1
|
Baidya S, Biswas N, Chowdhury B, Chakraborty B, Kumar D, Karmakar K. Bacterial inoculation prevents cold-induced electrolyte leakage from tomato seeds and reduces thermal fluctuations in the rhizosphere. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3133-3138. [PMID: 39887716 DOI: 10.1002/jsfa.14153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/24/2024] [Accepted: 11/28/2024] [Indexed: 02/01/2025]
Abstract
BACKGROUND Low soil temperature and its fluctuation can negatively impact the growth of seedlings. The district of Cooch Behar (India), belonging to the Cwa zone (according to Koppen's classification), receives several cold waves during winter. Our previous study demonstrated that a constant temperature of 20 °C (chilling but not freezing) can cause a loss in the vigor of tomatoes. Since the temperature of the soil is not uniform throughout the day, we hypothesized that the duration of cold exposure can have variable effects on seed vigor. RESULTS It was observed that increasing the duration of cold stress can slow down the germination process and reduce vigor. This was due to the cold-mediated damage to cell membranes (due to dehydration) which caused electrolyte leakage and reduced levels of glutathione reductase. In this regard, biopriming seeds with microbes that produce exopolysaccharide (EPS) can be useful as it can form a protective layer on the seeds. Indigenous EPS-producing bacteria, Bacillus, Phytobacter and Priestia sp., were used for biopriming. Priestia and Phytobacter sp. not only reduced the electrolyte leakage but also increased the levels of antioxidant genes. This improved the germination speed and vigor. In a field trial, the rhizosphere of the seedlings pretreated with bioinoculants displayed a reduced thermal fluctuation compared with the untreated seeds. CONCLUSION The seedlings treated with bioinoculants grew faster in soil in spite of low soil temperature. This can reduce the nursery time of seedlings. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shouvik Baidya
- Department of Soil Science and Agricultural Chemistry, Uttar Banga Krishi Viswavidayalaya, Cooch Behar, India
| | - Nipa Biswas
- Department of Seed Science and Technology, Uttar Banga Krishi Viswavidayalaya, Cooch Behar, India
| | - Bratati Chowdhury
- Faculty of Engineering, Uttar Banga Krishi Viswavidayalaya, Cooch Behar, India
| | - Binayak Chakraborty
- Department of Soil Microbiology, Regional Research Station, Terai Zone, Uttar Banga Krishi Viswavidayalaya, Cooch Behar, India
| | - Deepak Kumar
- Department of Biochemistry, College of Agriculture, Uttar Banga Krishi Viswavidayalaya, Balurghat, India
| | - Kapudeep Karmakar
- Department of Soil Microbiology, Regional Research Station, Terai Zone, Uttar Banga Krishi Viswavidayalaya, Cooch Behar, India
| |
Collapse
|
2
|
Bagui P, Pal P, Biswas N, Chowdhury B, Chakraborty B, Dey P, Karmakar K. Priestia and Phytobacter sp. prevent membrane damage and electrolyte leakage from Capsicum annuum L. seeds subjected to sub-optimal temperature stress. FEMS Microbiol Lett 2025; 372:fnaf033. [PMID: 40101944 DOI: 10.1093/femsle/fnaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/19/2025] [Accepted: 03/17/2025] [Indexed: 03/20/2025] Open
Abstract
Unlike the Himalayas, the sub-Himalayan zones did not experience snowfall and thus suitable for growing solanaceous vegetables. However, several cold waves have been reported to affect the district of Coochbehar (West Bengal, India), which belongs to the Cwa zone (as per Koppen's classification). Variable duration of sub-optimal soil temperature can have a detrimental effect on the growth of seedlings. Our previous study demonstrates that a constant temperature of 20°C (6 degrees below the optimal soil temperature) causes a 71% loss of vigor in seeds of solanaceous plants. Since the soil temperature is not constant diurnally, it was hypothesized that the duration of cold stress can have variable effects on vigor of Capsicum annuum L. It was observed that increasing the duration of cold stress (18 °C) up to 2 hours/day can improve the vigor but after 6 hours/day, a significant drop in vigor was observed. This was because of the cold-associated membrane damage leading to the leakage of electrolytes. To date, this stress existing in these regions has gone unnoticed. In this regard, biopriming the seeds with exopolysaccharide (EPS)-producing microbes can be useful as the EPS can form a protective layer on the seeds. Two lesser-known bacteria namely, Phytobacter and Priestia sp. were evaluated for their vigor-recovering ability. Treatment of seed with these microbes reduced the electrolyte leakage which improved the vigor under sub-optimal stress. This was also validated by fluorescent microscopy. Both these strains displayed an enhanced EPS-producing ability at 18°C which correlated with the reduced electrolyte leakage and enhanced stability of cell membrane. Such bacteria can help in promoting seed vigor under sub-optimal temperature stress.
