1
|
Esteves F, Madureira J, Barros B, Alves S, Pires J, Martins S, Oliveira M, Vaz J, Slezakova K, Pereira MDC, Fernandes A, Morais S, Guimarães JT, Bonassi S, Teixeira JP, Costa S. Impact of occupational exposure to wildfire events on systemic inflammatory biomarkers in Portuguese wildland firefighters. ENVIRONMENTAL RESEARCH 2025; 277:121608. [PMID: 40233845 DOI: 10.1016/j.envres.2025.121608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 03/25/2025] [Accepted: 04/12/2025] [Indexed: 04/17/2025]
Abstract
While occupational exposure as a firefighter is considered a dangerous occupation, research on the underlying mechanisms remains limited, particularly in wildland firefighters. Inflammation, a key effect of wildfire exposure, plays a significant role in the development of various diseases. The current study aims to investigate the impact of wildland firefighting exposure on the levels of pro-inflammatory systemic biomarkers. A pre-post study design investigated 59 wildland firefighters comparing data collected after participation in a wildfire event (Phase II) with data obtained before wildfire season (Phase I). Data on demographics, lifestyle, health and occupational-related factors were assessed. Exposure factors, such as fire combat (e.g., exposure duration), were also registered. Inflammatory biomarkers (i.e. interleukin-6 [IL-6], interleukin-8 [IL-8], tumor necrosis factor α [TNF-α] and high-sensitivity C-reactive protein [hs-CRP]) and hydroxylated polycyclic aromatic hydrocarbons metabolites (1-OHNaph+1-OHAce, 2-OHFlu, 1-OHPhen, 1-OHPyr) were analysed in blood and urine samples, respectively. Serum IL-8 and IL-6 levels were significantly increased after wildland fire combat. IL-8 levels were 2.62 times higher (95 % CI: 1.96-3.50; p < 0.01), whereas IL-6 levels were 1.25 times higher (95 % CI: 1.00-1.57; p = 0.04). Furthermore, IL-8 levels were significantly correlated with urinary 2-hydroxyfluorene levels and fire combat duration (>12 h). In addition, the mean hs-CRP level, in both phases, was above 3.0 mg/L, indicating a potential risk for cardiovascular events. Given the long-term health implications of firefighting occupational exposure, biomonitoring and early detection of occupational risks are essential for protecting firefighters' health. Protective measures must be urgently implemented to enhance occupational health and strengthen preventive strategies in this sector.
Collapse
Affiliation(s)
- Filipa Esteves
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, nº 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal; Department of Public Health and Forensic Sciences, and Medical School, Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450, Porto, Portugal
| | - Joana Madureira
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, nº 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal
| | - Bela Barros
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - Sara Alves
- Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Joana Pires
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, nº 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal
| | - Sandra Martins
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal; Department of Clinical Pathology, São João University Hospital Centre, 4200-319, Porto, Portugal
| | - Marta Oliveira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - Josiana Vaz
- Research Centre for Active Living and Wellbeing (LiveWell), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal; CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Klara Slezakova
- LEPABE-ALiCE, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Maria do Carmo Pereira
- LEPABE-ALiCE, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Adília Fernandes
- Research Centre for Active Living and Wellbeing (LiveWell), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Simone Morais
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - João Tiago Guimarães
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal; Department of Clinical Pathology, São João University Hospital Centre, 4200-319, Porto, Portugal; Unit of Biochemistry, Department Biomedicine, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - Stefano Bonassi
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, 00163, Rome, Italy; Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166, Rome, Italy
| | - João Paulo Teixeira
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, nº 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal.
