1
|
Davydova L, Menshova A, Shumatbaev G, Babaev V, Nikitin E. Phytochemical Study of Ethanol Extract of Gnaphalium uliginosum L. and Evaluation of Its Antimicrobial Activity. Antibiotics (Basel) 2024; 13:785. [PMID: 39200085 PMCID: PMC11352081 DOI: 10.3390/antibiotics13080785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
This study evaluates the antibacterial and antifungal effects of ethanol extracts from Gnaphalium uliginosum L. derived from freshly harvested plant biomass, including stems, leaves, flowers, and roots. The extract was analyzed using gas chromatography-mass spectrometry (GC-MS) to determine its antimicrobial activity against phytopathogenic bacteria and fungi. Two methods were used in the experiments: agar well diffusion and double serial dilution. Extraction was carried out using the maceration method with different temperature regimes (25 °C, 45 °C, and 75 °C) and the ultrasonic method at various powers (63-352 W) for different durations (5 and 10 min). It was found that the 70% ethanol extract obtained through the ultrasonic experiment at 189 W power for 10 min and at 252 W power for 5 min had the highest antimicrobial activity compared to the maceration method. The most sensitive components of the extracts were the Gram-positive phytopathogenic bacteria Clavibacter michiganensis and the Gram-negative phytopathogenic bacteria Erwinia carotovora spp., with MIC values of 156 μg/mL. Among the fungi, the most sensitive were Rhizoctonia solani and Alternaria solani (MIC values in the range of 78-156 µg/mL). The evaluation of the antimicrobial activity of extracts using the diffusion method established the presence of a growth suppression zone in the case of C. michiganensis (15-17 mm for flowers, leaves, and total biomass), which corresponds to the average level of antimicrobial activity. These findings suggest that G. uliginosum has potential as a source of biologically active compounds for agricultural use, particularly for developing novel biopesticides.
Collapse
Affiliation(s)
- Lilia Davydova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia; (A.M.); (G.S.); (V.B.); (E.N.)
| | | | | | | | | |
Collapse
|
2
|
Tahir R, Samra, Ghaffar A, Afzal F, Qazi IH, Zhao L, Yan H, Kuo H, Khan H, Yang S. Chronic cypermethrin induced toxicity and molecular fate assessment within common carp (Cyprinus carpio) using multiple biomarkers approach and its novel therapeutic detoxification. CHEMOSPHERE 2024; 357:142096. [PMID: 38663676 DOI: 10.1016/j.chemosphere.2024.142096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
Cypermethrin (CYP) is a chemical of emerging concern which has persistent and bioaccumulating impacts as it can be found extensively in freshwater ecosystem and agricultural products. It has exposure risk and toxic effects over human edible fish, as common carp. Four groups were designed for toxicity assessment and detoxification approach: control group (CL), CYP exposure group (CYP), CYP + 10% M. oleifera leaves and 10% M. oleifera seeds (CMO group), 10% M. oleifera leaves and 10% M. oleifera seeds (MO group). Trial period was forty days during which cohort of 240 fish in CYP and CMO group was exposed to 1/5 of 96h LC50 of CYP (0.1612 μg/L). CYP-exposed carp exhibited lower growth parameters, but carp fed with 10% M. oleifera seeds and leaves showed significant improvement in growth rate (SGR, RGR) and weight gain (WG) as compared to the control group. CYP exposure negatively affected haemato-biochemical parameters. Moreover, CYP exposure also led to oxidative stress, damaged immunological parameters, genotoxicity and histopathological damage in liver and intestinal cells. Whereas, M. oleifera supplementation has ameliorated these conditions. Thereby, supplementation with M. oleifera is potential and novel therapeutic detoxication approach for common carp and human health against persistent and bioaccumulating emerging chemicals.
