1
|
Worku DA. Tick-Borne Encephalitis (TBE): From Tick to Pathology. J Clin Med 2023; 12:6859. [PMID: 37959323 PMCID: PMC10650904 DOI: 10.3390/jcm12216859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Tick-borne encephalitis (TBE) is a viral arthropod infection, endemic to large parts of Europe and Asia, and is characterised by neurological involvement, which can range from mild to severe, and in 33-60% of cases, it leads to a post-encephalitis syndrome and long-term morbidity. While TBE virus, now identified as Orthoflavivirus encephalitidis, was originally isolated in 1937, the pathogenesis of TBE is not fully appreciated with the mode of transmission (blood, tick, alimentary), viral strain, host immune response, and age, likely helping to shape the disease phenotype that we explore in this review. Importantly, the incidence of TBE is increasing, and due to global warming, its epidemiology is evolving, with new foci of transmission reported across Europe and in the UK. As such, a better understanding of the symptomatology, diagnostics, treatment, and prevention of TBE is required to inform healthcare professionals going forward, which this review addresses in detail. To this end, the need for robust national surveillance data and randomised control trial data regarding the use of various antivirals (e.g., Galidesivir and 7-deaza-2'-CMA), monoclonal antibodies, and glucocorticoids is required to improve the management and outcomes of TBE.
Collapse
Affiliation(s)
- Dominic Adam Worku
- Infectious Diseases, Morriston Hospital, Heol Maes Eglwys, Morriston, Swansea SA6 6NL, UK;
- Public Health Wales, 2 Capital Quarter, Cardiff CF10 4BZ, UK
| |
Collapse
|
2
|
Juby AG, Cunnane SC, Mager DR. Refueling the post COVID-19 brain: potential role of ketogenic medium chain triglyceride supplementation: an hypothesis. Front Nutr 2023; 10:1126534. [PMID: 37415915 PMCID: PMC10320593 DOI: 10.3389/fnut.2023.1126534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/25/2023] [Indexed: 07/08/2023] Open
Abstract
COVID-19 infection causes cognitive changes in the acute phase, but also after apparent recovery. Over fifty post (long)-COVID symptoms are described, including cognitive dysfunction ("brain fog") precluding return to pre-COVID level of function, with rates twice as high in females. Additionally, the predominant demographic affected by these symptoms is younger and still in the workforce. Lack of ability to work, even for six months, has significant socio-economic consequences. This cognitive dysfunction is associated with impaired cerebral glucose metabolism, assessed using 18F-fluorodeoxyglucose-positron emission tomography (FDG-PET), showing brain regions that are abnormal compared to age and sex matched controls. In other cognitive conditions such as Alzheimer's disease (AD), typical patterns of cerebral glucose hypometabolism, frontal hypometabolism and cerebellar hypermetabolism are common. Similar FDG-PET changes have also been observed in post-COVID-19, raising the possibility of a similar etiology. Ketone bodies (B-hydroxybutyrate, acetoacetate and acetone) are produced endogenously with very low carbohydrate intake or fasting. They improve brain energy metabolism in the face of cerebral glucose hypometabolism in other conditions [mild cognitive impairment (MCI) and AD]. Long-term low carbohydrate intake or prolonged fasting is not usually feasible. Medium chain triglyceride (MCT) is an exogenous route to nutritional ketosis. Research has supported their efficacy in managing intractable seizures, and cognitive impairment in MCI and AD. We hypothesize that cerebral glucose hypometabolism associated with post COVID-19 infection can be mitigated with MCT supplementation, with the prediction that cognitive function would also improve. Although there is some suggestion that post COVID-19 cognitive symptoms may diminish over time, in many individuals this may take more than six months. If MCT supplementation is able to speed the cognitive recovery, this will impact importantly on quality of life. MCT is readily available and, compared to pharmaceutical interventions, is cost-effective. Research shows general tolerability with dose titration. MCT is a component of enteral and parenteral nutrition supplements, including in pediatrics, so has a long record of safety in vulnerable populations. It is not associated with weight gain or adverse changes in lipid profiles. This hypothesis serves to encourage the development of clinical trials evaluating the impact of MCT supplementation on the duration and severity of post COVID-19 cognitive symptoms.
