1
|
Nayeri T, Sarvi S, Fasihi-Ramandi M, Asgarian-Omran H, Ajami A, Hosseininejad Z, Dodangeh S, Daryani A. Structural Prediction and Antigenic Analysis of ROP18, MIC4, and SAG1 Proteins to Improve Vaccine Design against Toxoplasma gondii: An In silico Approach. Infect Disord Drug Targets 2025; 25:e18715265332103. [PMID: 39350555 DOI: 10.2174/0118715265332103240911113422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 04/05/2025]
Abstract
BACKGROUND Toxoplasmosis is a cosmopolitan infectious disease in warmblooded mammals that poses a serious worldwide threat due to the lack of effective medications and vaccines. AIMS The purpose of this study was to design a multi-epitope vaccine using several bioinformatics approaches against the antigens of Toxoplasma gondii (T. gondii). METHODS Three proteins of T. gondii, including ROP18, MIC4, and SAG1 were analyzed to predict the most dominant B- and T-cell epitopes. Finally, we designed a chimeric immunogen RMS (ROP18, MIC4, and SAG1) using some domains of ROP18 (N377-E546), MIC4 (D302-G471), and SAG1 (T130-L299) linked by rigid linker A (EAAAK) A. Physicochemical properties, secondary and tertiary structure, antigenicity, and allergenicity of RMS were predicted utilizing immunoinformatic tools and servers. RESULTS RMS protein had 545 amino acids with a molecular weight (MW) of 58,833.46 Da and a theoretical isoelectric point (IP) of 6.47. The secondary structure of RMS protein contained 21.28% alpha-helix, 24.59% extended strand, and 54.13% random coil. In addition, evaluation of antigenicity and allergenicity showed the protein to be an immunogen and nonallergen. The results of the Ramachandran plot indicated that 76.4%, 12.9%, and 10.7% of amino acid residues were incorporated in the favored, allowed, and outlier regions respectively. ΔG of the best-predicted mRNA secondary structure was -593.80 kcal/mol which indicates a stable loop is not formed at the 5' end. CONCLUSION Finally, the accuracy and precision of the in silico analysis must be confirmed by successful heterologous expression and experimental studies.
Collapse
Affiliation(s)
- Tooran Nayeri
- Infectious and Tropical Diseases Research Center, Dezful University of Medical Sciences, Dezful, Iran
| | - Shahabeddin Sarvi
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Asgarian-Omran
- Immunology Department, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abolghasem Ajami
- Immunology Department, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Hosseininejad
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Samira Dodangeh
- Department of Medical Parasitology and Mycology, Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ahmad Daryani
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
2
|
Del Valle A, Acosta-Rivero N, Laborde RJ, Cruz-Leal Y, Cabezas S, Luzardo MC, Alvarez C, Labrada M, Rodríguez A, Rodríguez GL, Raymond J, Nogueira CV, Grubaugh D, Fernández LE, Higgins D, Lanio ME. Sticholysin II shows similar immunostimulatory properties to LLO stimulating dendritic cells and MHC-I restricted T cell responses of heterologous antigen. Toxicon 2021; 200:38-47. [PMID: 34237340 DOI: 10.1016/j.toxicon.2021.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
Induction of CD8+ T cell responses against tumor cells and intracellular pathogens is an important goal of modern vaccinology. One approach of translational interest is the use of liposomes encapsulating pore-forming proteins (PFPs), such as Listeriolysin O (LLO), which has shown efficacy at priming strong and sustained CD8+ T cell responses. Recently, we have demonstrated that Sticholysin II (StII), a PFP from the sea anemone Stichodactyla helianthus, co-encapsulated into liposomes with ovalbumin (OVA) was able to stimulate, antigen presenting cells, antigen-specific CD8+ T cells and anti-tumor activity in mice. In the present study, we aimed to compare StII and LLO in terms of their abilities to stimulate dendritic cells and to induce major histocompatibility complex (MHC) class I restricted T cell responses against OVA. Interestingly, StII exhibited similar abilities to LLO in vitro of inducing dendritic cells maturation, as measured by increased expression of CD40, CD80, CD86 and MHC-class II molecules, and of stimulating OVA cross-presentation to a CD8+ T cell line. Remarkably, using an ex vivo Enzyme-Linked ImmunoSpot Assay (ELISPOT) to monitor gamma interferon (INF-γ) producing effector memory CD8+ T cells, liposomal formulations containing either StII or LLO induced comparable frequencies of OVA-specific INF-γ producing CD8+ T cells in mice that were sustained in time. However, StII-containing liposomes stimulated antigen-specific memory CD8+ T cells with a higher potential to secrete IFN-γ than liposomes encapsulating LLO. This StII immunostimulatory property further supports its use for the rational design of T cell vaccines against cancers and intracellular pathogens. In summary, this study indicates that StII has immunostimulatory properties similar to LLO, despite being evolutionarily distant PFPs.
