1
|
Wang D, Xu R, Liu S, Sun X, Zhang T, Shi L, Wang Y. Enhancing the application of probiotics in probiotic food products from the perspective of improving stress resistance by regulating cell physiological function: A review. Food Res Int 2025; 199:115369. [PMID: 39658167 DOI: 10.1016/j.foodres.2024.115369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/28/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
Probiotic foods are foods containing probiotics, including dairy and non-dairy products, that exert significant beneficial impacts on human health. Benefiting from the rapid progress in systems biology, diverse types of probiotics with prominent health-promoting functionalities are unraveled, albeit such functions could be substantially influenced by the stress environments. Here, we conducted a comprehensive review to characterize the state-of-the-art research on probiotic foods and specific probiotics employed in their production. We summarized the detrimental effects of various environmental stresses, including those encountered during industrial fermentation and storage (in vitro), as well as in vivo conditions such as digestion and intestinal colonization, on the biological functions of probiotics. Furthermore, this review outlines the recent advancements in elucidating the mechanisms of stress resistance, which are expected to enhance targeted probiotic applications and optimize their functional properties. Additionally, we summarized various strategies aimed at improving stress tolerance by regulating cell physiological function, specifically adaptive laboratory evolution, preadaptation treatment, exogenous supplementation, and molecular biological manipulation. This review underscores the significance of enhancing our understanding of stress tolerance mechanisms at a systems level and developing efficacious anti-stress strategies to enhance the application of probiotics while maximizing their biological functionalities.
Collapse
Affiliation(s)
- Dingkang Wang
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ruijie Xu
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Sha Liu
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaomin Sun
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Tianxiao Zhang
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Lin Shi
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Youfa Wang
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
2
|
Picon A, Campanero Y, Sánchez C, Álvarez I, Rodríguez-Mínguez E. Valorization of Coffee Cherry By-Products Through Fermentation by Human Intestinal Lactobacilli in Functional Fermented Milk Beverages. Foods 2024; 14:44. [PMID: 39796334 PMCID: PMC11720464 DOI: 10.3390/foods14010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/10/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
During coffee production, the removal and disposal of the coffee bean-surrounding layers pose an environmental problem. In this work, we examined the effects of several aqueous coffee cherry extracts on the growth and metabolism, biofilm formation, antioxidant capacity and antimicrobial activity of six lactobacilli from the INIA collection and a commercial probiotic Lactobacillus rhamnosus GG strain. Growth medium supplementation with different coffee cherry extracts (at 40%) stimulated strain growth and metabolism. The ground cherry pulp extract (CPE) with the highest total polyphenol content was selected for further use. This CPE contained alkaloids, phenolic acids and flavonoids. Upon CPE supplementation, some strains significantly (p < 0.01) increased biofilm formation, while all strains increased antioxidant capacity and antimicrobial activity. After preliminary tests, we developed three bifunctional dairy products, containing 20% CPE and fermented with strains INIA P495, INIA P708 or GG. These strains maintained high levels after manufacture, refrigerated storage, and throughout an in vitro procedure mimicking gastrointestinal tract conditions. Compared to controls, CPE-containing products showed increased levels of total polyphenol compounds, antioxidant capacity and antimicrobial activity, together with positive sensory characteristics. CPE and these selected strains could thus be used to elaborate innovative functional fermented milk products.
Collapse
Affiliation(s)
- Antonia Picon
- Departamento de Tecnología de Alimentos, INIA, CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain
| | - Yolanda Campanero
- Departamento de Tecnología de Alimentos, INIA, CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain
| | - Carmen Sánchez
- Departamento de Tecnología de Alimentos, INIA, CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain
| | - Inmaculada Álvarez
- Unidad de Servicio de Técnicas Analíticas, ICTAN, CSIC, Calle José Antonio Novais 6, 28040 Madrid, Spain
| | - Eva Rodríguez-Mínguez
- Departamento de Tecnología de Alimentos, INIA, CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain
| |
Collapse
|
3
|
Moonsamy G, Roets-Dlamini Y, Langa CN, Ramchuran SO. Advances in Yeast Probiotic Production and Formulation for Preventative Health. Microorganisms 2024; 12:2233. [PMID: 39597622 PMCID: PMC11596959 DOI: 10.3390/microorganisms12112233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
The use of probiotics has been gaining popularity in terms of inclusion into human diets over recent years. Based on properties exerted by these organisms, several benefits have been elucidated and conferred to the host. Bacteria have been more commonly used in probiotic preparations compared to yeast candidates; however, yeast exhibit several beneficial properties, such as the prevention and treatment of diarrhea, the production of antimicrobial agents, the prevention of pathogen adherence to intestinal sites, the maintenance of microbial balance, the modulation of the immune system, antibiotic resistance, amongst others. Saccharomyces boulardii is by far the most studied strain; however, the potential for the use of other yeast candidates, such as Kluyveromyces lactis and Debaryomyces hansenii, amongst others, have also been evaluated in this review. Furthermore, a special focus has been made regarding the production considerations for yeast-based probiotics and their formulation into different delivery formats. When drafting this review, evidence suggests that the use of yeasts, both wild-type and genetically modified candidates, can extend beyond gut health to support skin, the respiratory system, and overall immune health. Hence, this review explores the potential of yeast probiotics as a safe, effective strategy for preventative health in humans, highlighting their mechanisms of action, clinical applications, and production considerations.