Collapse
Affiliation(s)
- Angela G. Juby
- Division of Geriatrics, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Stephen C. Cunnane
- Research Center on Aging, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Diana R. Mager
- Agriculture Food and Nutrition Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
3
|
Ibatullin R, Magzhanov R, Usmanov I. Thalamic lesion in tick-borne encephalitis. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:154-158. [DOI: 10.17116/jnevro2022122081154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Velay A, Paz M, Cesbron M, Gantner P, Solis M, Soulier E, Argemi X, Martinot M, Hansmann Y, Fafi-Kremer S. Tick-borne encephalitis virus: molecular determinants of neuropathogenesis of an emerging pathogen. Crit Rev Microbiol 2019; 45:472-493. [PMID: 31267816 DOI: 10.1080/1040841x.2019.1629872] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tick-borne encephalitis virus (TBEV) is a zoonotic agent causing severe encephalitis. The transmission cycle involves the virus, the Ixodes tick vector, and a vertebrate reservoir, such as small mammals (rodents, or shrews). Humans are accidentally involved in this transmission cycle. Tick-borne encephalitis (TBE) has been a growing public health problem in Europe and Asia over the past 30 years. The mechanisms involved in the development of TBE are very complex and likely multifactorial, involving both host and viral factors. The purpose of this review is to provide an overview of the current literature on TBE neuropathogenesis in the human host and to demonstrate the emergence of common themes in the molecular pathogenesis of TBE in humans. We discuss and review data on experimental study models and on both viral (molecular genetics of TBEV) and host (immune response, and genetic background) factors involved in TBE neuropathogenesis in the context of human infection.
Collapse
Affiliation(s)
- Aurélie Velay
- Virology Laboratory, University Hospital of Strasbourg , Strasbourg , France.,INSERM, IRM UMR_S 1109 , Strasbourg , France
| | - Magali Paz
- Virology Laboratory, University Hospital of Strasbourg , Strasbourg , France
| | - Marlène Cesbron
- Virology Laboratory, University Hospital of Strasbourg , Strasbourg , France
| | - Pierre Gantner
- Virology Laboratory, University Hospital of Strasbourg , Strasbourg , France.,INSERM, IRM UMR_S 1109 , Strasbourg , France
| | - Morgane Solis
- Virology Laboratory, University Hospital of Strasbourg , Strasbourg , France.,INSERM, IRM UMR_S 1109 , Strasbourg , France
| | | | - Xavier Argemi
- Service des maladies infectieuses et tropicales, Hôpitaux Universitaires de Strasbourg , Strasbourg , France
| | - Martin Martinot
- Service de Médecine Interne et de Rhumatologie, Hôpitaux Civils de Colmar , Colmar , France
| | - Yves Hansmann
- Service des maladies infectieuses et tropicales, Hôpitaux Universitaires de Strasbourg , Strasbourg , France
| | - Samira Fafi-Kremer
- Virology Laboratory, University Hospital of Strasbourg , Strasbourg , France.,INSERM, IRM UMR_S 1109 , Strasbourg , France
| |
Collapse
|
5
|
Heckmann JG, Niedermeier W, Büchner M, Scher B. Distinctive FDG-PET/CT Findings in Acute Neurological Hospital Care. Neurohospitalist 2018; 9:93-99. [PMID: 30915187 DOI: 10.1177/1941874418805339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A compilation of 6 distinctive 18F-fluorodeoxyglucose positron emission tomography (PET) combined with computed tomography (CT) findings in the acute setting of neurohospital care is presented. In case 1, PET/CT allowed the final diagnosis of circumscribed ischemic infarction by demonstrating a clear pattern of luxury perfusion. In case 2, diagnosis of thalamic abscess was made, whereby PET/CT demonstrated an empty zone. Hypermetabolic enlarged hilar lymph nodes and hypermetabolic spinal lumbar roots in PET/CT led to the diagnosis of neurosarcoidosis in case 3. In case 4, a hypermetabolic brain focus in PET/CT identified the seizure focus in epilepsia partialis continua. A cerebral hemispheric hypometabolism in PET/CT in case 5 supported the diagnosis of Creutzfeldt-Jakob disease, which initially mimicked acute stroke. In case 6, PET/CT detected infective endocarditis as a source of multiple cerebral ischemic lesions. In conclusion, PET/CT can contribute importantly to find the correct diagnosis in acute neurohospital patients.
