torreón, Carretera Torreón-San Pedro, Km 7.5, Ejido Ana, Torreón 27170, Mexico;
| | - Tomás Rivas-García
- Departamento de Sociología Rural, Universidad Autónoma Chapingo, Carr. Federal México-Texcoco, Km 38.5, San Diego 56230, Mexico;
| | - Ramsés R. González-Estrada
- Tecnológico Nacional de México, Instituto Tecnológico de Tepic, Avenida Tecnológico 2595, Col. Lagos del Country, Tepic 63175, Mexico; (R.R.G.-E.); (P.G.-M.)
| | - Porfirio Gutiérrez-Martínez
- Tecnológico Nacional de México, Instituto Tecnológico de Tepic, Avenida Tecnológico 2595, Col. Lagos del Country, Tepic 63175, Mexico; (R.R.G.-E.); (P.G.-M.)
| | - Graciela D. Ávila-Quezada
- Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, Escorza 900, Col. Centro, Chihuahua 31000, Mexico
- Correspondence: (L.G.H.-M.); (G.D.Á.-Q.)
| |
Collapse
|
9
|
Comitini F, Agarbati A, Canonico L, Ciani M. Yeast Interactions and Molecular Mechanisms in Wine Fermentation: A Comprehensive Review. Int J Mol Sci 2021; 22:ijms22147754. [PMID: 34299371 PMCID: PMC8307806 DOI: 10.3390/ijms22147754] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 01/16/2023] Open
Abstract
Wine can be defined as a complex microbial ecosystem, where different microorganisms interact in the function of different biotic and abiotic factors. During natural fermentation, the effect of unpredictable interactions between microorganisms and environmental factors leads to the establishment of a complex and stable microbiota that will define the kinetics of the process and the final product. Controlled multistarter fermentation represents a microbial approach to achieve the dual purpose of having a less risky process and a distinctive final product. Indeed, the interactions evolved between microbial consortium members strongly modulate the final sensorial properties of the wine. Therefore, in well-managed mixed fermentations, the knowledge of molecular mechanisms on the basis of yeast interactions, in a well-defined ecological niche, becomes fundamental to control the winemaking process, representing a tool to achieve such objectives. In the present work, the recent development on the molecular and metabolic interactions between non-Saccharomyces and Saccharomyces yeasts in wine fermentation was reviewed. A particular focus will be reserved on molecular studies regarding the role of nutrients, the production of the main byproducts and volatile compounds, ethanol reduction, and antagonistic actions for biological control in mixed fermentations.
Collapse
|
10
|
Prins RC, Billerbeck S. A buffered media system for yeast batch culture growth. BMC Microbiol 2021; 21:127. [PMID: 33892647 PMCID: PMC8063419 DOI: 10.1186/s12866-021-02191-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/11/2021] [Indexed: 11/24/2022] Open
Abstract
Background Fungi are premier hosts for the high-yield secretion of proteins for biomedical and industrial applications. The stability and activity of these secreted proteins is often dependent on the culture pH. As yeast acidifies the commonly used synthetic complete drop-out (SD) media that contains ammonium sulfate, the pH of the media needs to be buffered in order to maintain a desired extracellular pH during biomass production. At the same time, many buffering agents affect growth at the concentrations needed to support a stable pH. Although the standard for biotechnological research and development is shaken batch cultures or microtiter plate cultures that cannot be easily automatically pH-adjusted during growth, there is no comparative study that evaluates the buffering capacity and growth effects of different media types across pH-values in order to develop a pH-stable batch culture system. Results We systematically test the buffering capacity and growth effects of a citrate-phosphate buffer (CPB) from acidic to neutral pH across different media types. These media types differ in their nitrogen source (ammonium sulfate, urea or both). We find that the widely used synthetic drop-out media that uses ammonium sulfate as nitrogen source can only be effectively buffered at buffer concentrations that also affect growth. At lower concentrations, yeast biomass production still acidifies the media. When replacing the ammonium sulfate with urea, the media alkalizes. We then develop a medium combining ammonium sulfate and urea which can be buffered at low CPB concentrations that do not affect growth. In addition, we show that a buffer based on Tris/HCl is not effective in maintaining any of our media types at neutral pH even at relatively high concentrations. Conclusion Here we show that the buffering of yeast batch cultures is not straight-forward and addition of a buffering agent to set a desired starting pH does not guarantee pH-maintenance during growth. In response, we present a buffered media system based on an ammonium sulfate/urea medium that enables relatively stable pH-maintenance across a wide pH-range without affecting growth. This buffering system is useful for protein-secretion-screenings, antifungal activity assays, as well as for other pH-dependent basic biology or biotechnology projects. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02191-5.
