1
|
Hajj J, Schneider ALC, Jacoby D, Schreiber J, Nolfi D, Turk MT. Associations of Neighborhood Environments and Socioeconomic Status With Subclinical Atherosclerosis: An Integrative Review. J Cardiovasc Nurs 2025; 40:228-249. [PMID: 39148151 DOI: 10.1097/jcn.0000000000001125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
BACKGROUND A limited understanding exists on the associations of neighborhood environment with subclinical atherosclerosis and its progression. PURPOSE The purpose of this integrative review was to explore associations of neighborhood environments and socioeconomic status (SES) with subclinical atherosclerosis and its long-term progression. RESULTS Three themes were identified: environmental exposure affects the natural history of atherosclerosis, neighborhood characteristics are associated with subclinical atherosclerosis, and individual SES is associated with development and progression of subclinical atherosclerosis more so than neighborhood SES. Some variations in results were noted based on the vascular site examined. CLINICAL IMPLICATIONS Disadvantaged neighborhoods and low SES are associated with greater subclinical atherosclerosis. Inconsistencies in a few studies seemed to be related to lack of coronary artery progression among the relatively young adults. This suggests further examination is needed of the contextual associations of neighborhood and SES with markers of generalized atherosclerosis, such as carotid intima-media thickness.
Collapse
|
2
|
Chevalley T, Dübi M, Fumeaux L, Merli MS, Sarre A, Schaer N, Simeoni U, Yzydorczyk C. Sexual Dimorphism in Cardiometabolic Diseases: From Development to Senescence and Therapeutic Approaches. Cells 2025; 14:467. [PMID: 40136716 PMCID: PMC11941476 DOI: 10.3390/cells14060467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/03/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
The global incidence and prevalence of cardiometabolic disorders have risen significantly in recent years. Although lifestyle choices in adulthood play a crucial role in the development of these conditions, it is well established that events occurring early in life can have an important effect. Recent research on cardiometabolic diseases has highlighted the influence of sexual dimorphism on risk factors, underlying mechanisms, and response to therapies. In this narrative review, we summarize the current understanding of sexual dimorphism in cardiovascular and metabolic diseases in the general population and within the framework of the Developmental Origins of Health and Disease (DOHaD) concept. We explore key risk factors and mechanisms, including the influence of genetic and epigenetic factors, placental and embryonic development, maternal nutrition, sex hormones, energy metabolism, microbiota, oxidative stress, cell death, inflammation, endothelial dysfunction, circadian rhythm, and lifestyle factors. Finally, we discuss some of the main therapeutic approaches, responses to which may be influenced by sexual dimorphism, such as antihypertensive and cardiovascular treatments, oxidative stress management, nutrition, cell therapies, and hormone replacement therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Catherine Yzydorczyk
- Developmental Origins of Health and Disease (DOHaD) Laboratory, Division of Pediatrics, Department Woman-Mother-Child, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland; (T.C.); (M.D.); (L.F.); (M.S.M.); (A.S.); (N.S.)
| |
Collapse
|
3
|
Li Y, Han Z, Zhao X, Liu Y, Wu Z, Wang J, Li X, Guo X, Tao L. Association between joint exposure to ambient air pollutants and carotid plaque: The mediating role of cardiometabolic risk factors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117755. [PMID: 39854868 DOI: 10.1016/j.ecoenv.2025.117755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Research has shown that exposure to joint air pollution is related to atherosclerosis, but little evidence has been found for carotid plaques. Our objective is to assess the association between exposure to joint air pollutants and carotid plaque and explore the mediating role of cardiometabolic factors in this relationship. METHODS The Beijing Health Management Cohort (BMHC) study followed participants recruited from 2013 to 2014 until December 31, 2020. All participants underwent carotid ultrasound and were free of carotid plaque at baseline. A satellite-based land-use regression (LUR) model was applied to estimate air pollution exposure. The joint exposure to air pollutants was assessed by incorporating a weighted air pollution score. A modified Poisson regression model was conducted to investigate the relationship between exposure to air pollution and carotid plaque occurrence. Mediation analysis explored how cardiometabolic factors mediate the relationships between exposure to joint air pollution and carotid plaque risk. RESULTS During an average follow-up period 4 years, 1240 cases of carotid plaque were identified among 7358 participants. Each interquartile range (IQR) increase in air pollutants was associated with the following relative risk (RR) and 95 % confidence intervals (95 % CIs) for carotid plaque: 2.5-micrometer particulate matter (PM2.5), 1,04 (1.01, 1.07), 10-micrometer particulate matter (PM10), 1.10 (1.01, 1.20), sulfur dioxide (SO2), 1.28 (1.15, 1.42), ozone (O3), 1.18 (1.01, 1.37), and carbon monoxide (CO), 1.32 (1.15, 1.50). Joint exposure to air pollution was positively and linearly associated with the occurrence of carotid plaque, with low-density cholesterol (LDL-C) and mean arterial pressure (MAP) mediating 2.24 % and 4.28 % of the association, respectively. CONCLUSIONS Long-term joint exposure to ambient air pollutants elevates the risk of developing carotid plaque. LDL-C and MAP suggest partial mediating effects of joint air pollution on carotid plaques. Our results emphasize the need to thoroughly evaluate various air pollutants concerning carotid plaque.