| | - Solange Costa
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, nº 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal
| |
Collapse
|
2
|
Koslitz S, Taeger D, Heinrich B, Köster D, Pelzl T, Käfferlein HU, Pitzke K, Brüning T, Behrens T. Cotton undergarments as a tool for polycyclic aromatic hydrocarbons whole body dosimetry of firefighters. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2025; 22:52-61. [PMID: 39745860 DOI: 10.1080/15459624.2024.2421017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Firefighters are exposed to a variety of hazardous substances during firefighting activities. Fire smoke contains polycyclic aromatic hydrocarbons (PAHs) some of which have been shown to cause cancer in humans. To assess dermal exposure of firefighters during real-life firefighting, a whole-body dosimetry method was applied to determine the PAH that settles on the skin despite firefighters wearing personal protective equipment (PPE). In total, 17 firefighters wore cotton undergarments (shirts, trousers, gloves, socks, and balaclavas) under their PPE during firefighting missions. After firefighting, fabric pieces were analyzed for 16 US-EPA PAHs and benzo[e]pyrene. Detailed information about the fire missions was solicited from firefighters via a questionnaire. Seventy percent of firefighters provided their undergarments and PAHs were analyzed in 309 punched-out fabric pieces. PAHs were quantified in 27 out of the 309 fabric pieces (8.7%). Generally, PAH concentrations were higher after firefighting in residential buildings compared to exposure levels after fighting vehicle or outdoor fires. Phenanthrene and pyrene were the predominant compounds and were observed up to 657 and 244 ng/g, respectively. Benzo[a]pyrene (B[a]P) was detected in 10 fabric pieces (3.2%) up to 103 ng/g, but all levels were below 1,000 ng/g, the threshold limit of B[a]P according to European Consumer Goods Regulation (European Commission Regulation (EU) 2018/1513). It was demonstrated that firefighting PPE can be an effective shield against dermal exposure to carcinogenic substances. Thus, all measured PAH concentrations in the fabric pieces were below the threshold limit of 1,000 ng/g of each PAH, which is allowed in consumer goods in the European Union for clothing worn on the skin However, individual dermal exposures cannot be completely avoided during firefighting missions. The use of undergarments, gloves, socks, and balaclavas for whole-body dosimetry, which are worn under the PPE, can be useful in assessing whether hazardous substances penetrate the firefighters' PPE.
Collapse
Affiliation(s)
- Stephan Koslitz
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Dirk Taeger
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Birgit Heinrich
- Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA), Sankt Augustin, Germany
| | - Daniel Köster
- Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA), Sankt Augustin, Germany
| | - Tim Pelzl
- Department of Fire Services, Rescue Services, Fire Protection of the German Social Accident Insurance, c/o German Social Accident Insurance Institution for the Public Sector in Baden-Württemberg, Stuttgart, Germany
| | - Heiko Udo Käfferlein
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Katrin Pitzke
- Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA), Sankt Augustin, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Thomas Behrens
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| |
Collapse
|
3
|
Chakr N, Sav A. The role of personal protective equipment (PPE) in reducing firefighter exposure to chemical hazards: A systematic review. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2024; 21:831-841. [PMID: 39442142 DOI: 10.1080/15459624.2024.2400237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
This paper aims to investigate the effectiveness of personal protective equipment (PPE) in reducing firefighter exposure to various hazardous chemicals from the smoke emitted during fires. A systematic review of peer-reviewed articles was undertaken utilizing five databases: Medline, Embase, Web of Science, Scopus, and CINHAL. Studies published between 2013 and 2023 that investigated the effectiveness of PPE in reducing firsthand exposure to at least one chemical were included. Extracted data were grouped into two overarching themes related to PPE: (a) Respiratory Protection and (b) Personal Protective Clothing (PPC). Overall, 21 studies met the inclusion criteria and were considered for further analysis. Respiratory protection, particularly self-contained breathing apparatus (SCBA), offered the most protection in preventing inhalation exposure to chemical hazards. There was limited evidence on the effectiveness of firefighter turnout gear in reducing skin contamination. Combustion contaminants, especially highly volatile compounds like benzene, were found to permeate and penetrate through and around the protective clothing. In conclusion, certain respirators, particularly SCBA, provided the best protection against inhalation exposure to chemicals; however, PPC did not appear to provide complete protection, particularly against the more volatile chemicals like benzene.