Collapse
Affiliation(s)
- Rabia Tahir
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Samra
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Abdul Ghaffar
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Fozia Afzal
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Izhar Hyder Qazi
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Haoxiao Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - He Kuo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Hamid Khan
- Department of Biochemistry, Quaid i Azam University, Islamabad, 45320, Pakistan
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
3
|
Li Y, Sun R, Kong Y, Cai X, Jiang T, Cheng S, Yang H, Song L, Lü X, Wang X, Shi C. Antibacterial effect of ultrasound and β-citronellol against Listeria monocytogenes and its application in carrot preservation. ULTRASONICS SONOCHEMISTRY 2024; 102:106752. [PMID: 38211495 PMCID: PMC10788804 DOI: 10.1016/j.ultsonch.2023.106752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/16/2023] [Accepted: 12/31/2023] [Indexed: 01/13/2024]
Abstract
This study investigated the antibacterial effects of ultrasound (US), β-citronellol (CT), and a combination of the two treatments on Listeria monocytogenes. Results showed that US or CT alone did not show apparent antibacterial effect (0.02-0.76 log CFU/mL reduction). The combined treatment showed obviously inactivate effect of L. monocytogenes, the populations of L. monocytogenes decreased by 8.93 log CFU/mL after US (253 W/cm2, 20 kHz) + 0.8 mg/mL CT treatment. US + CT treatment also had a significant (P < 0.05) antibacterial effect on isolates of L. monocytogenes from three different serotypes. In this study, the damage of US + CT on cell morphology had been observed using field emission scanning electron microscopy, while the damage to cell membranes by US + CT was observed by confocal laser scanning microscopy and flow cytometry. Meanwhile, the uptake of N-phenyl-l-naphthylamine and the absorbance at 260 and 280 nm also indicated that the combined treatment disrupted the permeability and integrity of L. monocytogenes membranes. Reactive oxygen species and malondialdehyde assays showed that US + CT exacerbated cellular oxidative stress and lipid peroxidation. In addition, the US + CT treatment reduced L. monocytogenes by 3.14-4.24 log CFU/g on the surface of carrots. Total phenolic and carotenoid contents in carrots were elevated after US + CT treatment. During storage, compared to control, US + CT did not significantly (P > 0.05) change the surface color of carrots but significantly (P < 0.05) decreased both hardness and weight, and has an impact on the sensory. This study showed that US + CT is a promising cleaning method that will provide new ideas for the preservation of fresh agricultural produce.
Collapse
Affiliation(s)
- Yimeng Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University ShenZhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Runyang Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University ShenZhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Yajing Kong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaolin Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tongyu Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuai Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Luyi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University ShenZhen Research Institute, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
4
|
Belov T, Terenzhev D, Bushmeleva KN, Davydova L, Burkin K, Fitsev I, Gatiyatullina A, Egorova A, Nikitin E. Comparative Analysis of Chemical Profile and Biological Activity of Juniperus communis L. Berry Extracts. PLANTS (BASEL, SWITZERLAND) 2023; 12:3401. [PMID: 37836145 PMCID: PMC10574284 DOI: 10.3390/plants12193401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023]
Abstract
Researchers are looking for the most effective ways to extract the bioactive substances of Juniperus communis L. berries, which are capable of displaying the greatest range of biological activity, namely antimicrobial potential "against phytopathogens", antioxidant activity and nematocidal activity. This study provides detailed information on the chemical activity, group composition and biological activity of the extracts of juniper berries of 1- and 2-year maturity (JB1 and JB2), which were obtained by using different solvents (pentane, chloroform, acetone, methanol and 70% ethanol) under various extraction conditions (maceration and ultrasound-assisted maceration (US)). Seventy percent ethanol and acetone extracts of juniper berries were analyzed via gas chromatography-mass spectrometry, and they contained monoterpenes, sesquiterpenes, polysaccharides, steroids, fatty acid esters and bicyclic monoterpenes. The antimicrobial activity was higher in the berries of 1-year maturity, while the acetone extract obtained via ultrasound-assisted maceration was the most bioactive in relation to the phytopathogens. Depending on the extraction method and the choice of solvent, the antioxidant activity with the use of US decreased by 1.5-1.9 times compared to the extracts obtained via maceration. An analysis of the nematocidal activity showed that the sensitivity to the action of extracts in Caenorhabditis elegans was significantly higher than in Caenorhabditis briggsae, particularly for the acetone extract obtained from the juniper berries of 1-year maturity.
Collapse
Affiliation(s)
- Timur Belov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia; (D.T.); (K.N.B.); (L.D.); (E.N.)
| | - Dmitriy Terenzhev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia; (D.T.); (K.N.B.); (L.D.); (E.N.)
| | - Kseniya Nikolaevna Bushmeleva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia; (D.T.); (K.N.B.); (L.D.); (E.N.)
| | - Lilia Davydova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia; (D.T.); (K.N.B.); (L.D.); (E.N.)
| | - Konstantin Burkin
- Federal State Budgetary Scientific Institution, Federal Center for Toxicological, Radiation, and Biological Safety, Nauchny Gorodok-2, 420075 Kazan, Russia;
| | - Igor Fitsev
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya Str. 18, 420008 Kazan, Russia;
| | - Alsu Gatiyatullina
- Research Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences, IPEM TAS, Daurskaya Str. 28, 420087 Kazan, Russia; (A.G.); (A.E.)
