1
|
Ahmad FB, Ara C, Ali S, Andleeb S, Shakir HA, Nawaz F, Asmatullah. Effects of Turmeric on Manganese-induced Redox Imbalance in Testicular Tissues: Histo-micrometric and Biochemical analyses. Cell Biochem Biophys 2025:10.1007/s12013-025-01763-w. [PMID: 40369284 DOI: 10.1007/s12013-025-01763-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2025] [Indexed: 05/16/2025]
Abstract
Manganese is the most overlooked chemical element, though it is the 5th most abundant metal in earth' crust. Despite being important in the body's mechanisms, bioaccumulation of manganese in living organisms can be noxious. The current study aimed to evaluate the effects of manganese on male mice's reproductive parameters, and turmeric was used as a remedial agent against manganese-induced potential subchronic toxicity. Healthy male mice were distributed into seven groups (n = 10), Control (untreated), Vehicle control; VC-I (0.1 ml of saline solution), Mn-I (5 mg/Kg BW), Mn-II (10 mg/Kg BW), Mn-III (20 mg/Kg BW), Mn + T (20 mg of Mn/Kg +100 mg turmeric/Kg BW) and Vehicle control; VC-II (0.1 ml of olive oil) via oral gavage routinely, once a day. The experiment was continued for 28 days. Before administrations, the antioxidant capacity of turmeric was evaluated via FRAP, TPC & GC-MS assays. Mice were acclimatized for 10 days after dosing, then euthanized and samples (testis & blood) were recovered. Morphological observations showed minute morphological changes in testes as compared to controls. Morphometric analysis revealed average body weight, testis weight and size of Mn-intoxicated mice were reduced remarkably (P ≤ 0.05) in comparison with the control group. Sideways Mn + T group showed non-significant changes in both parameters. Hematological, micrometric findings and serum testosterone, luteinizing hormone and follicle stimulating hormone were significantly different (P ≤ 0.05) in Mn-exposed groups against controls. These alterations were concomitant with histological variations in Mn-treated groups. While such deviations were less obvious in the Mn + T-administered group. The aforesaid findings deduced that the turmeric supplementation manifested improvements in most of the histo-micrometric, hematological, steroidal parameters and enzymatic indices of mice through its antioxidant action.
Collapse
Affiliation(s)
| | - Chaman Ara
- Institute of Zoology, University of the Punjab, Lahore, Pakistan.
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan.
| | - Shagufta Andleeb
- Department of Zoology, University of Education, Lahore, Pakistan
| | | | - Faheem Nawaz
- Government Khawaja Rafique Shaheed college, Walton Road, Lahore, Pakistan
| | - Asmatullah
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
2
|
Kasper-Sonnenberg M, Pälmke C, Wrobel S, Brüning T, Murawski A, Apel P, Weber T, Kolossa-Gehring M, Koch HM. Plasticizer exposure in Germany from 1988 to 2022: Human biomonitoring data of 20 plasticizers from the German Environmental Specimen Bank. ENVIRONMENT INTERNATIONAL 2025; 195:109190. [PMID: 39693778 DOI: 10.1016/j.envint.2024.109190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/05/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
The German Environmental Specimen Bank (ESB) annually archives 24-h urine samples since the early 1980s. In this study, we analyzed 420 of these samples from the years 2014 to 2022 for metabolites of 18 phthalates and two substitutes. We merged the new data with the data from previous measurement campaigns to a combined dataset of 1825 samples covering a 35-year period from 1988 to 2022 to investigate time trends, calculate daily intakes and perform an anti-androgenic mixture risk assessment. With the extended set of 41 biomarkers, we are now able to monitor the exposure to all EU-labelled reprotoxic phthalates. Most phthalate exposures continued to decrease since first measurements in the 80s, with biggest drops for DnBP (96.6 %) and DEHP (90.9 %). DiNP and DiDP, seen on the rise in earlier campaigns, now declined. Exposures to the newly included, reprotoxic phthalates were generally negligible. Regarding mixture risk, 5 % of the highly exposed still exceeded the Hazard Index (HI) of 1 in 2009. In the current measurement campaign only three individuals (0.7 %) exceeded the HI of 1 (with exceedances still driven by DEHP and DnBP).In 2022, 20 % of the individuals still had an HI > 0.2, which we propose as a benchmark for interpreting phthalate mixture risk, considering concurrent exposures to other anti-androgens. Exposure to the substitutes DINCH and DEHTP continues to increase, with daily intakes of DEHTP exceeding those of DEHP since 2018. Compared with the United States (US) National Health and Nutrition Examination Survey (NHANES) phthalate exposures seem to align, except for DEHTP with up to ten times higher levels in the US. Human biomonitoring (HBM) is the ideal tool to capture actual mixture exposures per individual, integrating all external exposure sources and pathways, thus we will continue to use HBM in exposure and risk assessment of phthalates and other (anti-androgenic) chemicals.