Collapse
Affiliation(s)
- Yunfei Li
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.
| | - Ze Han
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.
| | - Xiaoyu Zhao
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.
| | - Yueruijing Liu
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.
| | - Zhiyuan Wu
- Harvard T.H. Chan School of Public Health, 655 Huntington Ave, Boston, MA 02115, USA.
| | - Jinqi Wang
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.
| | - Xia Li
- Department of Mathematics and Statistics, La Trobe University, Melbourne 3086, Australia.
| | - Xiuhua Guo
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.
| | - Lixin Tao
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Harvard T.H. Chan School of Public Health, 655 Huntington Ave, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Liao M, Braunstein Z, Rao X. Sex differences in particulate air pollution-related cardiovascular diseases: A review of human and animal evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163803. [PMID: 37137360 DOI: 10.1016/j.scitotenv.2023.163803] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality globally. In the past several decades, researchers have raised significant awareness about the sex differences in CVD and the importance of heart disease in women. Besides physiological disparities, many lifestyles and environmental factors such as smoking and diet may affect CVD in a sex-dependent manner. Air pollution is a well-recognized environmental risk factor for CVD. However, the sex differences in air pollution-related CVD have been largely neglected. A majority of the previously completed studies have either evaluated only one sex (generally male) as study subjects or did not compare the sex differences. Some epidemiological and animal studies have shown that there are sex differences in the sensitivity to particulate air pollution as evidenced by the different morbidity and mortality rates of CVD induced by particulate air pollution, although this was not conclusive. In this review, we attempt to evaluate the sex differences in air pollution-related CVD and the underlying mechanisms by reviewing both epidemiological and animal studies. This review may provide a better understanding of the sex differences in environmental health research, enabling improved prevention and therapeutic strategies for human health in the future.
Collapse
Affiliation(s)
- Minyu Liao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zachary Braunstein
- Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Xiaoquan Rao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Bravo MA, Fang F, Hancock DB, Johnson EO, Harris KM. Long-term air pollution exposure and markers of cardiometabolic health in the National Longitudinal Study of Adolescent to Adult Health (Add Health). ENVIRONMENT INTERNATIONAL 2023; 177:107987. [PMID: 37267730 PMCID: PMC10664021 DOI: 10.1016/j.envint.2023.107987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Air pollution exposure is associated with cardiovascular morbidity and mortality. Although exposure to air pollution early in life may represent a critical window for development of cardiovascular disease risk factors, few studies have examined associations of long-term air pollution exposure with markers of cardiovascular and metabolic health in young adults. OBJECTIVES By combining health data from the National Longitudinal Study of Adolescent to Adult Health (Add Health) with air pollution data from the Fused Air Quality Surface using Downscaling (FAQSD) archive, we: (1) calculated multi-year estimates of exposure to ozone (O3) and particulate matter with an aerodynamic diameter ≤ 2.5 µm (PM2.5) for Add Health participants; and (2) estimated associations between air pollution exposures and multiple markers of cardiometabolic health. METHODS Add Health is a nationally representative longitudinal cohort study of over 20,000 adolescents aged 12-19 in the United States (US) in 1994-95 (Wave I). Participants have been followed through adolescence and into adulthood with five in-home interviews. Estimated daily concentrations of O3 and PM2.5 at census tracts were obtained from the FAQSD archive and used to generate tract-level annual averages of O3 and PM2.5 concentrations. We estimated associations between average O3 and PM2.5 exposures from 2002 to 2007 and markers of cardiometabolic health measured at Wave IV (2008-09), including hypertension, hyperlipidemia, body mass index (BMI), diabetes, C-reactive protein, and metabolic syndrome. RESULTS The final sample size was 11,259 individual participants. The average age of participants at Wave IV was 28.4 years (range: 24-34 years). In models adjusting for age, race/ethnicity, and sex, long-term O3 exposure (2002-07) was associated with elevated odds of hypertension, with an odds ratio (OR) of 1.015 (95% confidence interval [CI]: 1.011, 1.029); obesity (1.022 [1.004, 1.040]); diabetes (1.032 [1.009,1.054]); and metabolic syndrome (1.028 [1.014, 1.041]); PM2.5 exposure (2002-07) was associated with elevated odds of hypertension (1.022 [1.001, 1.045]). CONCLUSION Findings suggest that long-term ambient air pollution exposure, particularly O3 exposure, is associated with cardiometabolic health in early adulthood.
Collapse
Affiliation(s)
- Mercedes A Bravo
- Global Health Institute, School of Medicine, Duke University, Durham, NC, USA.