Collapse
Affiliation(s)
- Nicole Chakr
- School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Adem Sav
- School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| |
Collapse
|
4
|
Frederiksen M, Jensen SP, Andersen MHG, Vogel U, Saber AT. Online SPE-LC-MS-MS method for eight hydroxylated metabolites of polycyclic aromatic hydrocarbons in urine and determination of optimal sampling time after firefighter training. Toxicol Lett 2024; 400:9-15. [PMID: 38977139 DOI: 10.1016/j.toxlet.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Polycyclic aromatic compounds (PAHs) are formed during incomplete combustion and firefighters are inadvertently at risk of being exposed to these and other hazardous compounds. Exposure to PAHs is often estimated by measuring their hydroxylated metabolites (OH-PAH) in urine. Here, an online-SPE LC-MS-MS method was set up for eight OH-PAHs thus increasing sample throughput and minimizing manual handling. The method was validated over a 5-month period and showed good reproducibility with intra- and inter-day variation of 2.4-8.1 % and 1.6-6.5 %, respectively, of low-level samples and accuracy (91.6-104.8 %) for a standard reference material. The method was applied to urine samples from conscripts training to become firefighters to determine the optimal sampling time for this training activity before a large intervention study. In total, six conscripts sampled urine 6-8 times over a 40-hr period during a 3-day training course. All eight metabolites were detected in ≥ 97 % of the samples and showed peak excretion 4-6 hrs after the training corresponding to 8-10 hrs after first exposure. Samples taken the morning after the exercise contained low levels of most metabolites. Consequently, 4-6 hrs post exposure is recommended as the optimal sampling time for quantification of PAH exposure and monitoring of potential differences in exposure.
Collapse
Affiliation(s)
- Marie Frederiksen
- The National Research Centre for the Working Environment, Lersø Parkalle 105, Copenhagen 2100, Denmark.
| | - Simon Pelle Jensen
- The National Research Centre for the Working Environment, Lersø Parkalle 105, Copenhagen 2100, Denmark
| | | | - Ulla Vogel
- The National Research Centre for the Working Environment, Lersø Parkalle 105, Copenhagen 2100, Denmark; DTU Food, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Anne Thoustrup Saber
- The National Research Centre for the Working Environment, Lersø Parkalle 105, Copenhagen 2100, Denmark
| |
Collapse
|
5
|
Clauzel A, Persoons R, Maître A, Balducci F, Petit P. Review of environmental airborne pyrene/benzo[a]pyrene levels from industrial emissions for the improvement of 1-hydroxypyrene biomonitoring interpretation. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:212-232. [PMID: 38845364 DOI: 10.1080/10937404.2024.2362632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants of significant public health concern, with several that are highly toxic to humans, including some proven or suspected carcinogens. To account for the high variability of PAH mixtures encountered in occupational settings, adjusting urinary 1-hydroxypyrene (1-OHP) levels by the total airborne pyrene (PyrT)/benzo[a]pyrene (BaP) ratio is essential for human biomonitoring (HBM). Given the complexity and cost of systematically monitoring atmospheric levels, alternative approaches to simultaneous airborne and HBM are required. The aim of this review was to catalog airborne PyrT/BaP ratios measured during different industrial activities and recommend 1-OHP-dedicated biological guidance values (BGV). A literature search was conducted. Seventy-one studies were included, with 5619 samples pertaining to 15 industrial sectors, 79 emission processes, and 213 occupational activities. This review summarized more than 40 years of data from almost 20 countries and highlighted the diversity and evolution of PAH emissions. PyrT/BaP ratios were highly variable, ranging from 0.8 in coke production to nearly 40 in tire and rubber production. A single PyrT/BaP value cannot apply to all occupational contexts, raising the question of the relevance of defining a single biological limit value for 1-OHP in industrial sectors where the PyrT/BaP ratio variability is high. Based upon the inventory, a practical approach is proposed for systematic PAH exposure and risk assessment, with a simple frame to follow based upon specific 1-OHP BGVs depending upon the occupational context and setup of a free PAH HBM interactive tool.