Collapse
Affiliation(s)
- Monika Kasper-Sonnenberg
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University-Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Claudia Pälmke
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University-Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Sonja Wrobel
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University-Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University-Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Aline Murawski
- German Environment Agency (UBA), Corrensplatz 1, 14195 Berlin, Germany
| | - Petra Apel
- German Environment Agency (UBA), Corrensplatz 1, 14195 Berlin, Germany
| | - Till Weber
- German Environment Agency (UBA), Corrensplatz 1, 14195 Berlin, Germany
| | | | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University-Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| |
Collapse
|
3
|
Namorado S, Martins C, Ogura J, Assunção R, Vasco E, Appenzeller B, I Halldorsson T, Janasik B, Kolossa-Gehring M, Van Nieuwenhuyse A, Ólafsdóttir K, Rambaud L, Riou M, Silva S, Wasowicz W, Weber T, Esteban-López M, Castaño A, Gilles L, Rodríguez Martin L, Govarts E, Schoeters G, Viegas S, Silva MJ, Alvito P. Exposure assessment of the European adult population to deoxynivalenol - Results from the HBM4EU Aligned Studies. Food Res Int 2024; 198:115281. [PMID: 39643334 DOI: 10.1016/j.foodres.2024.115281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 12/09/2024]
Abstract
Mycotoxins are natural toxins produced by fungi that may cause adverse health effects thus constituting a public health concern. Deoxynivalenol (DON), a mycotoxin affecting the immune system and causing intestinal disorders, was selected as a priority under the European Human Biomonitoring Initiative (HBM4EU). Urinary total DON levels (tDON) of 1270 participants from six countries were used to characterize the internal exposure of the adult European population and identify the most relevant determinants of exposure. tDON concentrations' P50 and P95 were in the range of 0.41-10.16 µg/L (0.39-9.05 µg/g crt) and 3.25-46.58 µg/L (2.12-33.50 µg/g crt) respectively. Higher tDON levels were observed for (i) male participants from France and Germany, (ii) samples collected in spring and summer, (iii) participants with a lower educational level, (iv) participants living in rural areas, (v) individuals without a job in France and Luxembourg, while in Portugal higher exposure was observed in working individuals, (vi) individuals with higher consumption of cereals and bread. The proportion of individuals with exposure levels exceeding the HBM-GV of 23 µg/L was 12.3 %, ranging from 0.8 % to 20.7 % in the individual countries. This study on mycotoxins exposure has used post harmonized questionnaire data and validated analytical methodologies for analysis and covered countries representing the four geographical regions of Europe, having produced much needed knowledge on the exposure of the European adult population to deoxynivalenol.
Collapse
Affiliation(s)
- Sónia Namorado
- Department of Epidemiology, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal; Comprehensive Health Research Center (CHRC), Universidade NOVA de Lisboa, Campo Mártires da Pátria, 1169-056 Lisbon, Portugal; NOVA National School of Public Health, Public Health Research Centre, NOVA University of Lisbon, Avenida Padre Cruz, 1600-560 Lisbon, Portugal.
| | - Carla Martins
- Comprehensive Health Research Center (CHRC), Universidade NOVA de Lisboa, Campo Mártires da Pátria, 1169-056 Lisbon, Portugal; NOVA National School of Public Health, Public Health Research Centre, NOVA University of Lisbon, Avenida Padre Cruz, 1600-560 Lisbon, Portugal
| | - Joana Ogura
- Department of Epidemiology, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Ricardo Assunção
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Caparica, Almada, Portugal
| | - Elsa Vasco
- Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | | | - Thorhallur I Halldorsson
- Department of Food and Nutrition, University of Iceland, Reykjavik, Iceland; Department of Pharmacology and Toxicology, University of Iceland, Reykjavik, Iceland
| | - Beata Janasik
- Nofer Institute of Occupational Medicine, Department of Environmental and Biological Monitoring, St. Te-resy 8, 91-348, Lodz, Poland
| | | | - An Van Nieuwenhuyse
- Department of Health Protection, Laboratoire National de Santé (LNS), Rue Louis Rech 1, 3555 Dudelange, Luxembourg
| | | | - Loïc Rambaud
- Department of Environmental and Occupational Health, Santé Publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex, 94415, France
| | - Margaux Riou
- Department of Environmental and Occupational Health, Santé Publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex, 94415, France
| | - Susana Silva
- Department of Epidemiology, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Wojciech Wasowicz
- Nofer Institute of Occupational Medicine, Department of Environmental and Biological Monitoring, St. Te-resy 8, 91-348, Lodz, Poland
| | - Till Weber
- German Environment Agency (UBA), D-14195 Berlin, Germany
| | - Marta Esteban-López
- National Centre for Environmental Health, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Liese Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | | | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Greet Schoeters
- Department of Biomedical Sciences, University of Antwerp, Belgium
| | - Susana Viegas