| | - Fang Fang
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Dana B Hancock
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Eric O Johnson
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA; Fellow Program, RTI International, Research Triangle Park, NC, USA
| | - Kathleen Mullan Harris
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
6
|
Han Z, Zhao X, Xu Z, Wang J, Jin R, Liu Y, Wu Z, Zhang J, Li X, Guo X, Tao L. Associations of time-weighted individual exposure to ambient particulate matter with carotid atherosclerosis in Beijing, China. Environ Health 2023; 22:45. [PMID: 37248518 DOI: 10.1186/s12940-023-00995-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/05/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Time-location information (time spent on commuting, indoors and outdoors around residential and work places and physical activity) and infiltrated outdoor pollution was less considered estimating individual exposure to ambient air pollution. Studies investigating the association between individual exposure to particulate matter (PM) with aerodynamic diameter < 10 μm (PM10) and < 2.5 μm (PM2.5) and carotid atherosclerosis presented inconsistent results. Moreover, combined effect of pollutants on carotid atherosclerosis was not fully explored. We aimed to investigate the association between long-term individual time-weighted average exposure to PM2.5 and PM10 and the risk of carotid atherosclerosis, and further explore the overall effect of co-exposure to pollutants on carotid atherosclerosis. METHODS The study population included 3069 participants derived from the Beijing Health Management Cohort (BHMC) study. Daily concentration of ambient air pollutants was estimated by land-use regression model at both residential and work addresses, and one- and two-year time-weighted average individual exposure was calculated by further considering personal activity pattern and infiltration of ambient air pollution indoors. We explored the association of PM2.5 and PM10 with carotid atherosclerosis and pooled the overall effect of co-exposure to ambient air pollutants by quantile g-computation. RESULTS A significant association between time-weighted average exposure to PM2.5 and PM10 and carotid atherosclerosis was observed. Per interquartile range increase in two-year exposure to PM2.5 (Hazard ratio (HR): 1.322, 95% confidence interval (CI): 1.219-1.434) and PM10 (HR:1.213, 95% CI: 1.116-1.319) showed the strongest association with carotid atherosclerosis, respectively. Individuals in higher quartiles of pollutants were at higher risk for carotid atherosclerosis compared with those in the lowest quartile group. Concentration response functions documented the nearly linear and nonlinear relationship and interpreted the upward trends of the risk for carotid atherosclerosis with increasing level of pollutant concentrations. Moreover, effect estimates for the mixture of pollutants and carotid atherosclerosis were larger than any of the individual pollutants (HR (95% CI) was 1.510 (1.338-1.704) and 1.613 (1.428-1.822) per quartile increase for one-year and two-year time-weighted average exposure, respectively). CONCLUSIONS Individual time-weighted average exposure to PM2.5 and PM10 was associated with carotid atherosclerosis. Co-exposure to ambient air pollution was also positively associated with carotid atherosclerosis.
Collapse
Affiliation(s)
- Ze Han
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmenWai, Fengtai District, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China
| | - Xiaoyu Zhao
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmenWai, Fengtai District, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China
| | - Zongkai Xu
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmenWai, Fengtai District, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China
| | - Jinqi Wang
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmenWai, Fengtai District, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China
| | - Rui Jin
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmenWai, Fengtai District, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China
| | - Yueruijing Liu
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmenWai, Fengtai District, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China
| | - Zhiyuan Wu
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmenWai, Fengtai District, Beijing, 100069, China
- Department of Public Health, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Jie Zhang
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmenWai, Fengtai District, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China
| | - Xia Li
- Department of Mathematics and Statistics, La Trobe University, Melbourne, 3086, Australia
| | - Xiuhua Guo
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmenWai, Fengtai District, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China
| | - Lixin Tao
- School of Public Health, Capital Medical University, No.10 Xitoutiao, You'anmenWai, Fengtai District, Beijing, 100069, China.
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, 100069, China.
| |
Collapse
|
7
|
Zhang W, Li Z, Li G, Kong L, Jing H, Zhang N, Ning J, Gao S, Zhang Y, Wang X, Tao J. PM 2.5 induce lifespan reduction, insulin/IGF-1 signaling pathway disruption and lipid metabolism disorder in Caenorhabditis elegans. Front Public Health 2023; 11:1055175. [PMID: 36817915 PMCID: PMC9932997 DOI: 10.3389/fpubh.2023.1055175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Exposure to fine particulate matter (PM), especially PM2.5, can induce various adverse health effects in populations, including diseases and premature death, but the mechanism of its toxicity is largely unknown. Methods Water-soluble components of PM2.5 (WS-PM2.5) were collected in the north of China in winter, and combined in two groups with the final concentrations of 94 μg/mL (CL group, AQI ≤ 100) and 119 μg/mL (CH group, 100 < AQI ≤ 200), respectively. The acute and long-term toxic effects of WS-PM2.5 samples were evaluated in several aspects such as development, lifespan, healthspan (locomotion behavior, heat stress tolerance, lipofucin). DAF mutants and genes were applied to verify the action of IIS pathway in WS-PM2.5 induced-effects. RNA-Sequencing was performed to elucidate the molecular mechanisms, as well as ROS production and Oil red O staining were also served as means of mechanism exploration. Results Body length and lifespan were shortened by exposure to WS-PM2.5. Healthspan of nematodes revealed adverse effects evaluated by head thrash, body bend, pharyngeal pump, as well as intestinal lipofuscin accumulation and survival time under heat stress. The abbreviated lifespan of daf-2(e1370) strain and reduced expression level of daf-16 and hsp-16.2 indicated that IIS pathway might be involved in the mechanism. Thirty-five abnormally expressed genes screened out by RNA-Sequencing techniques, were functionally enriched in lipid/lipid metabolism and transport, and may contribute substantially to the regulation of PM2.5 induced adverse effects in nematodes. Conclusion WS-PM2.5 exposure induce varying degrees of toxic effects, such as body development, shorten lifespan and healthspan. The IIS pathway and lipid metabolism/transport were disturbed by WS-PM2.5 during WS-PM2.5 exposure, suggesting their regulatory role in lifespan determination.