Collapse
Affiliation(s)
- Ghaneshree Moonsamy
- Council for Scientific and Industrial Research (CSIR) Future Production Chemicals, Meiring Naude Drive, Pretoria 0081, South Africa; (Y.R.-D.); (C.N.L.); (S.O.R.)
| | | | | | | |
Collapse
|
4
|
Laosee W, Kantachote D, Chansuwan W, Sirinupong N. Effects of Probiotic Fermented Fruit Juice-Based Biotransformation by Lactic Acid Bacteria and Saccharomyces boulardii CNCM I-745 on Anti-Salmonella and Antioxidative Properties. J Microbiol Biotechnol 2022; 32:1315-1324. [PMID: 36198663 PMCID: PMC9668090 DOI: 10.4014/jmb.2206.06012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/27/2022] [Accepted: 09/13/2022] [Indexed: 12/15/2022]
Abstract
Fermentation is an effective process for providing various beneficial effects in functional beverages. Lactic acid bacteria and yeast fermentation-based biotransformation contribute to enhancement of nutritional value and digestibility, including lactose intolerance reduction and control of infections. In this study, the probiotic fermented fruit juice (PFJ) was produced by Lactobacillus plantarum TISTR 1465, Lactobacillus salivarius TISTR 1112, and Saccharomyces boulardii CNCM I-745 while mixed fruit juice (MFJ) was used as the basic medium for microorganism growth. The potential function, the anti-salmonella activity of PFJ, was found to be effective at 250 mg/ml of MIC and 500 mg/ml of MBC. Biofilm inhibition was performed using the PFJ samples and showed at least 70% reduction in cell attachment at the MIC concentration of Salmonella Typhi DMST 22842. The antioxidant activities of PFJ were determined and the results revealed that FSB.25 exhibited 78.40 ± 0.51 mM TE/ml by FRAP assay, while FPSB.25 exhibited 3.44 ± 0.10 mM TE/ml by DPPH assay. The volatile compounds of PFJ were characterized by GC-MS, which identified alcohol, aldehyde, acid, ester, ketone, phenol, and terpene. The most abundant organic acid and alcohol detected in PFJ were acetic acid and 2-phenylethanol, and the most represented terpene was β-damascenone. The sensory attributes showed scores higher than 7 on a 9-point hedonic scale for the FPB.25, illustrating that it was well accepted by panelists. Taken together, our results showed that PFJ could meet current consumer demand regarding natural and functional, fruit-based fermented beverages.