- Comprehensive Health Research Center (CHRC), Universidade NOVA de Lisboa, Campo Mártires da Pátria, 1169-056 Lisbon, Portugal; NOVA National School of Public Health, Public Health Research Centre, NOVA University of Lisbon, Avenida Padre Cruz, 1600-560 Lisbon, Portugal
| | - Maria João Silva
- Department of Genetics, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal; Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Paula Alvito
- Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
4
|
Średnicka P, Roszko M, Emanowicz P, Wójcicki M, Popowski D, Kanabus J, Juszczuk-Kubiak E. Influence of bisphenol A and its analogues on human gut microbiota composition and metabolic activity: Insights from an in vitro model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177323. [PMID: 39489444 DOI: 10.1016/j.scitotenv.2024.177323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Food contamination is a primary route of human exposure to bisphenols (BPs), which are known to affect gut microbiota (GM) and intestinal health. This study comprehensively assessed the impact of bisphenol A (BPA) and three of its substitutes-bisphenol S (BPS), bisphenol F (BPF), and tetramethyl bisphenol F (TMBPF, the monomer of valPure V70) - on the taxonomic and functional profile of human GM using an in vitro model. Human GM was acutely exposed to 1 mM concentrations of these BPs during a 48 h anaerobic cultivation. We first examined the effects of BPA, BPS, BPF, and TMBPF on GM taxonomic and metabolic profiles, mainly focusing on short-chain fatty acids (SCFAs) production. We then evaluated the degradation potential of these BPs by GM and its influence on their estrogenic activity. Finally, we assessed the impact of GM metabolites from BPs-exposed cultures on the viability of intestinal epithelial cells (Caco-2). BPA, BPS, and BPF severely disrupted GM taxonomic composition and metabolite profiles, significantly reducing SCFAs production. In contrast, TMBPF exhibited the least disruptive effects, suggesting it may be a safer alternative. Although the GM did not biotransform the BPs, bioadsorption occurred, with affinity correlating to hydrophobicity in the order of TMBPF > BPA > BPF > BPS. GM reduced the estrogenic activity of BPs primarily through bioadsorption. However, exposure of gut epithelial cells to Post-Culture Supernatants of BPA, BPF, and TMBPF significantly reduced Caco-2 cell viability, indicating the potential formation of harmful GM-derived metabolites and/or a depletion of beneficial GM metabolites.
Collapse
Affiliation(s)
- Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland.
| | - Marek Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland
| | - Paulina Emanowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland
| | - Michał Wójcicki
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland
| | - Dominik Popowski
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland; Natural Products & Food Research and Analysis - Pharmaceutical Technology, Faculty of Pharmacy, University of Antwerp, Universiteitplein 1, Wilrijk, Belgium
| | - Joanna Kanabus
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland
| |
Collapse
|
5
|
Tagne-Fotso R, Riou M, Saoudi A, Zeghnoun A, Frederiksen H, Berman T, Montazeri P, Andersson AM, Rodriguez-Martin L, Akesson A, Berglund M, Biot P, Castaño A, Charles MA, Cocco E, Den Hond E, Dewolf MC, Esteban-Lopez M, Gilles L, Govarts E, Guignard C, Gutleb AC, Hartmann C, Kold Jensen T, Koppen G, Kosjek T, Lambrechts N, McEachan R, Sakhi AK, Snoj Tratnik J, Uhl M, Urquiza J, Vafeiadi M, Van Nieuwenhuyse A, Vrijheid M, Weber T, Zaros C, Tarroja-Aulina E, Knudsen LE, Covaci A, Barouki R, Kolossa-Gehring M, Schoeters G, Denys S, Fillol C, Rambaud L. Exposure to bisphenol A in European women from 2007 to 2014 using human biomonitoring data - The European Joint Programme HBM4EU. ENVIRONMENT INTERNATIONAL 2024; 190:108912. [PMID: 39116556 DOI: 10.1016/j.envint.2024.108912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Bisphenol A (BPA; or 4,4'-isopropylidenediphenol) is an endocrine disrupting chemical. It was widely used in a variety of plastic-based manufactured products for several years. The European Food Safety Authority (EFSA) recently reduced the Tolerable Daily Intake (TDI) for BPA by 20,000 times due to concerns about immune-toxicity. OBJECTIVE We used human biomonitoring (HBM) data to investigate the general level of BPA exposure from 2007 to 2014 of European women aged 18-73 years (n = 4,226) and its determinants. METHODS Fifteen studies from 12 countries (Austria, Belgium, Denmark, France, Germany, Greece, Israel, Luxembourg, Slovenia, Spain, Sweden, and the United Kingdom) were included in the BPA Study protocol developed within the European Joint Programme HBM4EU. Seventy variables related to the BPA exposure were collected through a rigorous post-harmonization process. Linear mixed regression models were used to investigate the determinants of total urine BPA in the combined population. RESULTS Total BPA was quantified in 85-100 % of women in 14 out of 15 contributing studies. Only the Austrian PBAT study (Western Europe), which had a limit of quantification 2.5 to 25-fold higher than the other studies (LOQ=2.5 µg/L), found total BPA in less than 5 % of the urine samples analyzed. The geometric mean (GM) of total urine BPA ranged from 0.77 to 2.47 µg/L among the contributing studies. The lowest GM of total BPA was observed in France (Western Europe) from the ELFE subset (GM=0.77 µg/L (0.98 µg/g creatinine), n = 1741), and the highest levels were found in Belgium (Western