Collapse
Affiliation(s)
- Rianne C Prins
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Sonja Billerbeck
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
11
|
Carboni G, Marova I, Zara G, Zara S, Budroni M, Mannazzu I. Evaluation of Recombinant Kpkt Cytotoxicity on HaCaT Cells: Further Steps towards the Biotechnological Exploitation Yeast Killer Toxins. Foods 2021; 10:foods10030556. [PMID: 33800189 PMCID: PMC8000969 DOI: 10.3390/foods10030556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 11/16/2022] Open
Abstract
The soil yeast Tetrapisispora phaffii secretes a killer toxin, named Kpkt, that shows β-glucanase activity and is lethal to wine spoilage yeasts belonging to Kloeckera/Hanseniaspora, Saccharomycodes and Zygosaccharomyces. When expressed in Komagataella phaffii, recombinant Kpkt displays a wider spectrum of action as compared to its native counterpart, being active on a vast array of wine yeasts and food-related bacteria. Here, to gather information on recombinant Kpkt cytotoxicity, lyophilized preparations of this toxin (LrKpkt) were obtained and tested on immortalized human keratinocyte HaCaT cells, a model for the stratified squamous epithelium of the oral cavity and esophagus. LrKpkt proved harmless to HaCaT cells at concentrations up to 36 AU/mL, which are largely above those required to kill food-related yeasts and bacteria in vitro (0.25-2 AU/mL). At higher concentrations, it showed a dose dependent effect that was comparable to that of the negative control and therefore could be ascribed to compounds, other than the toxin, occurring in the lyophilized preparations. Considering the dearth of studies regarding the effects of yeast killer toxins on human cell lines, these results represent a first mandatory step towards the evaluation the possible risks associated to human intake. Moreover, in accordance with that observed on Ceratitis capitata and Musca domestica, they support the lack of toxicity of this toxin on non-target eukaryotic models and corroborate the possible exploitation of killer toxins as natural antimicrobials in the food and beverages industries.
Collapse
Affiliation(s)
- Gavino Carboni
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39, 07100 Sassari, Italy; (G.C.); (G.Z.); (S.Z.); (M.B.)
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Královo Pole, 61200 Brno, Czech Republic
| | - Ivana Marova
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Královo Pole, 61200 Brno, Czech Republic
- Correspondence: (I.M.); (I.M.)
| | - Giacomo Zara
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39, 07100 Sassari, Italy; (G.C.); (G.Z.); (S.Z.); (M.B.)
| | - Severino Zara
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39, 07100 Sassari, Italy; (G.C.); (G.Z.); (S.Z.); (M.B.)
| | - Marilena Budroni
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39, 07100 Sassari, Italy; (G.C.); (G.Z.); (S.Z.); (M.B.)
| | - Ilaria Mannazzu
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39, 07100 Sassari, Italy; (G.C.); (G.Z.); (S.Z.); (M.B.)
- Correspondence: (I.M.); (I.M.)