Collapse
Affiliation(s)
- Wanida Laosee
- Functional Food and Nutrition Program, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Duangporn Kantachote
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Worrapanit Chansuwan
- Center of Excellence in Functional Foods and Gastronomy, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Nualpun Sirinupong
- Center of Excellence in Functional Foods and Gastronomy, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
5
|
Evaluation of potentially probiotic yeasts and Lactiplantibacillus plantarum in co-culture for the elaboration of a functional plant-based fermented beverage. Food Res Int 2022; 160:111697. [DOI: 10.1016/j.foodres.2022.111697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 12/11/2022]
|
6
|
Dahiya D, Nigam PS. Nutrition and Health through the Use of Probiotic Strains in Fermentation to Produce Non-Dairy Functional Beverage Products Supporting Gut Microbiota. Foods 2022; 11:2760. [PMID: 36140888 PMCID: PMC9497984 DOI: 10.3390/foods11182760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Pure viable strains of microorganisms identified and characterised as probiotic cultures are used in the fermentation process to prepare functional beverages. The fermented probiotic products can be consumed as a source of nutrition and also for the maintenance of healthy gut microbiota. The functional beverages contain the substrates used for the preparation of product with a specific culture or a mixture of known strains used to perform the fermentation, hence these drinks can be considered as a healthy formulation of synbiotic products. If a beverage is prepared using agriculturally sourced materials, the fermented substrates with their oligosaccharides and fiber content act as prebiotics. Both the components (probiotic strain/s and prebiotic substrate) exist in a synergistic relationship in the product and contribute to several benefits for nutrition and gut health. The preparation of such probiotic beverages has been studied using non-dairy-based materials, including fruits, vegetables, nuts, grains, and cassava, a staple diet source in many regions. The consumption of beverages prepared with the use of probiotics, which contain active microbial cells and their metabolites, contributes to the functional properties of beverages. In addition, the non-dairy probiotic products can be used by consumers of all groups and food cultures, including vegans and vegetarians, and particularly consumers with allergies to dairy-based products. The aim of this article is to present a review of published research highlighting specific probiotic strains, which have the potential to enhance sustainability of healthy GIT microbiota, used in the fermentation process for the preparation of non-dairy beverages.
Collapse
Affiliation(s)
| | - Poonam Singh Nigam
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|
7
|
Ribosome Profiling Reveals Genome-Wide Cellular Translational Regulation in Lacticaseibacillus rhamnosus ATCC 53103 under Acid Stress. Foods 2022; 11:foods11101411. [PMID: 35626981 PMCID: PMC9140532 DOI: 10.3390/foods11101411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/23/2022] Open
Abstract
During fermentation and food processing, Lacticaseibacillus rhamnosus ATCC 53103 can encounter many adverse conditions, and acid stress is one of them. The purpose of the present study was to investigate the influence of acid stress on the global translational and transcriptional regulation of Lacticaseibacillus rhamnosus ATCC 53103. Two pH values (pH 6.0 vs. pH 5.0) were applied, the effects of which were studied via ribosome profiling and RNA sequencing assay. Under acid stress, many genes showed differential changes at the translational and transcriptional levels. A total of 10 genes showed different expression trends at the two levels. The expression of 337 genes—which mainly participated in the ABC transporters, amino acid metabolism, and ribosome functional group assembly pathways—was shown to be regulated only at the translational level. The translational efficiency of a few genes participating in the pyrimidine and amino acid metabolism pathways were upregulated. Ribosome occupancy data suggested that ribosomes accumulated remarkably in the elongation region of open reading frame regions under acid stress. This study provides new insights into Lacticaseibacillus rhamnosus ATCC 53103 gene expression under acid stress, and demonstrates that the bacterium can respond to acid stress with synergistic translational and transcriptional regulation mechanisms, improving the vitality of cells.
Collapse
|
8
|
Mahingsapun R, Tantayotai P, Panyachanakul T, Samosorn S, Dolsophon K, Jiamjariyatam R, Lorliam W, Srisuk N, Krajangsang S. Enhancement of Arabica coffee quality with selected potential microbial starter culture under controlled fermentation in wet process. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Keikha M, Kamali H. The impact of Saccharomyces boulardii adjuvant supplementation on alternation of gut microbiota after H. pylori eradication; a metagenomics analysis. GENE REPORTS 2022; 26:101499. [DOI: 10.1016/j.genrep.2022.101499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Wang R, Sun J, Lassabliere B, Yu B, Liu SQ. Green tea fermentation with Saccharomyces boulardii CNCM I-745 and Lactiplantibacillus plantarum 299V. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Wang R, Sun J, Lassabliere B, Yu B, Liu SQ. UPLC-Q-TOF-MS based metabolomics and chemometric analyses for green tea fermented with Saccharomyces boulardii CNCM I-745 and Lactiplantibacillus plantarum 299V. Curr Res Food Sci 2022; 5:471-478. [PMID: 35252880 PMCID: PMC8892000 DOI: 10.1016/j.crfs.2022.02.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/07/2022] [Accepted: 02/20/2022] [Indexed: 10/27/2022] Open
|
12
|
Coffee brews as food matrices for delivering probiotics: Opportunities, challenges, and potential health benefits. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Chan MZA, Lau H, Lim SY, Li SFY, Liu SQ. Untargeted LC-QTOF-MS/MS based metabolomics approach for revealing bioactive components in probiotic fermented coffee brews. Food Res Int 2021; 149:110656. [PMID: 34600658 DOI: 10.1016/j.foodres.2021.110656] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Amidst trends in non-dairy probiotic foods and functional coffees, we recently developed a fermented coffee brew containing high live counts of the probiotics Lacticaseibacillus rhamnosus GG and Saccharomyces boulardii CNCM-I745. However, probiotic fermentation did not alter levels of principal coffee bioactive components based on targeted analyses. Here, to provide therapeutic justification compared to other non-fermented coffee brews, we aimed to discover postbiotics in coffee brews fermented with L. rhamnosus GG and/or S. boulardii CNCM-I745. By using an untargeted LC-QTOF-MS/MS based metabolomics approach coupled with validated multivariate analyses, 37 differential metabolites between fermentation treatments were putatively annotated. These include the production of postbiotics such as 2-isopropylmalate by S. boulardii CNCM-I745, and aromatic amino acid catabolites (indole-3-lactate, p-hydroxyphenyllactate, 3-phenyllactate), and hydroxydodecanoic acid by L. rhamnosus GG. Overall, LC-QTOF based untargeted metabolomics can be an effective approach to uncover postbiotics, which may substantiate additional potential functionalities of probiotic fermented foods compared to their non-fermented counterparts.