Collapse
Affiliation(s)
| | | | - Anne Maître
- Universite Grenoble Alpes, CNRS, Grenoble, France
| | | | - Pascal Petit
- Universite Grenoble Alpes, CNRS, Grenoble, France
- Universite Grenoble Alpes, AGEIS, Grenoble, France
| |
Collapse
|
6
|
Paiva AM, Barros B, Oliveira M, Alves S, Esteves F, Fernandes A, Vaz J, Slezáková K, Teixeira JP, Costa S, Morais S. Biomonitoring of polycyclic aromatic hydrocarbons exposure and short-time health effects in wildland firefighters during real-life fire events. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171801. [PMID: 38508274 DOI: 10.1016/j.scitotenv.2024.171801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/27/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Human biomonitoring data retrieved from real-life wildland firefighting in Europe and, also, worldwide are scarce. Thus, in this study, 176 Portuguese firefighters were biomonitored pre- and post- unsimulated wildfire combating (average:12-13 h; maximum: 55 h) to evaluate the impact on the levels of urinary polycyclic aromatic hydrocarbons hydroxylated metabolites (OHPAH; quantified by high-performance liquid chromatography with fluorescence detection) and the associated short-term health effects (symptoms, and total and differentiated white blood cells). Correlations between these variables and data retrieved from the self-reported questionnaires were also investigated. Firefighters were organized into four groups according to their exposure to wildfire emissions and their smoking habits: non-smoking non-exposed (NSNExp), non-smoking exposed (NSExp), smoking non-exposed (SNExp), and smoking and exposed (SExp). The most abundant metabolites were 1-hydroxynaphthalene and 1-hydroxyacenaphthene (1OHNaph + 1OHAce) (98-99 %), followed by 2-hydroxyfluorene (2OHFlu) (0.2-1.1 %), 1-hydroxyphenanthrene (1OHPhen) (0.2-0.4 %), and 1-hydroxypyrene (1OHPy) (0.1-0.2 %); urinary 3-hydroxybenzo(a)pyrene was not detected. The exposure to wildfire emissions significantly elevated the median concentrations of each individual and total OHPAH compounds in all groups, but this effect was more pronounced in non-smoking (1.7-4.2 times; p ≤ 0.006) than in smoking firefighters (1.3-1.6 times; p ≤ 0.03). The greatest discriminant of exposure to wildfire emissions was 1OHNaph + 1OHAce (increase of 4.2 times), while for tobacco smoke it was 2OHFlu (increase of 10 times). Post-exposure, white blood cells count significantly increased ranging from 1.4 (smokers, p = 0.025) to 3.7-fold (non-smokers, p < 0.001), which was accompanied by stronger significant correlations (0.480 < r < 0.882; p < 0.04) between individual and total OHPAH and total white blood cells (and lymphocytes > monocytes > neutrophils in non-smokers), evidencing the impact of PAH released from wildfire on immune cells. This study identifies Portuguese firefighters with high levels of biomarkers of exposure to PAH and points out the importance of adopting biomonitoring schemes, that include multiple biomarkers of exposure and biomarkers of effect, and implementing mitigations strategies.
Collapse
Affiliation(s)
- Ana Margarida Paiva
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Bela Barros
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Marta Oliveira
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Sara Alves
- Instituto Politécnico de Bragança, UICISA: E, Unidade de Investigação em Ciências da Saúde: Enfermagem, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Filipa Esteves
- Environmental Health Department, National Institute of Health Dr. Ricardo Jorge, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal; Department of Public Health and Forensic Sciences, Medical School, Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal; EPIUnit, Instituto de Saúde Pública da Universidade do Porto, Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Adília Fernandes
- Instituto Politécnico de Bragança, UICISA: E, Unidade de Investigação em Ciências da Saúde: Enfermagem, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Josiana Vaz
- CIMO, Instituto Politécnico de Bragança, Centro de Investigação de Montanha, Campus Santa Apolónia, 5300-253 Bragança, Portugal; SusTEC, Instituto Politécnico de Bragança, Sustec - Associate Laboratory for Sustainability and Technology in Inland Regions, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Klára Slezáková
- LEPABE-ALiCE, Departamento de Engenharia Química, Faculdade de Engenharia, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - João Paulo Teixeira
- Environmental Health Department, National Institute of Health Dr. Ricardo Jorge, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal; EPIUnit, Instituto de Saúde Pública da Universidade do Porto, Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Solange Costa
- Environmental Health Department, National Institute of Health Dr. Ricardo Jorge, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal; EPIUnit, Instituto de Saúde Pública da Universidade do Porto, Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Simone Morais
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal.