| | - Anastasia Egorova
- Research Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences, IPEM TAS, Daurskaya Str. 28, 420087 Kazan, Russia; (A.G.); (A.E.)
| | - Evgeniy Nikitin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia; (D.T.); (K.N.B.); (L.D.); (E.N.)
| |
Collapse
|
5
|
Su X, Lu G, Ye L, Shi R, Zhu M, Yu X, Li Z, Jia X, Feng L. Moringa oleifera Lam.: a comprehensive review on active components, health benefits and application. RSC Adv 2023; 13:24353-24384. [PMID: 37588981 PMCID: PMC10425832 DOI: 10.1039/d3ra03584k] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023] Open
Abstract
Moringa oleifera Lam. is an edible therapeutic plant that is native to India and widely cultivated in tropical countries. In this paper, the current application of M. oleifera was discussed by summarizing its medicinal parts, active components and potential mechanism. The emerging products of various formats such as drug preparation and product application reported in the last years were also clarified. Based on literature reports, the unique components and biological activities of M. oleifera need to be further studied. In the future, a variety of new technologies should be applied to the development of M. oleifera products, to enrich the varieties of dosage forms, improve the bitter taste masking technology, and make it better for use in the fields of food and medicine.
Collapse
Affiliation(s)
- Xinyue Su
- School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Guanzheng Lu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Liang Ye
- School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Ruyu Shi
- School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Maomao Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Xinming Yu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Zhiyong Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 P. R. China
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Liang Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 P. R. China
| |
Collapse
|
6
|
Xu Y, Chen G, Muema FW, Xiao J, Guo M. Most Recent Research Progress in Moringa oleifera: Bioactive Phytochemicals and Their Correlated Health Promoting Effects. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2195189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
7
|
Yang H, Song L, Sun P, Su R, Wang S, Cheng S, Zhan X, Lü X, Xia X, Shi C. Synergistic bactericidal effect of ultrasound combined with citral nanoemulsion on Salmonella and its application in the preservation of purple kale. ULTRASONICS SONOCHEMISTRY 2023; 92:106269. [PMID: 36571884 PMCID: PMC9800203 DOI: 10.1016/j.ultsonch.2022.106269] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 05/28/2023]
Abstract
In this study, a novel citral nanoemulsion (CLNE) was prepared by ultrasonic emulsification. The synergistic antibacterial mechanism of ultrasound combined with CLNE against Salmonella Typhimurium and the effect on the physicochemical properties of purple kale were investigated. The results showed that the combined treatment showed obviously inactivate effect of S. Typhimurium. Treatment with 0.3 mg/mL CLNE combined with US (20 kHz, 253 W/cm2) for 8 min reduced S. Typhimurium populations in phosphate-buffered saline (PBS) by 9.05 log CFU/mL. Confocal laser scanning microscopy (CLSM), flow cytometry (FCM), protein and nucleic acid release assays showed that the US combination CLNE disrupt the integrity of S. Typhimurium membranes. Reactive oxygen species (ROS) and malondialdehyde (MDA) detection indicated that US+CLNE exacerbated oxidative stress and lipid peroxidation in cell membranes. The morphological changes of cells after different treatments by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) illustrated that the synergistic effect of US+CLNE treatment changed the morphology and internal microstructure of the bacteriophage cells. Application of US+CLNE on purple kale leaves for 6 min significantly (P < 0.05) reduced the number of S. Typhimurium, but no changes in the physicochemical properties of the leaves were detected. This study elucidates the synergistic antibacterial mechanism of ultrasound combined with CLNE and provides a theoretical basis for its application in food sterilization.
Collapse
Affiliation(s)
- Hui Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Luyi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peiwen Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruiying Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuqi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuai Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangjun Zhan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaodong Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning 116304, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
8
|
Selected Seeds as Sources of Bioactive Compounds with Diverse Biological Activities. Nutrients 2022; 15:nu15010187. [PMID: 36615843 PMCID: PMC9823554 DOI: 10.3390/nu15010187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Seeds contain a variety of phytochemicals that exhibit a wide range of biological activities. Plant-derived compounds are often investigated for their antioxidant, anti-inflammatory, immunomodulatory, hypoglycemic, anti-hypercholesterolemic, anti-hypertensive, anti-platelet, anti-apoptotic, anti-nociceptive, antibacterial, antiviral, anticancer, hepatoprotective, or neuroprotective properties. In this review, we have described the chemical content and biological activity of seeds from eight selected plant species-blackberry (Rubus fruticosus L.), black raspberry (Rubus coreanus Miq.), grape (Vitis vinifera L.), Moringa oleifera Lam., sea buckthorn (Hippophae rhamnoides L.), Gac (Momordica cochinchinensis Sprenger), hemp (Cannabis sativa L.), and sacha inchi (Plukenetia volubilis L). This review is based on studies identified in electronic databases, including PubMed, ScienceDirect, and SCOPUS. Numerous preclinical, and some clinical studies have found that extracts, fractions, oil, flour, proteins, polysaccharides, or purified chemical compounds isolated from the seeds of these plants display promising, health-promoting effects, and could be utilized in drug development, or to make nutraceuticals and functional foods. Despite that, many of these properties have been studied only in vitro, and it's unsure if their effects would be relevant in vivo as well, so there is a need for more animal studies and clinical trials that would help determine if they could be applied in disease prevention or treatment.
