Xu W, Li W, Liu M, Guo X, Wen H, Li B. P-bridged Fe-X-Co coupled sites in hollow carbon spheres for efficient hydrogen generation.
J Colloid Interface Sci 2024;
660:792-799. [PMID:
38277836 DOI:
10.1016/j.jcis.2024.01.145]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/14/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
Non-precious metals have shown attractive catalytic prospects in hydrogen production from ammonia borane hydrolysis. However, the sluggish reaction kinetics in the hydrolysis process remains a challenge. Herein, P-bridged Fe-X-Co coupled sites in hollow carbon spheres (Fe-CoP@C) has been synthesized through in situ template solvothermal and subsequent surface-phosphorization. Benefiting from the optimized electronic structure induced by Fe doping to enhance the specific activity of Co sites, bimetallic synergy and hollow structure, the as-prepared Fe-CoP@C exhibits superior performances with a turnover frequency (TOF) of 183.5 min-1, and stability of over 5 cycles for ammonia borane hydrolysis, comparable to noble metal catalysts. Theoretical calculations reveal that the P-bridged Fe-X-Co coupled sites on the Fe-CoP@C catalyst surfaces is beneficial to adsorb reactant molecules and reduce their reaction barrier. This strategy of constructing hollow P-bridged bimetallic coupled sites may open new avenues for non-precious metal catalysis.
Collapse