Collapse
Affiliation(s)
- Mei Zhi Alcine Chan
- Department of Food Science & Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore
| | - Hazel Lau
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore; Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A∗STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Si Ying Lim
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Sam Fong Yau Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore; NUS Environmental Research Institute (NERI), #02-01, T-Lab Building (TL), 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Shao-Quan Liu
- Department of Food Science & Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, No. 377 Linquan Street, Suzhou Industrial Park, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
14
|
Chan MZA, Lu Y, Liu SQ. In vitro bioactivities of coffee brews fermented with the probiotics Lacticaseibacillus rhamnosus GG and Saccharomyces boulardii CNCM-I745. Food Res Int 2021; 149:110693. [PMID: 34600688 DOI: 10.1016/j.foodres.2021.110693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/17/2021] [Accepted: 08/31/2021] [Indexed: 01/27/2023]
Abstract
Previously, we demonstrated the production of bioactive metabolites (e.g., indole-3-lactate, 4-hydroxyphenyllactate, 3-phenyllactate, 2-isopropylmalate) by the probiotics Lacticaseibacillus rhamnosus GG and Saccharomyces boulardii CNCM-I745 during coffee brew fermentation. However, it remains unclear if in situ production of bioactive metabolites confers additional health benefits to coffee brews. Here, we aimed to investigate the in vitro bioactivities of freeze-dried cell-free coffee supernatants fermented with L. rhamnosus GG and/or S. boulardii CNCM-I745, compared to non-fermented coffee supernatants. In vitro bioactivity assays pertained to α-amylase and α-glucosidase inhibition, antiglycative activities, anti-proliferation against human cancer cell lines (MCF-7, HCT116, and HepG2), cellular antioxidant activities, and anti-inflammatory activities. We demonstrated that non-fermented coffee supernatants displayed weak starch hydrolase inhibition (IC50 > 36.00 mg/mL), but otherwise displayed strong anti-glycative (IC50 0.71-0.74 mg/mL), anti-proliferative (IC50 0.45, 0.36, and < 0.5 mg/mL for MCF-7, HCT116, and HepG2 respectively), cellular antioxidant (85,844.22 µmol quercetin equivalents/100 g coffee supernatant), and anti-inflammatory activities (35.7% reduction in nitrite production at 0.13 mg/mL). In all the assays tested, probiotic fermented coffee supernatants exhibited very similar bioactivities compared to non-fermented coffee supernatants, and improvements were not observed. Overall, in vitro bioactivities of coffee brews were not improved via in situ metabolite production by L. rhamnosus GG and/or S. boulardii CNCM-I745. Therefore, bioactive metabolites produced during probiotic-induced food fermentations may not necessarily confer additional health benefits compared to non-fermented counterparts.
Collapse
Affiliation(s)
- Mei Zhi Alcine Chan
- Department of Food Science & Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore.
| | - Yuyun Lu
- Department of Food Science & Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore.
| | - Shao-Quan Liu
- Department of Food Science & Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, No. 377 Linquan Street, Suzhou Industrial Park, Suzhou 215123, Jiangsu, China.
| |
Collapse
|