Collapse
|
9
|
Sprouts of Moringa oleifera Lam.: Germination, Polyphenol Content and Antioxidant Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248774. [PMID: 36557909 PMCID: PMC9785483 DOI: 10.3390/molecules27248774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
(1) Background: In recent years, the consumption of sprouts, thanks to their high nutritional value, and the presence of bioactive compounds with antioxidant, antiviral and antibacterial properties, is becoming an increasingly widespread habit. Moringa oleifera Lam. (Moringa) seems to be an inexhaustible resource considering that many parts may be used as food or in traditional medicine; on the other hand, Moringa sprouts still lack a proper characterization needing further insights to envisage novel uses and applications. (2) Methods: In this study, a rapid and easy protocol to induce the in vivo and in vitro germination of Moringa seeds has been set up to obtain sprouts and cotyledons to be evaluated for their chemical composition. Moreover, the effects of sprouts developmental stage, type of sowing substrate, and gibberellic acid use on the chemical characteristics of extracts have been evaluated. (3) Results: Moringa seeds have a high germinability, both in in vivo and in vitro conditions. In addition, the extracts obtained have different total phenolic content and antioxidant activity. (4) Conclusions: This research provides a first-line evidence to evaluate Moringa sprouts as future novel functional food or as a valuable source of bioactive compounds.
Collapse
|
10
|
Myint KZ, Yu Q, Qing J, Zhu S, Shen J, Xia Y. Botanic antimicrobial agents, their antioxidant properties, application and safety issue. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
11
|
Assessment of physicochemical, functional, thermal, and phytochemical characteristics of refined rice bran wax. Food Chem 2022; 396:133737. [PMID: 35870241 DOI: 10.1016/j.foodchem.2022.133737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/07/2022] [Accepted: 07/15/2022] [Indexed: 11/23/2022]
Abstract
The drastic increase in the utilization and conversion of biomass has been an effect of sustainability and circular economy in the food processing sector. Rice bran wax (RBW), an intermediate by-product of rice bran oil refining industries, has been one of the underutilized waste materials. The FT-IR analysis showed that RBW contains many similar compounds to that of beeswax (BW) and carnauba wax (CW). The DSC thermographs showed melting and crystallization temperatures of RBW as 78.55 and 73.43 °C, respectively, lesser than CW and more than BW. The peak profiling of XRD diffractographs has shown full-width at half-maximum of CW and RBW as 0.61 and 0.45, respectively, indicating distortion in crystal formation. The sequential extracts of RBW in hexane, dichloromethane, and ethylacetate have shown antimicrobial activity against E. coli and S. typhi. The research provides a baseline for extraction and separation of specialty compounds from RBW for by-product utilization.