Collapse
Affiliation(s)
- Wenjing Zhang
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Zinan Li
- Beijing Center for Disease Prevention and Control, Beijing, China
- School of Public Health, Capital Medical University, Beijing, China
| | - Guojun Li
- Beijing Center for Disease Prevention and Control, Beijing, China
- School of Public Health, Capital Medical University, Beijing, China
| | - Ling Kong
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Haiming Jing
- Beijing Center for Disease Prevention and Control, Beijing, China
- School of Public Health, Capital Medical University, Beijing, China
| | - Nan Zhang
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Junyu Ning
- Beijing Center for Disease Prevention and Control, Beijing, China
- School of Public Health, Capital Medical University, Beijing, China
| | - Shan Gao
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Yong Zhang
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Xinyu Wang
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Jing Tao
- Beijing Center for Disease Prevention and Control, Beijing, China
| |
Collapse
|
8
|
Feng S, Huang F, Zhang Y, Feng Y, Zhang Y, Cao Y, Wang X. The pathophysiological and molecular mechanisms of atmospheric PM 2.5 affecting cardiovascular health: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114444. [PMID: 38321663 DOI: 10.1016/j.ecoenv.2022.114444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 02/08/2024]
Abstract
BACKGROUND Exposure to ambient fine particulate matter (PM2.5, with aerodynamic diameter less than 2.5 µm) is a leading environmental risk factor for global cardiovascular health concern. OBJECTIVE To provide a roadmap for those new to this field, we reviewed the new insights into the pathophysiological and cellular/molecular mechanisms of PM2.5 responsible for cardiovascular health. MAIN FINDINGS PM2.5 is able to disrupt multiple physiological barriers integrity and translocate into the systemic circulation and get access to a range of secondary target organs. An ever-growing body of epidemiological and controlled exposure studies has evidenced a causal relationship between PM2.5 exposure and cardiovascular morbidity and mortality. A variety of cellular and molecular biology mechanisms responsible for the detrimental cardiovascular outcomes attributable to PM2.5 exposure have been described, including metabolic activation, oxidative stress, genotoxicity, inflammation, dysregulation of Ca2+ signaling, disturbance of autophagy, and induction of apoptosis, by which PM2.5 exposure impacts the functions and fates of multiple target cells in cardiovascular system or related organs and further alters a series of pathophysiological processes, such as cardiac autonomic nervous system imbalance, increasing blood pressure, metabolic disorder, accelerated atherosclerosis and plaque vulnerability, platelet aggregation and thrombosis, and disruption in cardiac structure and function, ultimately leading to cardiovascular events and death. Therein, oxidative stress and inflammation were suggested to play pivotal roles in those pathophysiological processes. CONCLUSION Those biology mechanisms have deepen insights into the etiology, course, prevention and treatment of this public health concern, although the underlying mechanisms have not yet been entirely clarified.
Collapse
Affiliation(s)
- Shaolong Feng
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China; The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Fangfang Huang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yuqi Zhang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yashi Feng
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Ying Zhang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yunchang Cao
- The Department of Molecular Biology, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Xinming Wang
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China; The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
9
|
Kilbo Edlund K, Sallsten G, Molnár P, Andersson EM, Ögren M, Segersson D, Fagman E, Fagerberg B, Barregard L, Bergström G, Stockfelt L. Long-term exposure to air pollution, coronary artery calcification, and carotid artery plaques in the population-based Swedish SCAPIS Gothenburg cohort. ENVIRONMENTAL RESEARCH 2022; 214:113926. [PMID: 35868579 DOI: 10.1016/j.envres.2022.113926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/20/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Long-term exposure to air pollution is associated with cardiovascular events. A main suggested mechanism is that air pollution accelerates the progression of atherosclerosis, yet current evidence is inconsistent regarding the association between air pollution and coronary artery and carotid artery atherosclerosis, which are well-established causes of myocardial infarction and stroke. We studied associations between low levels of long-term air pollution, coronary artery calcium (CAC) score, and the prevalence and area of carotid artery plaques, in a middle-aged population-based cohort. The Swedish CArdioPulmonary bioImage Study (SCAPIS) Gothenburg cohort was recruited during 2013-2017 and thoroughly examined for cardiovascular risk factors, including computed tomography of the heart and ultrasonography of the carotid arteries. In 5070 participants (age 50-64 years), yearly residential exposures to air pollution (PM2.5, PM10, PMcoarse, NOx, and exhaust-specific PM2.5 1990-2015) were estimated using high-resolution dispersion models. We used Poisson regression to examine associations between long-term (26 years' mean) exposure to air pollutants and CAC score, and prevalence of carotid artery plaques, adjusted for potential confounders. Among participants with carotid artery plaques, we also examined the association with plaque area using linear regression. Mean exposure to PM2.5 was low by international standards (8.5 μg/m3). There were no consistent associations between long-term total PM2.5 exposure and CAC score or presence of carotid artery plaques, but an association between total PM2.5 and larger plaque area in participants with carotid plaques. Associations with traffic-related air pollutants were consistently positive for both a high CAC score and bilateral carotid artery plaques. These associations were independent of road traffic noise. We found stronger associations among men and participants with cardiovascular risk factors. The results lend some support to atherosclerosis as a main modifiable pathway between low levels of traffic-related ambient air pollution and cardiovascular disease, especially in vulnerable individuals.