| |
Collapse
|
7
|
Barros B, Paiva AM, Oliveira M, Alves S, Esteves F, Fernandes A, Vaz J, Slezakova K, Costa S, Teixeira JP, Morais S. Baseline data and associations between urinary biomarkers of polycyclic aromatic hydrocarbons, blood pressure, hemogram, and lifestyle among wildland firefighters. Front Public Health 2024; 12:1338435. [PMID: 38510349 PMCID: PMC10950961 DOI: 10.3389/fpubh.2024.1338435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction Available literature has found an association between firefighting and pathologic pathways leading to cardiorespiratory diseases, which have been linked with exposure to polycyclic aromatic hydrocarbons (PAHs). PAHs are highlighted as priority pollutants by the European Human Biomonitoring Initiative in occupational and non-occupational contexts. Methods This cross-sectional study is the first to simultaneously characterize six creatinine-adjusted PAHs metabolites (OHPAHs) in urine, blood pressure, cardiac frequency, and hemogram parameters among wildland firefighters without occupational exposure to fire emissions (> 7 days), while exploring several variables retrieved via questionnaires. Results Overall, baseline levels for total OHPAHs levels were 2 to 23-times superior to the general population, whereas individual metabolites remained below the general population median range (except for 1-hydroxynaphthalene+1-hydroxyacenaphtene). Exposure to gaseous pollutants and/or particulate matter during work-shift was associated with a 3.5-fold increase in total OHPAHs levels. Firefighters who smoke presented 3-times higher total concentration of OHPAHs than non-smokers (p < 0.001); non-smoker females presented 2-fold lower total OHPAHs (p = 0.049) than males. 1-hydroxypyrene was below the recommended occupational biological exposure value (2.5 μg/L), and the metabolite of carcinogenic PAH (benzo(a)pyrene) was not detected. Blood pressure was above 120/80 mmHg in 71% of subjects. Firefighters from the permanent intervention team presented significantly increased systolic pressure than those who performed other functions (p = 0.034). Tobacco consumption was significantly associated with higher basophils (p = 0.01-0.02) and hematocrit (p = 0.03). No association between OHPAHs and blood pressure was found. OHPAHs concentrations were positively correlated with monocyte, basophils, large immune cells, atypical lymphocytes, and mean corpuscular volume, which were stronger among smokers. Nevertheless, inverse associations were observed between fluorene and pyrene metabolites with neutrophils and eosinophils, respectively, in non-smokers. Hemogram was negatively affected by overworking and lower physical activity. Conclusion This study suggests possible associations between urinary PAHs metabolites and health parameters in firefighters, that should be further assessed in larger groups.
Collapse
Affiliation(s)
- Bela Barros
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Ana Margarida Paiva
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Marta Oliveira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Sara Alves
- Instituto Politécnico de Bragança, UICISA: E, Unidade de Investigação em Ciências da Saúde: Enfermagem, Instituto Politécnico de Bragança Campus de Santa Apolónia, Bragança, Portugal
| | - Filipa Esteves
- Environmental Health Department, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
- Department of Public Health and Forensic Sciences, and Medical School, Faculty of Medicine, University of Porto, Porto, Portugal
- EPIUnit – Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
| | - Adília Fernandes
- Instituto Politécnico de Bragança, UICISA: E, Unidade de Investigação em Ciências da Saúde: Enfermagem, Instituto Politécnico de Bragança Campus de Santa Apolónia, Bragança, Portugal
| | - Josiana Vaz
- CIMO, Instituto Politécnico de Bragança, Bragança, Centro de Investigação de Montanha Campus Santa Apolónia, Bragança, Portugal
- SusTEC, Instituto Politécnico de Bragança, Bragança, Sustec – Associate Laboratory for Sustainability and Technology in Inland Regions – Campus Santa Apolónia, Bragança, Portugal
| | - Klara Slezakova
- LEPABE-ALiCE, Departamento de Engenharia Química, Faculdade de Engenharia, Rua Dr. Roberto Frias, Porto, Portugal
| | - Solange Costa
- Environmental Health Department, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
- EPIUnit – Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
| | - João Paulo Teixeira
- Environmental Health Department, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
- EPIUnit – Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
| | - Simone Morais
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| |
Collapse
|
8
|