Collapse
Affiliation(s)
- A Del Valle
- Center for Protein Studies, Faculty of Biology, Havana University (UH) and Lab UH-CIM, Cuba
| | - N Acosta-Rivero
- Center for Protein Studies, Faculty of Biology, Havana University (UH) and Lab UH-CIM, Cuba.
| | - R J Laborde
- Center for Protein Studies, Faculty of Biology, Havana University (UH) and Lab UH-CIM, Cuba
| | - Y Cruz-Leal
- Center for Protein Studies, Faculty of Biology, Havana University (UH) and Lab UH-CIM, Cuba
| | - S Cabezas
- Center for Protein Studies, Faculty of Biology, Havana University (UH) and Lab UH-CIM, Cuba
| | - M C Luzardo
- Center for Protein Studies, Faculty of Biology, Havana University (UH) and Lab UH-CIM, Cuba
| | - C Alvarez
- Center for Protein Studies, Faculty of Biology, Havana University (UH) and Lab UH-CIM, Cuba
| | - M Labrada
- Center of Molecular Immunology (CIM), Playa, La Habana, Cuba
| | - A Rodríguez
- Center of Molecular Immunology (CIM), Playa, La Habana, Cuba
| | - G L Rodríguez
- Center of Molecular Immunology (CIM), Playa, La Habana, Cuba
| | - J Raymond
- Center of Molecular Immunology (CIM), Playa, La Habana, Cuba
| | | | - D Grubaugh
- Harvard Medical School, Harvard University, USA
| | - L E Fernández
- Center of Molecular Immunology (CIM), Playa, La Habana, Cuba
| | - D Higgins
- Harvard Medical School, Harvard University, USA
| | - M E Lanio
- Center for Protein Studies, Faculty of Biology, Havana University (UH) and Lab UH-CIM, Cuba.
| |
Collapse
|
3
|
Lee SH, Chu KB, Kang HJ, Quan FS. Virus-like particles containing multiple antigenic proteins of Toxoplasma gondii induce memory T cell and B cell responses. PLoS One 2019; 14:e0220865. [PMID: 31465461 PMCID: PMC6715270 DOI: 10.1371/journal.pone.0220865] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/24/2019] [Indexed: 12/16/2022] Open
Abstract
Although the efforts to develop vaccine against Toxoplasma gondii infection were made for decades, there is currently no licensed vaccine available for humans. Upon discovering a number of T or B cell epitope regions from T. gondii IMC, ROP18 and MIC8, multi-antigen VLPs or combination VLPs were generated. Mice immunized with multi-antigen VLPs or combination VLPs were challenge infected with T. gondii (ME49). T. gondii-specific IgG, IgG isotypes and IgA antibody responses, memory T and B cell responses and protection were evaluated. All the mice survived upon T. gondii challenge infection by multi-antigen VLPs vaccination. Vaccinated mice elicited higher levels of parasite-specific IgG and IgG2a antibody responses in sera, IgA antibody responses in feces, CD4+ and CD8+ T cell responses, and cytokines (IFN-γ, IL-10) responses compared to combination VLPs. In particular, the multi-antigen VLPs vaccination showed significantly higher levels of antibody secreting cell (ASC) responses, CD4+ and CD8+ effector memory T cells, and memory B cells than combination VLPs. Multi-antigen VLPs vaccination showed significant reduction of brain cyst counts and size, and all mice survived. Prediction and analysis of epitopes have indicated that IMC, ROP18 and MIC8 showed partially overlapping epitopes for T and B cells. Our results indicated that antibody responses, memory T and B cells induced by multi-antigen VLPs vaccination might contribute to the complete protection upon T. gondii (ME49) challenge infection.