Europe) and Greece (Southern Europe), from DEMOCOPHES (GM=2.47 µg/L (2.26 µg/g creatinine), n = 129) and HELIX-RHEA (GM=2.47 µg/L (2.44 µg/g creatinine), n = 194) subsets, respectively. One hundred percent of women in 14 out of 15 data collections in this study exceeded the health-based human biomonitoring guidance value for the general population (HBM-GVGenPop) of 0.0115 µg total BPA/L urine derived from the updated EFSA's BPA TDI. Variables related to the measurement of total urine BPA and those related to the main socio-demographic characteristics (age, height, weight, education, smoking status) were collected in almost all studies, while several variables related to BPA exposure factors were not gathered in most of the original studies (consumption of beverages contained in plastic bottles, consumption of canned food or beverages, consumption of food in contact with plastic packaging, use of plastic film or plastic containers for food, having a plastic floor covering in the house, use of thermal paper…). No clear determinants of total urine BPA concentrations among European women were found. A broader range of data planned for collection in the original questionnaires of the contributing studies would have resulted in a more thorough investigation of the determinants of BPA exposure in European women. CONCLUSION This study highlights the urgent need for action to further reduce exposure to BPA to protect the population, as is already the case in the European Union. The study also underscores the importance of pre-harmonizing HBM design and data for producing comparable data and interpretable results at a European-wide level, and to increase HBM uptake by regulatory agencies.
Collapse
Affiliation(s)
- Romuald Tagne-Fotso
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France.
| | - Margaux Riou
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| | - Abdessattar Saoudi
- Department of Data Support, Data Processing and Analysis, Santé publique France, Saint-Maurice, France
| | - Abdelkrim Zeghnoun
- Department of Data Support, Data Processing and Analysis, Santé publique France, Saint-Maurice, France
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Tamar Berman
- Israel Ministry of Health (MOH-IL), Jerusalem, Israel
| | - Parisa Montazeri
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | | | - Agneta Akesson
- Institute of Environmental Medicine, Karolinska Institutet (KI), Stockholm, Sweden
| | - Marika Berglund
- Institute of Environmental Medicine, Karolinska Institutet (KI), Stockholm, Sweden
| | - Pierre Biot
- Federal Public Service Health, Food Chain Safety and Environment, Brussels, Belgium
| | - Argelia Castaño
- National Center for Environmental Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Marie-Aline Charles
- French Institute for Demographic Studies (INED), French Institute for Medical Research and Health (Inserm), French Blood Agency, ELFE Joint Unit, Aubervilliers, France; Inserm UMR 1153, Centre for Research in Epidemiology and Statistics (CRESS), Team Early Life Research on Later Health, University of Paris, Villejuif, France
| | - Emmanuelle Cocco
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Elly Den Hond
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; Provincial Institute of Hygiene (PIH), Antwerp, Belgium
| | | | - Marta Esteban-Lopez
- National Center for Environmental Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Liese Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Cedric Guignard
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | | | - Tina Kold Jensen
- Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark (SDU), Odense, Denmark
| | - Gudrun Koppen
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Tina Kosjek
- Jozef Stefan Institute (JSI), Department of Environmental Sciences, Ljubljana, Slovenia
| | - Nathalie Lambrechts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Rosemary McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | | | - Janja Snoj Tratnik
- Jozef Stefan Institute (JSI), Department of Environmental Sciences, Ljubljana, Slovenia
| | - Maria Uhl
- German Environment Agency (UBA), Berlin, Germany
| | - Jose Urquiza
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - An Van Nieuwenhuyse
- Department Health Protection, Laboratoire national de santé (LNS), Dudelange, Luxembourg; Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Belgium
| | - Martine Vrijheid
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Till Weber
- German Environment Agency (UBA), Berlin, Germany
| | - Cécile Zaros
- French Institute for Demographic Studies (INED), French Institute for Medical Research and Health (Inserm), French Blood Agency, ELFE Joint Unit, Aubervilliers, France
| | | | | | - Adrian Covaci
- Toxicological Center, University of Antwerp, Belgium
| | - Robert Barouki
- Inserm UMR S-1124, University of Paris, T3S, Paris, France; Biochemistry, Metabolomics, and Proteomics Department, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | | | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Sebastien Denys
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| | - Clemence Fillol
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| | - Loïc Rambaud
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| |
Collapse
|
6
|