Collapse
Affiliation(s)
- Karl Kilbo Edlund
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden.
| | - Gerd Sallsten
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Peter Molnár
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden; Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Region Västra Götaland, Göteborg, Sweden
| | - Eva M Andersson
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden; Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Region Västra Götaland, Göteborg, Sweden
| | - Mikael Ögren
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden; Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Region Västra Götaland, Göteborg, Sweden
| | - David Segersson
- Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
| | - Erika Fagman
- Department of Radiology, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Region Västra Götaland, Göteborg, Sweden
| | - Björn Fagerberg
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Lars Barregard
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Göran Bergström
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden; Department of Clinical Physiology, Sahlgrenska University Hospital, Region Västra Götaland, Göteborg, Sweden
| | - Leo Stockfelt
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden; Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Region Västra Götaland, Göteborg, Sweden
| |
Collapse
|
10
|
Chen SY, Hwang JS, Chan CC, Wu CF, Wu C, Su TC. Urban Air Pollution and Subclinical Atherosclerosis in Adolescents and Young Adults. J Adolesc Health 2022; 71:233-238. [PMID: 35537887 DOI: 10.1016/j.jadohealth.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 02/18/2022] [Accepted: 03/02/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE The contribution of air pollution to subclinical atherosclerosis in a young population remains limited. This study aimed to assess whether long-term exposure to urban air pollutants increases carotid intima-media thickness (CIMT) in adolescents and young adults. METHODS This study included 789 subjects between the ages of 12 and 30 years who lived in the Taipei metropolis from a cohort of young Taiwanese individuals. Residential addresses were geocoded, and annual average concentrations of particulate matter (PM) of different diameters, e.g., PM10, PM2.5-10, PM2.5, and nitrogen oxides (NOX), were assessed using land use regression models. The generalized least squares strategy with error term to consider the cluster effect of living addresses between individuals was used to examine the associations between urban air pollution and CIMTs. RESULTS After adjusting for potential confounders, we found that interquartile range increases in PM2.5 (8.2 μg/m3) and NOX (17.5 μg/m3) were associated with 0.46% (95% CI: 0.02-0.90) and 1.00% (95% CI: 0.10-1.91) higher CIMTs, respectively. Stratified analyses showed that the relationships between CIMT and PM2.5 and NOX were more evident in subjects who were 18 years or older, female, nonsmoking, nonhypertensive, and nonhyperglycemic than in their respective counterparts. DISCUSSION Long-term exposure to PM2.5 and NOX is associated with subclinical atherosclerosis in a young population. Age, sex, and health status may influence the vulnerability of air pollution-associated subclinical atherosclerosis.
Collapse
Affiliation(s)
- Szu-Ying Chen
- Division of Occupational Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan; Division of Surgical Intensive Care, Department of Critical Care Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan; Department of Nursing, Fooyin University, Kaohsiung, Taiwan
| | | | - Chang-Chuan Chan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chang-Fu Wu
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Charlene Wu
- Global Health Program, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ta-Chen Su
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei, Taiwan; Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; The Experimental Forest, National Taiwan University, Nantou, Taiwan.
| |
Collapse
|
11
|
Sommar JN, Norberg M, Grönlund C, Segersson D, Näslund U, Forsberg B. Long-term exposure to particulate air pollution and presence and progression of carotid artery plaques - A northern Sweden VIPVIZA cohort study. ENVIRONMENTAL RESEARCH 2022; 211:113061. [PMID: 35257687 DOI: 10.1016/j.envres.2022.113061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
AIMS To estimate the association between long-term exposure to particulate air pollution and sub-clinical atherosclerosis based on the existence of plaque and the carotid intima-media thickness (cIMT). METHODS Visualization of asymptomatic atherosclerotic disease for optimum cardiovascular prevention (VIPVIZA) is a randomised controlled trial integrated within the Västerbotten Intervention Programme, an ongoing population-based cardiovascular disease (CVD) prevention programme in northern Sweden. Individuals aged 40, 50, or 60 years with one or more conventional CVD risk factors in Umeå municipality were eligible to participate. The 1425 participants underwent an ultrasound assessment of cIMT and plaque formation during the period 2013-2016 and at 3-year follow-up. Source-specific annual mean concentrations of particulate matter with aerodynamic diameter ≤10 μm (PM10) and ≤2.5 μm (PM2.5), and black carbon (BC) at the individual's residential address were modelled for the calendar years 1990, 2001 and 2011. Poisson regression was used to estimate prevalence ratios for presence of carotid artery plaques, and linear regression for cIMT. RESULTS The plaque prevalence was 43% at baseline and 47% at follow-up. An interquartile range (IQR) increase in PM10 (range in year 2011: 7.1-13.5 μg/m3) was associated with a prevalence ratio at baseline ultrasound of 1.11 (95% CI 0.99-1.25), 1.08 (95% CI 0.99-1.17), and 1.00 (95% CI 0.93-1.08) for lag 23, 12 and 2 years, and at follow-up 1.04 (95% CI 0.95-1.14), 1.08 (95% CI 1.00-1.16), and 1.01 (95% CI 0.95-1.08). Similar prevalence ratios per IQR were found for PM2.5 and BC, but with somewhat lower precision for the later. Particle concentrations were however not associated with the progression of plaque. No cross-sectional or longitudinal associations of change were found for cIMT. CONCLUSIONS This study of individuals with low/moderate risk for CVD give some additional support for an effect of long-term air pollution in early subclinical atherosclerosis.