Collapse
Affiliation(s)
- Su-Hwa Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Ki-Back Chu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Hae-Ji Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Republic of Korea
- Department of Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate school, Kyung Hee University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
4
|
C57BL/6 mice immunized with synthetic peptides from Toxoplasma gondii surface and microneme immunodominant antigens are able to decrease parasite burden in the brain tissues. Acta Trop 2019; 196:1-6. [PMID: 31059707 DOI: 10.1016/j.actatropica.2019.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/12/2019] [Accepted: 05/02/2019] [Indexed: 12/21/2022]
Abstract
Toxoplasmosis is a disease caused by Toxoplasma gondii, an intracellular protozoan able to infect a wide range of hosts. The infection is particularly severe in immunocompromised patients or during pregnancy, circumstances in which the parasite could find a more favorable microenvironment to replicate and invade host tissues. The current treatment consists in toxic drugs for the patients, being not appropriate for the fetuses and immunodeficient patients. So far, there is a lack of available vaccine to prevent the disease. The present study aimed to evaluate the immune response induced by peptides derived from parasite immunodominant proteins from key components, as surface, rhoptry, microneme and dense granule antigens. A panel of eleven peptides was selected considering the highest scores for B cell epitope prediction by in silico analyses. The peptides were divided in groups, according to the parasite organelle locations, and used to immunize C57BL/6 mice. The animals were submitted to three doses of immunization and infected by 10 cysts of T. gondii ME49 strain. Blood samples were collected and used to measure the production of antibodies and cytokines, while the brains were collected to determine the parasite burden by quantitative polymerase chain reaction (qPCR). It was found that synthetic peptides from all targets were able to induce IgG synthesis in immunized mice, as well as to modulate the Th1/Th2 cytokine production, particularly the MIC and SRS groups, which presented the IFN-γ/IL-10 and TNF-α/IL-10 ratios 30 and 10 times higher, respectively, when compared with non-immunized group. Interestingly, the animals from MIC and SRS groups had significantly lower levels of T. gondii DNA in their brains. In summary, it can be concluded that peptides mainly from SRS and MIC parasite components constitute relevant targets to design vaccine candidates against parasite burden observed during chronic toxoplasmosis.
Collapse
|
5
|
Hajissa K, Zakaria R, Suppian R, Mohamed Z. Epitope-based vaccine as a universal vaccination strategy against Toxoplasma gondii infection: A mini-review. J Adv Vet Anim Res 2019; 6:174-182. [PMID: 31453188 PMCID: PMC6702889 DOI: 10.5455/javar.2019.f329] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/10/2019] [Accepted: 02/16/2019] [Indexed: 01/18/2023] Open
Abstract
Despite the significant progress in the recent efforts toward developing an effective vaccine against toxoplasmosis, the search for new protective vaccination strategy still remains a challenge and elusive goal because it becomes the appropriate way to prevent the disease. Various experimental approaches in the past few years showed that developing a potential vaccine against the disease can be achievable. The combination of multi-epitopes expressing different stages of the parasite life cycle has become an optimal strategy for acquiring a potent, safe, and effective vaccine. Epitope-based vaccines have gained attention as alternative vaccine candidates due to their ability of inducing protective immune responses. This mini-review highlights the current status and the prospects of Toxoplasma gondii vaccine development along with the application of epitope-based vaccine in the future parasite immunization as a novel under development and evaluation strategy.