Koslitz S, Heinrich B, Käfferlein HU, Koch HM, Pelzl T, Pitzke K, Köster D, Weiß T, Harth V, Brüning T, Behrens T, Taeger D. Biomonitoring of polycyclic aromatic hydrocarbons in firefighters at fire training facilities and in employees at respiratory protection and hose workshops. Front Public Health 2023; 11:1277812. [PMID: 38152667 PMCID: PMC10751366 DOI: 10.3389/fpubh.2023.1277812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/03/2023] [Indexed: 12/29/2023] Open
Abstract
Introduction Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic to humans and are formed by incomplete combustion. PAHs are always present during firefighting operations, and fire department members can be exposed to them in the workplace. Methods In this study, we analyzed 1-hydroxypyrene (1-OHP) in 36 urine samples from nine firefighters, collected before and after fire training sessions, and 32 urine samples from eight employees at respiratory protection and hose workshops. To assess breakthrough PAH exposure through personal protective equipment and potential dermal uptake, some of the workshop employees wore cotton garments under their regular workwear. Cotton samples were then examined for the presence of 17 semi-volatile and low-volatility PAHs. Results After firefighting exercises, we observed approximately a fivefold increase in mean 1-OHP concentrations in samples from firefighters, from 0.24 μg/L to 1.17 μg/L (maximum: 5.31 μg/L). In contrast, 1-OHP levels in workshop employees were found to be low, with the majority of urine samples yielding concentrations below the limit of quantification (LOQ: 0.05 μg/L, maximum: 0.11 μg/L). Similarly, low PAH levels were found on the workshop employees' cotton undergarments, with maximum concentrations of 250 and 205 ng/g for pyrene and benzo[a]pyrene, respectively. Discussion In conclusion, significant increases in 1-OHP in urine were observed in firefighters after training sessions, whereas work-related exposure remained low among workshop employees.
Collapse
Affiliation(s)
- Stephan Koslitz
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Birgit Heinrich
- Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA), Sankt Augustin, Germany
| | - Heiko U. Käfferlein
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Holger M. Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Tim Pelzl
- Department of Fire Services, Rescue Services, and Fire Protection of the German Social Accident Insurance, German Social Accident Insurance Institution for the Public Sector in Baden-Württemberg, Stuttgart, Germany
| | - Katrin Pitzke
- Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA), Sankt Augustin, Germany
| | - Daniel Köster
- Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA), Sankt Augustin, Germany
| | - Tobias Weiß
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Volker Harth
- Institute for Occupational and Maritime Medicine (ZfAM), University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Thomas Behrens
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Dirk Taeger
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| |
Collapse
|
9
|
Everaert S, Schoeters G, Claes K, Raquez JM, Buffel B, Vanhaecke T, Moens J, Laitinen J, Van Larebeke N, Godderis L. Balancing Acute and Chronic Occupational Risks: The Use of Nitrile Butadiene Rubber Undergloves by Firefighters to Reduce Exposure to Toxic Contaminants. TOXICS 2023; 11:534. [PMID: 37368634 DOI: 10.3390/toxics11060534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/01/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
Firefighters are exposed via multi-route exposure to a multitude of chemicals (PAHs, VOCs, flame retardants, dioxins, etc.) that may cause acute and long-term health effects. The dermal absorption of contaminants is a major contributor to the overall exposure and can be reduced by wearing appropriate personal protective equipment. As leather firefighters' gloves cannot be decontaminated regularly by wet cleaning, many Belgian firefighters wear supplementary undergloves made of nitrile butadiene rubber (NBR) to protect against the accumulation of toxicants. However, the safety of this practice has been questioned. In this commentary, the current practice and risks are outlined for the first time, assessed by an interdisciplinary working group of the Belgian Superior Health Council. As NBR sticks to the skin more at high temperatures, the contact time on removal will be prolonged, posing an additional risk for deeper burns. However, based on the physicochemical properties of NBR and the existing experience of firefighters and burn centers, it is estimated that such incidents occur relatively rarely in practice. On the other hand, the risk of repeated exposure to contaminated gloves if no undergloves are worn is unacceptable. Despite the slightly increased risk for deeper burns, it is concluded that wearing disposable NBR gloves under regular firefighters' gloves is an appropriate and effective preventive measure against toxic contamination. The nitrile butadiene rubber must always be fully covered to avoid any contact with the heat.