Collapse
Affiliation(s)
- Johan Nilsson Sommar
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden.
| | - Margareta Norberg
- Section of Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | | | - David Segersson
- Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
| | - Ulf Näslund
- Section of Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Bertil Forsberg
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
12
|
Chen SY, Wu CF, Wu C, Chan CC, Hwang JS, Su TC. Urban Fine Particulate Matter and Elements Associated with Subclinical Atherosclerosis in Adolescents and Young Adults. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7266-7274. [PMID: 35138845 DOI: 10.1021/acs.est.1c06347] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The relationships between the elemental constituents of PM2.5 and atherosclerosis remain limited, especially in young populations. This study included 755 subjects aged 12-30 years in the Taipei metropolis. A land use regression model was used to estimate residential annual mean concentrations of PM2.5 and eight elemental constituents. We evaluated the percent differences in carotid intima-media thickness (CIMT) with PM2.5 and elemental constituent exposures by linear regressions. Interquartile range increments for PM2.5 (4.5 μg/m3), sulfur (108.6 ng/m3), manganese (2.0 ng/m3), iron (34.5 ng/m3), copper (3.6 ng/m3), and zinc (20.7 ng/m3) were found to associate with 0.92% (95% confidence interval (CI): 0.17-1.66), 0.51% (0.02-1.00), 0.36% (0.05-0.67), 0.98% (0.15-1.82), 0.74% (0.01-1.48), and 1.20% (0.33-2.08) higher CIMTs, respectively. Factor analysis identified four air pollution source-related factors, and the factors interpreted as traffic and industry sources were associated with higher CIMTs. Stratified analyses showed the estimates were more evident in subjects who were ≥18 years old, females, or who had lower household income. Our study results provide new insight into the impacts of source-specific air pollution, and future research on source-specific air pollution effects in young populations, especially in vulnerable subpopulations, is warranted.
Collapse
Affiliation(s)
- Szu-Ying Chen
- Division of Occupational Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan
- Division of Surgical Intensive Care, Department of Critical Care Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan
- Department of Nursing, Fooyin University. Kaohsiung 831301, Taiwan
| | - Chang-Fu Wu
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
| | - Charlene Wu
- Global Health Program, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
| | - Chang-Chuan Chan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
| | - Jing-Shiang Hwang
- Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan
| | - Ta-Chen Su
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
- The Experimental Forest, National Taiwan University, Nantou 557, Taiwan
| |
Collapse
|
13
|
Hajizadeh Y, Jafari N, Fanaei F, Ghanbari R, Mohammadi A, Behnami A, Jafari A, Aghababayi M, Abdolahnejad A. Spatial patterns and temporal variations of traffic-related air pollutants and estimating its health effects in Isfahan city, Iran. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:781-791. [PMID: 34150273 PMCID: PMC8172745 DOI: 10.1007/s40201-021-00645-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/03/2021] [Indexed: 05/13/2023]
Abstract
Isfahan as an important industrial city has faced with air pollution recently. Thus, we assessed the spatial and temporal trends of ambient PM2.5, CO, SO2, and O3 and for estimating their health effect on Isfahan citizens between March 2018 and March 2019 through the AirQ+ software. Our results showed that citizens of Isfahan in almost 240, 167, and 134 of the days in the year has exposure to PM2.5, SO2, and O3 higher than the WHO daily guideline, respectively. Daily variations of PM2.5, CO, and SO2 concentration showed the increasing trend of pollutants in the morning to evening. The maximum concentrations of O3 were observed in the noonday. Also, the concentrations of these pollutants on Friday due to the holiday effect were higher than the weekdays. Except for O3, the PM2.5, CO, and SO2 concentrations in the cold months and cold seasons was higher compared with the hot months and hot seasons. The total number of deaths because of lung cancer, natural mortality, ischemic heart disease, chronic obstructive pulmonary disease,, stroke associated with ambient PM2.5 with the attributable proportion (AP) 11.43%, 11.63%, 15.96%, 15.15%, and 13.1% (95% CI) were 683, 19, 2, 202, and 55 cases, respectively. Therefore, the present study provides additional data for the provincial managers and politicians useful in planning proper strategies of air pollution control to decrease exposure and attributable mortalities.