Collapse
Affiliation(s)
- Khalid Hajissa
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Robaiza Zakaria
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Rapeah Suppian
- Biomedicine Program, School of Health Sciences, Universiti Sains Malaysia 16150 Kubang Kerian, Kelantan, Malaysia
| | - Zeehaida Mohamed
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
6
|
Vorup-Jensen T, Jensen RK. Structural Immunology of Complement Receptors 3 and 4. Front Immunol 2018; 9:2716. [PMID: 30534123 PMCID: PMC6275225 DOI: 10.3389/fimmu.2018.02716] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 11/05/2018] [Indexed: 01/10/2023] Open
Abstract
Complement receptors (CR) 3 and 4 belong to the family of beta-2 (CD18) integrins. CR3 and CR4 are often co-expressed in the myeloid subsets of leukocytes, but they are also found in NK cells and activated T and B lymphocytes. The heterodimeric ectodomain undergoes considerable conformational change in order to switch the receptor from a structurally bent, ligand-binding in-active state into an extended, ligand-binding active state. CR3 binds the C3d fragment of C3 in a way permitting CR2 also to bind concomitantly. This enables a hand-over of complement-opsonized antigens from the cell surface of CR3-expressing macrophages to the CR2-expressing B lymphocytes, in consequence acting as an antigen presentation mechanism. As a more enigmatic part of their functions, both CR3 and CR4 bind several structurally unrelated proteins, engineered peptides, and glycosaminoglycans. No consensus motif in the proteinaceous ligands has been established. Yet, the experimental evidence clearly suggest that the ligands are primarily, if not entirely, recognized by a single site within the receptors, namely the metal-ion dependent adhesion site (MIDAS). Comparison of some recent identified ligands points to CR3 as inclined to bind positively charged species, while CR4, by contrast, binds strongly negative-charged species, in both cases with the critical involvement of deprotonated, acidic groups as ligands for the Mg2+ ion in the MIDAS. These properties place CR3 and CR4 firmly within the realm of modern molecular medicine in several ways. The expression of CR3 and CR4 in NK cells was recently demonstrated to enable complement-dependent cell cytotoxicity toward antibody-coated cancer cells as part of biological therapy, constituting a significant part of the efficacy of such treatment. With the flexible principles of ligand recognition, it is also possible to propose a response of CR3 and CR4 to existing medicines thereby opening a possibility of drug repurposing to influence the function of these receptors. Here, from advances in the structural and cellular immunology of CR3 and CR4, we review insights on their biochemistry and functions in the immune system.
Collapse
Affiliation(s)
- Thomas Vorup-Jensen
- Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Rasmus Kjeldsen Jensen
- Department of Molecular Biology and Genetics-Structural Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Lima-Junior JDC, Morgado FN, Conceição-Silva F. How Can Elispot Add Information to Improve Knowledge on Tropical Diseases? Cells 2017; 6:cells6040031. [PMID: 28961208 PMCID: PMC5755491 DOI: 10.3390/cells6040031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 01/04/2023] Open
Abstract
Elispot has been used as an important tool for detecting immune cells' products and functions and has facilitated the understanding of host-pathogen interaction. Despite the incredible diversity of possibilities, two main approaches have been developed: the immunopathogenesis and diagnosis/prognosis of infectious diseases as well as cancer research. Much has been described on the topics of allergy, autoimmune diseases, and HIV-Aids, however, Elispot can also be applied to other infectious diseases, mainly leishmaniasis, malaria, some viruses, helminths and mycosis usually classified as tropical diseases. The comprehension of the function, concentration and diversity of the immune response in the infectious disease is pointed out as crucial to the development of infection or disease in humans and animals. In this review we will describe the knowledge already obtained using Elispot as a method for accessing the profile of immune response as well as the recent advances in information about host-pathogen interaction in order to better understand the clinical outcome of a group of tropical and neglected diseases.
Collapse
Affiliation(s)
- Josué da Costa Lima-Junior
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz/FIOCRUZ, Pavilhão 26-4° andar, sala 406-C, Av. Brasil 4365, Manguinhos, 21045-900 Rio de Janeiro, Brazil.
| | - Fernanda Nazaré Morgado
- Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz/FIOCRUZ, Pavilhão 26-5° andar, sala 509, Av. Brasil 4365, Manguinhos, 21045-900 Rio de Janeiro, Brazil.
| | - Fátima Conceição-Silva
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz/FIOCRUZ, Pavilhão 26-4° andar, sala 406-C, Av. Brasil 4365, Manguinhos, 21045-900 Rio de Janeiro, Brazil.
| |
Collapse
|