Collapse
Affiliation(s)
- Stijn Everaert
- Chemical Environmental Factors Group, Superior Health Council, 1060 Brussels, Belgium
| | - Greet Schoeters
- Department of Biomedical Sciences, University of Antwerp, 2650 Antwerp, Belgium
| | - Karel Claes
- Burn Center & Department of Plastic Surgery, Ghent University Hospital, 9000 Ghent, Belgium
| | - Jean-Marie Raquez
- Polymer and Composite Materials Department, University of Mons, 7000 Mons, Belgium
| | - Bart Buffel
- Department of Materials Engineering, KU Leuven, 8200 Bruges, Belgium
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Jonas Moens
- Belgian Poison Centre, 1120 Brussels, Belgium
| | - Juha Laitinen
- Pelastusopisto, Emergency Services Academy Finland, 70821 Kuopio, Finland
| | - Nicolas Van Larebeke
- Department of Radiotherapy and Experimental Cancerology, Ghent University, 9000 Ghent, Belgium
- Department of Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Lode Godderis
- Center for Environment and Health, Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium
- IDEWE, External Service for Prevention and Protection at Work, 3001 Heverlee, Belgium
| |
Collapse
|
10
|
Casjens S, Neumann S, Rühle K, Gamrad-Streubel L, Haase LM, Rudolph KK, Birk T, Giesen J, Neumann V, Pallapies D, Bünger J, Käfferlein HU, Behrens T, Brüning T, Taeger D. Impact of diesel exhaust exposure on urinary 1-hydroxypyrene in underground salt and potash workers. Int J Hyg Environ Health 2023; 251:114190. [PMID: 37253312 DOI: 10.1016/j.ijheh.2023.114190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Diesel engine exhaust (DEE) and some of the polycyclic aromatic hydrocarbons (PAH) it contains are carcinogenic to humans (for example benzo(a)pyrene) and can cause lung cancer in workers. The objective of this study was to assess exposures to DEE and its component PAH and the potential associations between these two health hazards in a salt and potash mining population. METHODS Between 2017 and 2019, 1003 underground workers (mining n = 801, maintenance n = 202) and 243 above-ground facility workers from two German mines participated. Personal exposure to DEE was assessed in air as elemental carbon for diesel particulate matter (EC-DPM), whereas exposure to PAH was assessed in pre- and post-shift urine samples in terms of 1-hydroxypyrene (1-OHP). Associations between EC-DPM and 1-OHP were studied using linear regression models. RESULTS The highest EC-DPM exposures were measured in mining workers (median 0.06 mg/m³) followed by workers in the maintenance (0.03 mg/m3) and facility areas (<0.02 mg/m3). Exposures above the current German occupational threshold level of 0.05 mg/m3 were observed in 56%, 17%, and 5% of mining, maintenance and facility workers, respectively. 1-OHP increased statistically significantly across a work shift in underground workers but not in facility workers. Regression analyses revealed an increase of post-shift 1-OHP by almost 80% in mining and 40% in maintenance compared with facility workers. 1-OHP increased with increasing EC-DPM among underground workers. However, internal exposure of 1-OHP mainly remained at levels similar to those of the German general population in more than 90% of the urine samples. CONCLUSIONS While exposures to DEE above the current German OEL for EC-DPM are quite common in the studied population of underground salt and potash miners (39.5% overall), urinary concentrations of 1-OHP did not reflect these findings.
Collapse
Affiliation(s)
- Swaantje Casjens
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany.
| | - Savo Neumann
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Katrin Rühle
- Environment and Health, Ramboll Deutschland GmbH, City Tower-Limbecker Platz 1, 45127, Essen, Germany
| | - Lisa Gamrad-Streubel
- Environment and Health, Ramboll Deutschland GmbH, City Tower-Limbecker Platz 1, 45127, Essen, Germany
| | - Lisa-Marie Haase
- Environment and Health, Ramboll Deutschland GmbH, City Tower-Limbecker Platz 1, 45127, Essen, Germany
| | - Katharina K Rudolph
- Environment and Health, Ramboll Deutschland GmbH, City Tower-Limbecker Platz 1, 45127, Essen, Germany
| | - Thomas Birk
- Environment and Health, Ramboll Deutschland GmbH, City Tower-Limbecker Platz 1, 45127, Essen, Germany
| | - Jörg Giesen
- Institute for the Research on Hazardous Substances (IGF), Bochum, Germany
| | - Volker Neumann
- Institute for the Research on Hazardous Substances (IGF), Bochum, Germany
| | - Dirk Pallapies
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Jürgen Bünger
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Heiko U Käfferlein
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Thomas Behrens
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Dirk Taeger
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| |
Collapse
|