Collapse
Affiliation(s)
- Yaghoub Hajizadeh
- Department of Environmental Health Engineering, Faculty of Health, Environmental Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Negar Jafari
- Department of Environmental Health Engineering, Faculty of Health, Environmental Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzad Fanaei
- Department of Environmental Health Engineering, Faculty of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Ghanbari
- Department of Environmental Health Engineering, Faculty of Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amir Mohammadi
- Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Ali Behnami
- Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Azin Jafari
- Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Ali Abdolahnejad
- Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran
| |
Collapse
|
14
|
Xie Y, He W, Zhang X, Cui J, Tian X, Chen J, Zhang K, Li S, Di N, Xiang H, Wang H, Chen G, Guo Y. Association of air pollution and greenness with carotid plaque: A prospective cohort study in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116514. [PMID: 33486240 DOI: 10.1016/j.envpol.2021.116514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Previous studies indicated that exposure to air pollution was associated with the progress of atherosclerosis, but evidence is very limited in China and even in the world. This study aims to assess the associations of long-term exposures to air pollution and greenness with the occurrence of carotid plaque. Participants of this cohort study were urban residents and office workers who visited Hebei General Hospital for routine physical examination annually from September 2016 through to December 2018. Eligible participants were people diagnosed the absence of carotid plaque clinically at their first hospital visit and were followed up at their second or third hospital visit. Exposure to particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5), nitrogen dioxide (NO2) and ozone (O3) were estimated using an inverse distance weighted (IDW) method. The level of greenness was assessed using the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). The associations were evaluated using Cox proportional hazards regression models. Among 4,137 participants, 575 showed the occurrence of carotid plaque during the follow-up period. After controlling for potential confounders, the hazard ratios (HRs) and 95% confidence intervals (95%CIs) of carotid plaque associated with per interquartile range (IQR) increase in PM2.5, NO2, and O3 were 1.78 (1.55, 2.03), 1.32 (1.14, 1.53) and 1.99 (1.71, 2.31), respectively. Increased EVI and NDVI were significantly associated with lower risk of carotid plaque [HR (and 95%CI): 0.84 (0.77, 0.93) and 0.87 (0.80, 0.94)]. PM2.5 significantly mediated 80.47% or 93.00% of the estimated association between EVI or NDVI and carotid plaque. In light of the significant associations between air pollution, greenness and carotid plaque in this study, continued efforts are needed to curb air pollution and plan more green space considering their effects on vascular disease.
Collapse
Affiliation(s)
- Yinyu Xie
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, Hubei, China; Global Health Institute, Wuhan University, Wuhan, Hubei, China
| | - Weiliang He
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Xiaoling Zhang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Jian Cui
- Department of General Surgery, Beijing Hospital, Beijing, China; National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaochao Tian
- Department of Cardiology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jiang Chen
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, Hubei, China
| | - Kaihua Zhang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China; Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Niu Di
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, Hubei, China; Global Health Institute, Wuhan University, Wuhan, Hubei, China
| | - Hao Xiang
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, Hubei, China; Global Health Institute, Wuhan University, Wuhan, Hubei, China
| | - Hebo Wang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China; Hebei Medical University, Shijiazhuang, Hebei, China
| | - Gongbo Chen
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, Hubei, China; Global Health Institute, Wuhan University, Wuhan, Hubei, China.
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
15
|
Liang S, Zhang J, Ning R, Du Z, Liu J, Batibawa JW, Duan J, Sun Z. The critical role of endothelial function in fine particulate matter-induced atherosclerosis. Part Fibre Toxicol 2020; 17:61. [PMID: 33276797 PMCID: PMC7716453 DOI: 10.1186/s12989-020-00391-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
Abstract
Ambient and indoor air pollution contributes annually to approximately seven million premature deaths. Air pollution is a complex mixture of gaseous and particulate materials. In particular, fine particulate matter (PM2.5) plays a major mortality risk factor particularly on cardiovascular diseases through mechanisms of atherosclerosis, thrombosis and inflammation. A review on the PM2.5-induced atherosclerosis is needed to better understand the involved mechanisms. In this review, we summarized epidemiology and animal studies of PM2.5-induced atherosclerosis. Vascular endothelial injury is a critical early predictor of atherosclerosis. The evidence of mechanisms of PM2.5-induced atherosclerosis supports effects on vascular function. Thus, we summarized the main mechanisms of PM2.5-triggered vascular endothelial injury, which mainly involved three aspects, including vascular endothelial permeability, vasomotor function and vascular reparative capacity. Then we reviewed the relationship between PM2.5-induced endothelial injury and atherosclerosis. PM2.5-induced endothelial injury associated with inflammation, pro-coagulation and lipid deposition. Although the evidence of PM2.5-induced atherosclerosis is undergoing continual refinement, the mechanisms of PM2.5-triggered atherosclerosis are still limited, especially indoor PM2.5. Subsequent efforts of researchers are needed to improve the understanding of PM2.5 and atherosclerosis. Preventing or avoiding PM2.5-induced endothelial damage may greatly reduce the occurrence and development of atherosclerosis.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Jingyi Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Ruihong Ning
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Zhou Du
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Jiangyan Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Joe Werelagi Batibawa
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| |
Collapse
|
16
|
Hasslöf H, Molnár P, Andersson EM, Spanne M, Gustafsson S, Stroh E, Engström G, Stockfelt L. Long-term exposure to air pollution and atherosclerosis in the carotid arteries in the Malmö diet and cancer cohort. ENVIRONMENTAL RESEARCH 2020; 191:110095. [PMID: 32846176 DOI: 10.1016/j.envres.2020.110095] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Long-term exposure to air pollution increases the risk of cardiovascular morbidity and mortality, but the mechanisms are not fully known. Current evidence suggests that air pollution exposure contributes to the development of atherosclerosis. There are few studies investigating associations between air pollution and carotid plaques, a well-known precursor of cardiovascular disease. METHODS A Swedish population-based cohort (aged 45-64 years at recruitment) was randomly selected from the Malmö Diet and Cancer study between 1991 and 1994, of which 6103 participants underwent ultrasound examination of the right carotid artery to determine carotid plaque presence and carotid intima media thickness (CIMT). Participants were assigned individual residential air pollution exposure (source-specific PM2.5, PM10, NOx, BC) at recruitment from Gaussian dispersion models. Logistic and linear regression models, adjusted for potential confounders and cardiovascular risk factors, were used to investigate associations between air pollutants and prevalence of carotid plaques, and CIMT, respectively. RESULTS The prevalence of carotid plaques was 35%. The mean levels of PM2.5 and PM10 at recruitment were 11 and 14 μg/m3, most of which was due to long range transport. The exposure contrast within the cohort was relatively low. PM2.5 exposure was associated with carotid plaques in a model including age and sex only (OR 1.10 (95% CI 1.01-1.20) per 1 μg/m3), but after adjustment for cardiovascular risk factors and socioeconomic status (SES) the association was weak and not significant (OR 1.05 (95% CI 0.96-1.16) per 1 μg/m3). The pattern was similar for PM10 and NOx exposure. Associations between air pollutants and plaques were slightly stronger for long-term residents and in younger participants with hypertension. There was no clear linear trend between air pollution exposure and plaque prevalence. Non-significant slightly positive associations were seen between air pollution exposures and CIMT. CONCLUSIONS In this large, well-controlled cross-sectional study at low exposure levels we found no significant associations between air pollution exposures and subclinical atherosclerosis in the carotid arteries, after adjusting for cardiovascular risk factors and SES. Further epidemiological studies of air pollution and intermediate outcomes are needed to explain the link between air pollution and cardiovascular events.