| |
Collapse
|
12
|
Koteshwara A, Philip NV, Aranjani JM, Hariharapura RC, Volety Mallikarjuna S. A set of simple methods for detection and extraction of laminarinase. Sci Rep 2021; 11:2489. [PMID: 33510321 PMCID: PMC7844030 DOI: 10.1038/s41598-021-81807-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/04/2020] [Indexed: 11/08/2022] Open
Abstract
A carefully designed ammonium sulfate precipitation will simplify extraction of proteins and is considered to be a gold standard among various precipitation methods. Therefore, optimization of ammonium sulfate precipitation can be an important functional step in protein purification. The presence of high amounts of ammonium sulphate precludes direct detection of many enzymatically active proteins including reducing sugar assays (e.g. Nelson-Somogyi, Reissig and 3,5-dinitrosalicylic acid methods) for assessing carbohydrases (e.g. laminarinase (β (1-3)-glucanohydrolase), cellulases and chitinases). In this study, a simple method was developed using laminarin infused agarose plate for the direct analysis of the ammonium sulphate precipitates from Streptomyces rimosus AFM-1. The developed method is simple and convenient that can give accurate results even in presence of ammonium sulfate in the crude precipitates. Laminarin is a translucent substrate requiring the use of a stain to visualize the zones of hydrolysis in a plate assay. A very low-cost and locally available fluorescent optical fabric brightener Tinopal CBS-X has been used as a stain to detect the zones of hydrolysis. We also report simple methods to prepare colloidal chitin and cell free supernatant in this manuscript.
Collapse
Affiliation(s)
- Ananthamurthy Koteshwara
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Udupi, Karnataka, 576104, India
| | - Nancy V Philip
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Udupi, Karnataka, 576104, India
| | - Jesil Mathew Aranjani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Udupi, Karnataka, 576104, India
| | - Raghu Chandrashekhar Hariharapura
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Udupi, Karnataka, 576104, India
| | - Subrahmanyam Volety Mallikarjuna
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Udupi, Karnataka, 576104, India.
| |
Collapse
|
13
|
Comitini F, Agarbati A, Canonico L, Galli E, Ciani M. Purification and Characterization of WA18, a New Mycocin Produced by Wickerhamomyces anomalus Active in Wine Against Brettanomyces bruxellensis Spoilage Yeasts. Microorganisms 2020; 9:microorganisms9010056. [PMID: 33379214 PMCID: PMC7824415 DOI: 10.3390/microorganisms9010056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 01/02/2023] Open
Abstract
Wickerhamomyces anomalus strain 18, isolated from a natural underground cheese ripening pit, secretes a mycocin named WA18 that inhibits wine spoilage yeasts belonging to Brettanomyces bruxellensis species, with a broad-spectrum of activity. WA18 was purified, and the purified protein was digested with specific restriction enzymes (lysine K and arginine R cut sites). The LC-MS and LC-MS/MS analysis after enzymatic digestions revealed a molecular weight of 31 kDa. Bioinformatics processing and database research of digested pure killer protein showed 99% identity with a UDP-glycosyltransferase protein. Competitive inhibition assay of killer activity by cell-wall polysaccharides suggests that branched glucans represent the first receptor site of the toxin on the envelope of the sensitive target. The WA18 partially purified crude extract (PPCE) showed high stability of antimicrobial activity at the physicochemical conditions suitable for the winemaking process. Indeed, in wine WA18 was able to counteract B. bruxellensis and control the production of ethyl phenols. In addition, the strain WA18 was compatible with Saccharomyces cerevisiae in co-culture conditions with a potential application together with commercial starter cultures. These data suggest that WA18 mycocin is a promising biocontrol agent against spoilage yeasts in winemaking, particularly during wine storage.
Collapse
|
14
|
Non-Saccharomyces in Winemaking: Source of Mannoproteins, Nitrogen, Enzymes, and Antimicrobial Compounds. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6030076] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Traditionally, non-Saccharomyces yeasts have been considered contaminants because of their high production of metabolites with negative connotations in wine. This aspect has been changing in recent years due to an increased interest in the use of these yeasts in the winemaking process. The majority of these yeasts have a low fermentation power, being used in mixed fermentations with Saccharomyces cerevisiae due to their ability to produce metabolites of enological interest, such as glycerol, fatty acids, organic acids, esters, higher alcohols, stable pigments, among others. Additionally, existing literature reports various compounds derived from the cellular structure of non-Saccharomyces yeasts with benefits in the winemaking process, such as polysaccharides, proteins, enzymes, peptides, amino acids, or antimicrobial compounds, some of which, besides contributing to improving the quality of the wine, can be used as a source of nitrogen for the fermentation yeasts. These compounds can be produced exogenously, and later incorporated into the winemaking process, or be uptake directly by S. cerevisiae from the fermentation medium after their release via lysis of non-Saccharomyces yeasts in sequential fermentations.
Collapse
|