Collapse
Affiliation(s)
- Prima Bagui
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Poulomi Pal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Nipa Biswas
- Department of Seed Science and Technology, Uttar Banga Krishi Viswavidyalaya, Coochbehar 736165, West Bengal, India
| | - Bratati Chowdhury
- Soil and Water Conservation Engineering, Faculty of Technology, Uttar Banga Krishi Viswavidyalaya, Coochbehar 736165, West Bengal, India
| | - Binayak Chakraborty
- Regional Research Station, Terai Zone, Uttar Banga Krishi Viswavidyalaya, Coochbehar 736165, West Bengal, India
| | - Prithwiraj Dey
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Kapudeep Karmakar
- Regional Research Station, Terai Zone, Uttar Banga Krishi Viswavidyalaya, Coochbehar 736165, West Bengal, India
| |
Collapse
|
3
|
Karmakar K, Chakraborty S, Kumar JR, Nath U, Nataraja KN, Chakravortty D. Role of lactoyl-glutathione lyase of Salmonella in the colonization of plants under salinity stress. Res Microbiol 2023; 174:104045. [PMID: 36842715 DOI: 10.1016/j.resmic.2023.104045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/28/2023]
Abstract
Salmonella, a foodborne human pathogen, can colonize the members of the kingdom Plantae. However, the basis of the persistence of Salmonella in plants is largely unknown. Plants encounter various biotic and abiotic stress agents in soil. We conjectured that methylglyoxal (MG), one of the common metabolites that accumulate in plants during both biotic and abiotic stress, plays a role in regulating the plant-Salmonella interaction. The interaction of Salmonella Typhimurium with plants under salinity stress was investigated. It was observed that wild-type Salmonella Typhimurium can efficiently colonize the root, but mutant bacteria lacking MG detoxifying enzyme, lactoyl-glutathione lyase (Lgl), showed lower colonization in roots exclusively under salinity stress. This colonization defect is due to the poor viability of the mutated bacterial strains under these conditions. This is the first report to prove the role of MG-detoxification genes in the colonization of stressed plants and highlights the possible involvement of metabolic genes in the evolution of the plant-associated life of Salmonella.
Collapse
Affiliation(s)
- Kapudeep Karmakar
- Regional Research Station, Terai Zone, Uttar Banga Krishi Viswavidyalaya, Coochbehar-736165, India.
| | - Sangeeta Chakraborty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.
| | - Jyothsna R Kumar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.
| | - Utpal Nath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.
| | - Karaba N Nataraja
- Department of Crop Physiology, University of Agricultural Science, Bangalore 560012, India.
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India; Adjunct Faculty, School of Biology, Indian Institute of Science and Educational Research, Thiruvananthapuram 695551, India.
| |
Collapse
|
4
|
Karmakar K, Bhattacharya R, Sharma A, Parmar K, Nath U, Nataraja KN, N E, Sharma G, Chakravortty D. Lysinibacillus macroides-mediated control of cellulose-producing morphotype of Salmonella. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6491-6501. [PMID: 35567417 DOI: 10.1002/jsfa.12016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/07/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Soil-dwelling human pathogens like Salmonella are transmitted by fresh produce such as tomato, spinach, onion and cabbage. With >2600 serovars, it is difficult to classify the good plant colonizers from the non-colonizers. Generally, soil microbiota are classified as autochthonous or zymogenous organisms, based on their ability to survive in soil. However, such information for soil-dwelling human pathogens is not available Thus there is a need to classify these organisms for designing a strategy to prevent their outbreak. Moreover, soil harbours a plethora of microbes, which can be screened for competitive organisms to control such human pathogens. RESULTS In this study, we examined whether the morphotype based on the attachment factors (e.g., cellulose and curli fimbri) of Salmonella was important for its colonization of roots. Secondly, we tracked the location of the bacteria in the plant cell. Interestingly, most of the epidermal cells occupied by Salmonella showed propidium iodide-positive nuclei. As an extension of the study, a screening of competitive rhizospheric bacteria was performed. One isolate, identified as Lysinibacillus macroides, was able to inhibit the biofilm of Salmonella and subsequently reduced its colonization on roots. CONCLUSION Based on this study, we classified the Rdar (red, dry and rough) morphotypes as good plant colonists. The ability to colonize and subsequent kill the live plant cell throws light on the zymogenous life cycle of soil-dwelling Salmonella. Additionally, Lysinibacillus macroides served as a biocontrol agent by reducing the burden of Salmonella in various vegetables. Such organisms can further be explored to prevent contamination of the food chain. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kapudeep Karmakar
- Regional Research Station, Terai Zone, Uttar Banga Krishi Viswavidyalaya, Coochbehar, West Bengal, India
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Rohan Bhattacharya
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Abhishek Sharma
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Kirti Parmar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Utpal Nath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Karaba N Nataraja
- Department of Crop Physiology, University of Agricultural Science, Bangalore, Karnataka, India
| | - Earanna N
- Department of Agricultural Microbiology, University of Agricultural Science, Bangalore, Karnataka, India
| | - Gaurav Sharma
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bangalore, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
5
|