Collapse
Affiliation(s)
- Helena Hasslöf
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Molnár
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eva M Andersson
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mårten Spanne
- Environmental Department of the City of Malmö, Sweden
| | | | - Emilie Stroh
- Occupational and Environmental Medicine, Department for Laboratory Medicine, Lund University, Sweden
| | - Gunnar Engström
- Department of Clinical Sciences in Malmö, CRC, Lund University and Skåne University Hospital, Malmö, Sweden
| | - Leo Stockfelt
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
17
|
Jilani MH, Simon-Friedt B, Yahya T, Khan AY, Hassan SZ, Kash B, Blankstein R, Blaha MJ, Virani SS, Rajagopalan S, Cainzos-Achirica M, Nasir K. Associations between particulate matter air pollution, presence and progression of subclinical coronary and carotid atherosclerosis: A systematic review. Atherosclerosis 2020; 306:22-32. [DOI: 10.1016/j.atherosclerosis.2020.06.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/18/2020] [Indexed: 10/23/2022]
|
18
|
Pang Y, Zhang B, Xing D, Shang J, Chen F, Kang H, Chu C, Li B, Wang J, Zhou L, Su X, Han B, Ning J, Li P, Ma S, Su D, Zhang R, Niu Y. Increased risk of carotid atherosclerosis for long-term exposure to indoor coal-burning pollution in rural area, Hebei Province, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113320. [PMID: 31610505 DOI: 10.1016/j.envpol.2019.113320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/12/2019] [Accepted: 09/27/2019] [Indexed: 05/22/2023]
Abstract
Smoky coal burning is a predominant manner for heating and cooking in most rural areas, China. Air pollution is associated with the risk of atherosclerosis, however, the link between indoor air pollution induced by smoky coal burning and atherosclerosis is not very clear. Therefore, we designed a cross-sectional study to evaluate the association of long-term exposure to smoky coal burning pollutants with the risk of atherosclerosis. 426 and 326 participants were recruited from Nangong, China and assigned as the coal exposure and control group according to their heating and cooking way, respectively. The indoor air quality (PM2.5, CO, SO2) was monitored. The association between coal burning exposure and the prevalence of atherosclerosis was evaluated by unconditional logistic regression analysis, adjusted for confounding factors. The inflammatory cytokines mRNAs (IL-8, SAA1, TNF-α, CRP) expression in whole blood were examined by qPCR. People in the coal exposure group had a higher risk of carotid atherosclerosis compared with the control (risk ratio [RR], 1.434; 95% confidence interval [95%CI], 1.063 to 1.934; P = 0.018). The association was stronger in smokers, drinkers and younger (<45 years old) individuals. The elevation of IL-8 (0.24, 95%CI, 0.06-0.58; P < 0.05), CRP (0.37, 95%CI, 0.05-0.70; P < 0.05), TNF-α (0.41, 95%CI, 0.14-0.67; P < 0.01) mRNAs expression in whole blood were positively related to coal exposure. Our results suggested long-term exposure to smoky coal burning emissions could increase the risk of carotid atherosclerosis. The potential mechanism might relate that coal burning emissions exposure induced inflammatory cytokines elevation which had adverse effects on atherosclerotic plaque, and then promoted the development of atherosclerosis.
Collapse
Affiliation(s)
- Yaxian Pang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Boyuan Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Dongmei Xing
- Department of Internal Medicine-Cardiovascular, Nangong Jinan Great Wall Hospital, Nangong 051800, PR China
| | - Jinmei Shang
- Department of Internal Medicine-Cardiovascular, Nangong Jinan Great Wall Hospital, Nangong 051800, PR China
| | - Fengge Chen
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang 050000, PR China
| | - Hui Kang
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Chen Chu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Binghua Li
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Juan Wang
- Department of Internal Medicine-Cardiovascular, Nangong Jinan Great Wall Hospital, Nangong 051800, PR China
| | - Lixiao Zhou
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Xuan Su
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Bin Han
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Jie Ning
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Peiyuan Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Shitao Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Dong Su
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China.
| | - Yujie Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China
| |
Collapse
|