Tkalec Ž, Antignac JP, Bandow N, Béen FM, Belova L, Bessems J, Le Bizec B, Brack W, Cano-Sancho G, Chaker J, Covaci A, Creusot N, David A, Debrauwer L, Dervilly G, Duca RC, Fessard V, Grimalt JO, Guerin T, Habchi B, Hecht H, Hollender J, Jamin EL, Klánová J, Kosjek T, Krauss M, Lamoree M, Lavison-Bompard G, Meijer J, Moeller R, Mol H, Mompelat S, Van Nieuwenhuyse A, Oberacher H, Parinet J, Van Poucke C, Roškar R, Togola A, Trontelj J, Price EJ. Innovative analytical methodologies for characterizing chemical exposure with a view to next-generation risk assessment. ENVIRONMENT INTERNATIONAL 2024; 186:108585. [PMID: 38521044 DOI: 10.1016/j.envint.2024.108585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
The chemical burden on the environment and human population is increasing. Consequently, regulatory risk assessment must keep pace to manage, reduce, and prevent adverse impacts on human and environmental health associated with hazardous chemicals. Surveillance of chemicals of known, emerging, or potential future concern, entering the environment-food-human continuum is needed to document the reality of risks posed by chemicals on ecosystem and human health from a one health perspective, feed into early warning systems and support public policies for exposure mitigation provisions and safe and sustainable by design strategies. The use of less-conventional sampling strategies and integration of full-scan, high-resolution mass spectrometry and effect-directed analysis in environmental and human monitoring programmes have the potential to enhance the screening and identification of a wider range of chemicals of known, emerging or potential future concern. Here, we outline the key needs and recommendations identified within the European Partnership for Assessment of Risks from Chemicals (PARC) project for leveraging these innovative methodologies to support the development of next-generation chemical risk assessment.
Collapse
Affiliation(s)
- Žiga Tkalec
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Jožef Stefan Institute, Department of Environmental Sciences, Ljubljana, Slovenia.
| | | | - Nicole Bandow
- German Environment Agency, Laboratory for Water Analysis, Colditzstraße 34, 12099 Berlin, Germany.
| | - Frederic M Béen
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), Section Chemistry for Environment and Health, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; KWR Water Research Institute, Nieuwegein, The Netherlands.
| | - Lidia Belova
- Toxicological Center, University of Antwerp, 2610 Wilrijk, Belgium.
| | - Jos Bessems
- Flemish Institute for Technological Research (VITO), Mol, Belgium.
| | | | - Werner Brack
- Helmholtz Centre for Environmental Research GmbH - UFZ, Department of Effect-Directed Analysis, Permoserstraße 15, 04318 Leipzig, Germany; Goethe University Frankfurt, Department of Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Strasse 13, 60438 Frankfurt, Germany.
| | | | - Jade Chaker
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France.
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, 2610 Wilrijk, Belgium.
| | - Nicolas Creusot
- INRAE, French National Research Institute For Agriculture, Food & Environment, UR1454 EABX, Bordeaux Metabolome, MetaboHub, Gazinet Cestas, France.
| | - Arthur David
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France.
| | - Laurent Debrauwer
- Toxalim (Research Centre in Food Toxicology), INRAE UMR 1331, ENVT, INP-Purpan, Paul Sabatier University (UPS), Toulouse, France.
| | | | - Radu Corneliu Duca
- Unit Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), 1 Rue Louis Rech, L-3555 Dudelange, Luxembourg; Environment and Health, Department of Public Health and Primary Care, Katholieke Universiteit of Leuven (KU Leuven), 3000 Leuven, Belgium.
| | - Valérie Fessard
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Laboratory of Fougères, Toxicology of Contaminants Unit, 35306 Fougères, France.
| | - Joan O Grimalt
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia, Spain.
| | - Thierry Guerin
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Strategy and Programs Department, F-94701 Maisons-Alfort, France.
| | - Baninia Habchi
- INRS, Département Toxicologie et Biométrologie Laboratoire Biométrologie 1, rue du Morvan - CS 60027 - 54519, Vandoeuvre Cedex, France.
| | - Helge Hecht
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| | - Juliane Hollender
- Swiss Federal Institute of Aquatic Science and Technology - Eawag, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland.
| | - Emilien L Jamin
- Toxalim (Research Centre in Food Toxicology), INRAE UMR 1331, ENVT, INP-Purpan, Paul Sabatier University (UPS), Toulouse, France.
| | - Jana Klánová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| | - Tina Kosjek
- Jožef Stefan Institute, Department of Environmental Sciences, Ljubljana, Slovenia.
| | - Martin Krauss
- Helmholtz Centre for Environmental Research GmbH - UFZ, Department of Effect-Directed Analysis, Permoserstraße 15, 04318 Leipzig, Germany.
| | - Marja Lamoree
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), Section Chemistry for Environment and Health, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | - Gwenaelle Lavison-Bompard
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Laboratory for Food Safety, Pesticides and Marine Biotoxins Unit, F-94701 Maisons-Alfort, France.
| | - Jeroen Meijer
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), Section Chemistry for Environment and Health, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | - Ruth Moeller
- Unit Medical Expertise and Data Intelligence, Department of Health Protection, Laboratoire National de Santé (LNS), 1 Rue Louis Rech, L-3555 Dudelange, Luxembourg.