Thiruvengadam M, Chung IM, Samynathan R, Chandar SRH, Venkidasamy B, Sarkar T, Rebezov M, Gorelik O, Shariati MA, Simal-Gandara J. A comprehensive review of beetroot ( Beta vulgaris L.) bioactive components in the food and pharmaceutical industries. Crit Rev Food Sci Nutr 2022; 64:708-739. [PMID: 35972148 DOI: 10.1080/10408398.2022.2108367] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Beetroot is rich in various bioactive phytochemicals, which are beneficial for human health and exert protective effects against several disease conditions like cancer, atherosclerosis, etc. Beetroot has various therapeutic applications, including antioxidant, antibacterial, antiviral, and analgesic functions. Besides the pharmacological effects, food industries are trying to preserve beetroots or their phytochemicals using various food preservation methods, including drying and freezing, to preserve their antioxidant capacity. Beetroot is a functional food due to valuable active components such as minerals, amino acids, phenolic acid, flavonoid, betaxanthin, and betacyanin. Due to its stability, nontoxic and non-carcinogenic and nonpoisonous capabilities, beetroot has been used as an additive or preservative in food processing. Beetroot and its bioactive compounds are well reported to possess antioxidant, anti-inflammatory, antiapoptotic, antimicrobial, antiviral, etc. In this review, we provided updated details on (i) food processing, preservation and colorant methods using beetroot and its phytochemicals, (ii) synthesis and development of several nanoparticles using beetroot and its bioactive compounds against various diseases, (iii) the role of beetroot and its phytochemicals under disease conditions with molecular mechanisms. We have also discussed the role of other phytochemicals in beetroot and their health benefits. Recent technologies in food processing are also updated. We also addressed on molecular docking-assisted biological activity and screening for bioactive chemicals. Additionally, the role of betalain from different sources and its therapeutic effects have been listed. To the best of our knowledge, little or no work has been carried out on the impact of beetroot and its nanoformulation strategies for phytocompounds on antimicrobial, antiviral effects, etc. Moreover, epigenetic alterations caused by phytocompounds of beetroot under several diseases were not reported much. Thus, extensive research must be carried out to understand the molecular effects of beetroot in the near future.
Collapse
Affiliation(s)
- Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | | | | | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Maksim Rebezov
- Department of Scientific Advisers, V. M. Gorbatov Federal Research Center for Food Systems, Moscow, Russian Federation
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and management (The First Cossack University), Moscow, Russia Federation
| | - Olga Gorelik
- Faculty of Biotechnology and Food Engineering, Ural State Agrarian University, Yekaterinburg, Russian Federation
- Ural Federal Agrarian Research Center of the Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russian Federation
| | - Mohammad Ali Shariati
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and management (The First Cossack University), Moscow, Russia Federation
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Ourense, Spain
| |
Collapse
|
6
|
Clairmont LK, Coristine A, Stevens KJ, Slawson RM. Factors influencing the persistence of enteropathogenic bacteria in wetland habitats and implications for water quality. J Appl Microbiol 2020; 131:513-526. [PMID: 33274572 DOI: 10.1111/jam.14955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/12/2020] [Accepted: 11/29/2020] [Indexed: 11/28/2022]
Abstract
AIMS To better understand the persistence dynamics of enteropathogenic bacteria in freshwater wetland habitats, we constructed lab-scale mesocosms planted with two different wetland plant species using a subsurface flow wetland design. Mesocosms were treated with either a high-quality or a poor-quality water source to examine the effects of water quality exposure and plant species on Escherichia coli, Salmonella spp. and Enterococcus spp. in the rhizoplane, rhizosphere and water of wetland habitats. METHODS AND RESULTS Quantities of study micro-organisms were detected using real-time PCR in wetland mesocosms. A combination of molecular and culture-based methods was also used to enumerate these organisms from surface water and plant material at high, medium and poor water quality sites in the field. We found that all three enteropathogenic micro-organisms were influenced by microhabitat type and plant species. Organisms differed with respect to their predominant microhabitat and the extent of persistence associated with wetland plant species in the mesocosm study. Of the monitored pathogens, only E. coli was influenced by both water quality treatment and plant species. Salmonella spp. quantities in the rhizoplane consistently increased in all treatments over the course of the mesocosm experiment. CONCLUSIONS Plant species selection appears to be an overlooked aspect of constructed wetland design with respect to the removal of enteropathogenic micro-organisms. Escherichia coli and Enterococcus concentrations in wetland outflow were significantly different between the two plant species tested, with Enterococcus concentrations being significantly higher in mesocosms planted with Phalaris arundinaceae and E. coli concentrations being higher in mesocosms planted with Veronica anagallis-aquatica. Furthermore, there is evidence that the rhizoplane is a significant reservoir for Salmonella spp. within wetland habitats. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first time that Salmonella spp. has been shown to proliferate under natural conditions within the rhizoplane. This will contribute to our understanding of wetland removal mechanisms for enteropathogenic bacteria. This study identifies the rhizoplane as a potentially important reservoir for human pathogenic micro-organisms and warrants additional study to establish whether this finding is applicable in non-wetland habitats.
Collapse
Affiliation(s)
| | - A Coristine
- Wilfrid Laurier University, Waterloo, ON, Canada
| | - K J Stevens
- Wilfrid Laurier University, Waterloo, ON, Canada
| | - R M Slawson
- Wilfrid Laurier University, Waterloo, ON, Canada
| |
Collapse
|