Collapse
|
12
|
Zhao S, Yuan X, Li Z, Zhao Y, Zhou H, Kang Z, Ma H. Inhibitory effects of pepper (
Zanthoxylum bungeanum
Maxim) leaf extract on lipid and protein oxidation during the processing of Chinese traditional dry‐cured meat (larou). Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shengming Zhao
- School of Food Science and Technology Henan Institute of Science and Technology No. 90 Hua lan Street Xinxiang 453003 China
- National Pork Processing Technology Research and Development Professional Center No. 90 Hua lan Street Xinxiang 453003 China
| | - Xiaorui Yuan
- School of Food Science and Technology Henan Institute of Science and Technology No. 90 Hua lan Street Xinxiang 453003 China
- National Pork Processing Technology Research and Development Professional Center No. 90 Hua lan Street Xinxiang 453003 China
| | - Zhao Li
- School of Food Science and Technology Henan Institute of Science and Technology No. 90 Hua lan Street Xinxiang 453003 China
- National Pork Processing Technology Research and Development Professional Center No. 90 Hua lan Street Xinxiang 453003 China
| | - Yanyan Zhao
- School of Food Science and Technology Henan Institute of Science and Technology No. 90 Hua lan Street Xinxiang 453003 China
| | - Haixu Zhou
- School of Food Science and Technology Henan Institute of Science and Technology No. 90 Hua lan Street Xinxiang 453003 China
| | - Zhuangli Kang
- School of Food Science and Technology Henan Institute of Science and Technology No. 90 Hua lan Street Xinxiang 453003 China
- National Pork Processing Technology Research and Development Professional Center No. 90 Hua lan Street Xinxiang 453003 China
| | - Hanjun Ma
- School of Food Science and Technology Henan Institute of Science and Technology No. 90 Hua lan Street Xinxiang 453003 China
- National Pork Processing Technology Research and Development Professional Center No. 90 Hua lan Street Xinxiang 453003 China
| |
Collapse
|
13
|
Zhang Y, Yun Z, Zhu M, Liu Z, Huang Y. Oxidation and flavor changes in smoked bacon cured using bamboo extract concentrate combined with bamboo poles during storage. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yunqi Zhang
- College of Life Science and Engineering Southwest University of Science and Technology Mianyang PR China
| | - Zhoumiao Yun
- College of Life Science and Engineering Southwest University of Science and Technology Mianyang PR China
| | - Meilin Zhu
- College of Life Science and Engineering Southwest University of Science and Technology Mianyang PR China
| | - Zhijun Liu
- College of Life Science and Engineering Southwest University of Science and Technology Mianyang PR China
| | - Yechuan Huang
- College of Biological Engineering Jingchu University of Technology Jingmen PR China
| |
Collapse
|
14
|
Francelin MF, dos Santos IF, Claus T, Visentainer JV, Feihrmann AC, Gomes RG, Vieira AMS. Effects of
Moringa oleifera
Lam. leaves extract on physicochemical, fatty acids profile, oxidative stability, microbiological and sensory properties of chicken mortadella. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Thiago Claus
- Department of Chemical, Universidade Estadual de Maringá Paraná Brazil
| | | | | | | | | |
Collapse
|
15
|
Onyeaka H, Miri T, Hart A, Anumudu C, Nwabor OF. Application of Ultrasound Technology in Food Processing with emphasis on bacterial spores. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2013255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, UK
| | - Taghi Miri
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, UK
| | - Abarasi Hart
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, UK
| | - Christian Anumudu
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, UK
| | - Ozioma Forstinus Nwabor
- Biological Science, Faculty of Science with Infectious Diseases, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
16
|
Savvaidis IN, Ayala-Zavala JF. Editorial for special issue of food natural antimicrobials. Int J Food Microbiol 2021; 358:109414. [PMID: 34583229 DOI: 10.1016/j.ijfoodmicro.2021.109414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This special issue compiled 13 research articles and one review analyzing natural antimicrobial agents applied in real food systems. The accepted submissions were received from 14 countries, including Spain, Brazil, Lebanon, United Arab Emirates, Jordan, Greece, Thailand, Turkey, Saudi Arabia, Italy, Argentina, Canada, Iran, and China. The studied antimicrobial substances included phenolic compounds from plant tissues, terpenes from plant essential oils, bacteriocins, and chitosan. The treated food matrices were fresh fruit, fruit juices, beef, chicken products, camel meat, cheese, fish, and yogurt. Most of the published papers directly applied the natural substances in the food matrices, and others use edible coatings, marinades, micro and nanocarriers. Also, hurdle technologies were used to increase the antimicrobial effect of the studied natural substances, including temperature, vacuum packaging, ultraviolet, and edible coatings. In conclusion, promising results were obtained to impulse the transitions of natural antimicrobials as effective agents in the food industry; some contributions to the mode of actions of natural antimicrobials in real food systems were also included.
Collapse
Affiliation(s)
- Ioannis N Savvaidis
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates; Department of Chemistry, School of Natural Sciences, University of Ioannina, Ioannina 45110, Greece.
| | - J Fernando Ayala-Zavala
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Gustavo Aztiazaran Rosas No. 46. Colonia La Victoria, Hermosillo, Sonora 83304, Mexico.
| |
Collapse
|
17
|
Biobased films of nanocellulose and mango leaf extract for active food packaging: Supercritical impregnation versus solvent casting. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106709] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Song L, Wu X, Xie J, Zhang H, Yang H, Zeng Q, Yang X, Xie W. Kaempferia galanga Linn. Extract – A potential antibacterial agent for preservation of poultry products. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|