| | - Hans Mol
- Wageningen Food Safety Research - Part of Wageningen University and Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands.
| | - Sophie Mompelat
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Laboratory of Fougères, Toxicology of Contaminants Unit, 35306 Fougères, France.
| | - An Van Nieuwenhuyse
- Environment and Health, Department of Public Health and Primary Care, Katholieke Universiteit of Leuven (KU Leuven), 3000 Leuven, Belgium; Department of Health Protection, Laboratoire National de Santé (LNS), 1 Rue Louis Rech, L-3555 Dudelange, Luxembourg.
| | - Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Insbruck, 6020 Innsbruck, Austria.
| | - Julien Parinet
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Laboratory for Food Safety, Pesticides and Marine Biotoxins Unit, F-94701 Maisons-Alfort, France.
| | - Christof Van Poucke
- Flanders Research Institute for Agriculture, Fisheries And Food (ILVO), Brusselsesteenweg 370, 9090 Melle, Belgium.
| | - Robert Roškar
- University of Ljubljana, Faculty of Pharmacy, Slovenia.
| | - Anne Togola
- BRGM, 3 avenue Claude Guillemin, 45060 Orléans, France.
| | | | - Elliott J Price
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| |
Collapse
|
7
|
Lallmahomed A, Mercier F, Costet N, Fillol C, Bonvallot N, Le Bot B. Characterization of organic contaminants in hair for biomonitoring purposes. ENVIRONMENT INTERNATIONAL 2024; 183:108419. [PMID: 38185045 DOI: 10.1016/j.envint.2024.108419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/06/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Biological monitoring is one way to assess human exposure to contaminants. Blood and urine are often used as biological matrices, but hair is an innovative and effective tool for quantifying more biomarkers over a wider exposure window. In order to improve the use of hair in exposure assessment, this article identifies relevant compounds in the literature to investigate hair contamination. Statistical analysis was performed to correlate the physical-chemical properties of the relevant compounds and their concentration levels in hair. Phthalates, pyrethroids and organophosphate flame retardants were chosen for further study of the interpretation of hair measurements for exposure assessment. No significant correlation was found between the average concentration levels in the literature and the physical-chemical properties of the selected compounds. This work also explores the properties of hair and the analytical process that may impact the quantification of organic contaminants in hair. The sample preparation method (sampling, storage, washing) were also studied and adaptations were suggested to improve the existing methods.
Collapse
Affiliation(s)
- Ashna Lallmahomed
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Fabien Mercier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Nathalie Costet
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Clémence Fillol
- Direction of Environmental and Occupational Health, Santé publique France, Saint Maurice Cedex, France
| | - Nathalie Bonvallot
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Barbara Le Bot
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
8
|
Rodriguez Martin L, Gilles L, Helte E, Åkesson A, Tägt J, Covaci A, Sakhi AK, Van Nieuwenhuyse A, Katsonouri A, Andersson AM, Gutleb AC, Janasik B, Appenzeller B, Gabriel C, Thomsen C, Mazej D, Sarigiannis D, Anastasi E, Barbone F, Tolonen H, Frederiksen H, Klanova J, Koponen J, Tratnik JS, Pack K, Gudrun K, Ólafsdóttir K, Knudsen LE, Rambaud L, Strumylaite L, Murinova LP, Fabelova L, Riou M, Berglund M, Szabados M, Imboden M, Laeremans M, Eštóková M, Janev Holcer N, Probst-Hensch N, Vodrazkova N, Vogel N, Piler P, Schmidt P, Lange R, Namorado S, Kozepesy S, Szigeti T, Halldorsson TI, Weber T, Jensen TK, Rosolen V, Puklova V, Wasowicz W, Sepai O, Stewart L, Kolossa-Gehring M, Esteban-López M, Castaño A, Bessems J, Schoeters G, Govarts E. Time Patterns in Internal Human Exposure Data to Bisphenols, Phthalates, DINCH, Organophosphate Flame Retardants, Cadmium and Polyaromatic Hydrocarbons in Europe. TOXICS 2023; 11:819. [PMID: 37888670 PMCID: PMC10610666 DOI: 10.3390/toxics11100819] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023]
Abstract
Human biomonitoring (HBM) data in Europe are often fragmented and collected in different EU countries and sampling periods. Exposure levels for children and adult women in Europe were evaluated over time. For the period 2000-2010, literature and aggregated data were collected in a harmonized way across studies. Between 2011-2012, biobanked samples from the DEMOCOPHES project were used. For 2014-2021, HBM data were generated within the HBM4EU Aligned Studies. Time patterns on internal exposure were evaluated visually and statistically using the 50th and 90th percentiles (P50/P90) for phthalates/DINCH and organophosphorus flame retardants (OPFRs) in children (5-12 years), and cadmium, bisphenols and polycyclic aromatic hydrocarbons (PAHs) in women (24-52 years). Restricted phthalate metabolites show decreasing patterns for children. Phthalate substitute, DINCH, shows a non-significant increasing pattern. For OPFRs, no trends were statistically significant. For women, BPA shows a clear decreasing pattern, while substitutes BPF and BPS show an increasing pattern coinciding with the BPA restrictions introduced. No clear patterns are observed for PAHs or cadmium. Although the causal relations were not studied as such, exposure levels to chemicals restricted at EU level visually decreased, while the levels for some of their substitutes increased. The results support policy efficacy monitoring and the policy-supportive role played by HBM.
Collapse
Affiliation(s)
- Laura Rodriguez Martin
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (L.G.); (K.G.); (M.L.); (J.B.); (G.S.); (E.G.)
| | - Liese Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (L.G.); (K.G.); (M.L.); (J.B.); (G.S.); (E.G.)
| | - Emilie Helte
- Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; (E.H.); (A.Å.); (J.T.); (M.B.)
| | - Agneta Åkesson
- Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; (E.H.); (A.Å.); (J.T.); (M.B.)
| | - Jonas Tägt
- Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; (E.H.); (A.Å.); (J.T.); (M.B.)
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium;
| | - Amrit K. Sakhi
- Norwegian Institute of Public Health, 0456 Oslo, Norway; (A.K.S.); (C.T.)
| | - An Van Nieuwenhuyse
- Laboratoire National de Santé (LNS), Rue Louis Rech 1, 3555 Dudelange, Luxembourg;
| | | | - Anna-Maria Andersson
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (A.-M.A.); (H.F.)
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), University of Copenhagen, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Arno C. Gutleb
- Luxembourg Institute of Science and Technology (LIST), 4362 Esch-sur-Alzette, Luxembourg;
| | - Beata Janasik
- Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland; (B.J.); (W.W.)
| | | | - Catherine Gabriel
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.G.); (D.S.)
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi Road, 57001 Thessaloniki, Greece
| | - Cathrine Thomsen
- Norwegian Institute of Public Health, 0456 Oslo, Norway; (A.K.S.); (C.T.)
| | - Darja Mazej
- Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (D.M.); (J.S.T.)
| | - Denis Sarigiannis
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.G.); (D.S.)
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi Road, 57001 Thessaloniki, Greece
- Environmental Health Engineering, Institute of Advanced Study, Palazzo del Broletto–Piazza Della Vittoria 15, 27100 Pavia, Italy
| | - Elena Anastasi
- State General Laboratory, Ministry of Health, 2081 Nicosia, Cyprus; (A.K.); (E.A.)
| | - Fabio Barbone
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume, 447, 34149 Trieste, Italy;
| | - Hanna Tolonen
- Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland; (H.T.); (J.K.)
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (A.-M.A.); (H.F.)
| | - Jana Klanova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 625 00 Brno, Czech Republic; (J.K.); (P.P.)
| | - Jani Koponen
- Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland; (H.T.); (J.K.)
| | | | - Kim Pack
- Department of Toxicology, Health-Related Environmental Monitoring, German Environment Agency (UBA), 14195 Berlin, Germany; (K.P.); (N.V.); (P.S.); (R.L.); (T.W.)
| | - Koppen Gudrun
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (L.G.); (K.G.); (M.L.); (J.B.); (G.S.); (E.G.)
| | - Kristin Ólafsdóttir
- Faculty of Food Science and Nutrition, University of Iceland, Hofsvallagata 53, 107 Reykjavik, Iceland; (K.Ó.); (T.I.H.)
| | - Lisbeth E. Knudsen
- Section of Environmental Health, University of Copenhagen, 1165 Copenhagen, Denmark;
| | - Loïc Rambaud
- Department of Environmental and Occupational Health, Santé Publique France, 94410 Saint Maurice, France (M.R.)
| | - Loreta Strumylaite
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| | - Lubica Palkovicova Murinova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, 833 03 Bratislava, Slovakia; (L.P.M.)
| | - Lucia Fabelova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, 833 03 Bratislava, Slovakia; (L.P.M.)
| | - Margaux Riou
- Department of Environmental and Occupational Health, Santé Publique France, 94410 Saint Maurice, France (M.R.)
| | - Marika Berglund
- Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; (E.H.); (A.Å.); (J.T.); (M.B.)
| | - Maté Szabados
- National Public Health Center, Albert Florian 2-6, 1097 Budapest, Hungary; (M.S.); (S.K.); (T.S.)
| | - Medea Imboden
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland; (M.I.); (N.P.-H.)
| | - Michelle Laeremans
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (L.G.); (K.G.); (M.L.); (J.B.); (G.S.); (E.G.)
| | - Milada Eštóková
- Department of Environment and Health, Public Health Authority, 83105 Bratislava, Slovakia;
| | - Natasa Janev Holcer
- Division for Environmental Health, Croatian Institute of Public Health, Rockefellerova 7, 10000 Zagreb, Croatia;
- Department of Social Medicine and Epidemiology, Faculty of Medicine, University of Rijeka, Bráce Branchetta 20/1, 51000 Rijeka, Croatia
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland; (M.I.); (N.P.-H.)
| | - Nicole Vodrazkova
- Centre for Health and Environment, National Institute of Public Health, 100 00 Prague, Czech Republic; (N.V.); (V.P.)
| | - Nina Vogel
- Department of Toxicology, Health-Related Environmental Monitoring, German Environment Agency (UBA), 14195 Berlin, Germany; (K.P.); (N.V.); (P.S.); (R.L.); (T.W.)
| | - Pavel Piler
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 625 00 Brno, Czech Republic; (J.K.); (P.P.)
| | - Phillipp Schmidt
- Department of Toxicology, Health-Related Environmental Monitoring, German Environment Agency (UBA), 14195 Berlin, Germany; (K.P.); (N.V.); (P.S.); (R.L.); (T.W.)
| | - Rosa Lange
- Department of Toxicology, Health-Related Environmental Monitoring, German Environment Agency (UBA), 14195 Berlin, Germany; (K.P.); (N.V.); (P.S.); (R.L.); (T.W.)
| | - Sónia Namorado
- Department of Epidemiology, National Institute of Health Doctor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal;
| | - Szilvia Kozepesy
- National Public Health Center, Albert Florian 2-6, 1097 Budapest, Hungary; (M.S.); (S.K.); (T.S.)
| | - Tamás Szigeti
- National Public Health Center, Albert Florian 2-6, 1097 Budapest, Hungary; (M.S.); (S.K.); (T.S.)
| | - Thorhallur I. Halldorsson
- Faculty of Food Science and Nutrition, University of Iceland, Hofsvallagata 53, 107 Reykjavik, Iceland; (K.Ó.); (T.I.H.)
| | - Till Weber
- Department of Toxicology, Health-Related Environmental Monitoring, German Environment Agency (UBA), 14195 Berlin, Germany; (K.P.); (N.V.); (P.S.); (R.L.); (T.W.)
| | - Tina Kold Jensen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, 5000 Odense, Denmark;
| | - Valentina Rosolen
- Central Directorate for Health, Social Policies and Disability, Friuli Venezia Giulia Region, Via Cassa di Risparmio 10, 34121 Trieste, Italy;
| | - Vladimira Puklova
- Centre for Health and Environment, National Institute of Public Health, 100 00 Prague, Czech Republic; (N.V.); (V.P.)
| | - Wojciech Wasowicz
- Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland; (B.J.); (W.W.)
| | - Ovnair Sepai
- UKHSA UK Health Security Agency, Harwell Science Park, Chilton OX11 0RQ, UK; (O.S.); (L.S.)
| | - Lorraine Stewart
- UKHSA UK Health Security Agency, Harwell Science Park, Chilton OX11 0RQ, UK; (O.S.); (L.S.)
| | - Marike Kolossa-Gehring
- Department of Toxicology, Health-Related Environmental Monitoring, German Environment Agency (UBA), 14195 Berlin, Germany; (K.P.); (N.V.); (P.S.); (R.L.); (T.W.)
| | - Marta Esteban-López
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Majadahonda, Spain; (M.E.-L.); (A.C.)
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Majadahonda, Spain; (M.E.-L.); (A.C.)
| | - Jos Bessems
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (L.G.); (K.G.); (M.L.); (J.B.); (G.S.); (E.G.)
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (L.G.); (K.G.); (M.L.); (J.B.); (G.S.); (E.G.)
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium;
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium; (L.G.); (K.G.); (M.L.); (J.B.); (G.S.); (E.G.)
| |
Collapse
|
9
|
Kolossa-Gehring M, Schoeters G, Castaño A, Barouki R, Haines D, Polcher A, Weise P. Special issue editorial: Key results of the european human biomonitoring initiative - HBM4EU. Int J Hyg Environ Health 2023; 253:114197. [PMID: 37291032 DOI: 10.1016/j.ijheh.2023.114197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Marike Kolossa-Gehring
- Head of Section II 1.2 Toxicology, Health Related Environmental Monitoring, German Environment Agency, Corrensplatz 1, 14195, Berlin, Germany
| | - Greet Schoeters
- Environment and Health, Dept of Biomedical Sciences & Toxicological Centre, University of Antwerp, Belgium
| | - Argelia Castaño
- National Center for Environmental Health, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Robert Barouki
- Unité UMR-S 1124 T3S Inserm-Université Paris Cité, 45 rue des Saints Pères, 75270, Paris, France; France Service de Biochimie Métabolomique et Protéomique, Hôpital Necker Enfants Malades, 149 rue de Sèvres, 75015, Paris, France
| | | | | | - Philipp Weise
- Section II 1.2 Toxicology, Health Related Environmental Monitoring, German Environment Agency, Corrensplatz 1, 14195, Berlin, Germany.
| |
Collapse
|