Collapse
Affiliation(s)
| | - Wolfgang Niedermeier
- Department of Radiology and Nuclear Medicine, Municipal Hospital Waid, Zurich, Switzerland
| | - Markus Büchner
- Department of Nuclear Medicine, Municipal Hospital Landshut, Germany
| | - Bernhard Scher
- Department of Nuclear Medicine, Municipal Hospital Landshut, Germany
| |
Collapse
|
6
|
Wong AMC, Yeh CH, Lin JJ, Liu HL, Chou IJ, Lin KL, Wang HS. Arterial spin-labeling perfusion imaging of childhood encephalitis: correlation with seizure and clinical outcome. Neuroradiology 2018; 60:961-970. [PMID: 30046856 DOI: 10.1007/s00234-018-2062-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/17/2018] [Indexed: 11/30/2022]
Abstract
PURPOSE In childhood encephalitis, perfusion abnormalities have been infrequently reported to associate with clinical status. We investigated whether perfusion abnormalities correlated with seizure and clinical outcome in encephalitis. METHODS We retrospectively analyzed the MR studies of 77 pediatric patients with encephalitis. Pseudo-continuous arterial spin-labeling (ASL) imaging was performed on a 3-T scanner. The patients were divided into five groups according to ASL perfusion imaging pattern: normal perfusion (NP), focal hypoperfusion (Lf), extreme global hypoperfusion (LE), focal hyperperfusion (Hf), and extreme global hyperperfusion (HE). Clinical outcome at 3 weeks was dichotomized to unfavorable or favorable outcome according to the Glasgow outcome scale. Multivariate logistic regression was conducted to predict unfavorable outcome and presence of seizure separately, based on explanatory variables including age, sex, and ASL pattern. RESULTS Twenty-seven (35%) patients were designated as in group Hf, five (7%) in group Lf, 11 (14%) in group LE, none in group HE, and 34 (44%) in group NP. Multivariate logistic regression analysis showed that ASL pattern was significantly associated with unfavorable outcome (P = 0.005) and with presence of seizure (P = 0.005). For ASL pattern, group LE was 17.31 times as likely to have an unfavorable outcome as group NP (odds ratio confidence interval [CI] 3.084, 97.105; P = 0.001). Group Hf was 6.383 times as likely to have seizure as group NP (CI 1.765, 23.083; P = 0.005). CONCLUSIONS In childhood encephalitis, patients with extreme global hypoperfusion had poor neurological outcome and those with focal hypoperfusion were more likely to have seizure.
Collapse
Affiliation(s)
- Alex Mun-Ching Wong
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Keelung/Linkou, and Chang Gung University, 5 Fu-Hsing Street, Taoyuan, 333, Taiwan.
| | - Chih-Hua Yeh
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Keelung/Linkou, and Chang Gung University, 5 Fu-Hsing Street, Taoyuan, 333, Taiwan
| | - Jainn-Jim Lin
- Division of Pediatric Critical Care Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Ho-Ling Liu
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - I-Jun Chou
- Division of Pediatric Neurology, Department of Pediatrics, Chang Gung Children's Hospital and Chang Gung University, Linkou, Taiwan
| | - Kuang-Lin Lin
- Division of Pediatric Neurology, Department of Pediatrics, Chang Gung Children's Hospital and Chang Gung University, Linkou, Taiwan
| | - Huei-Shyong Wang
- Division of Pediatric Neurology, Department of Pediatrics, Chang Gung Children's Hospital and Chang Gung University, Linkou, Taiwan
| |
Collapse
|
7
|
Kunze U. Report of the 19th Annual Meeting of the International Scientific Working Group on Tick-Borne Encephalitis (ISW-TBE) – TBE in a changing world. Ticks Tick Borne Dis 2018; 9:146-150. [DOI: 10.1016/j.ttbdis.2017.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 01/13/2023]
|
8
|
Kuhn M, Sühs KW, Akmatov MK, Klawonn F, Wang J, Skripuletz T, Kaever V, Stangel M, Pessler F. Mass-spectrometric profiling of cerebrospinal fluid reveals metabolite biomarkers for CNS involvement in varicella zoster virus reactivation. J Neuroinflammation 2018; 15:20. [PMID: 29343258 PMCID: PMC5773076 DOI: 10.1186/s12974-017-1041-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/12/2017] [Indexed: 12/25/2022] Open
Abstract
Background Varicella zoster virus (VZV) reactivation spans the spectrum from uncomplicated segmental herpes zoster to life-threatening disseminated CNS infection. Moreover, in the absence of a small animal model for this human pathogen, studies of pathogenesis at the organismal level depend on analysis of human biosamples. Changes in cerebrospinal fluid (CSF) metabolites may reflect critical aspects of host responses and end-organ damage in neuroinfection and neuroinflammation. We therefore applied a targeted metabolomics screen of CSF to three clinically distinct forms of VZV reactivation and infectious and non-infectious disease controls in order to identify biomarkers for CNS involvement in VZV reactivation. Methods Metabolite profiles were determined by targeted liquid chromatography-mass spectrometry in CSF from patients with segmental zoster (shingles, n = 14), facial nerve zoster (n = 16), VZV meningitis/encephalitis (n = 15), enteroviral meningitis (n = 10), idiopathic Bell’s palsy (n = 11), and normal pressure hydrocephalus (n = 15). Results Concentrations of 88 metabolites passing quality assessment clearly separated the three VZV reactivation forms from each other and from the non-infected samples. Internal cross-validation identified four metabolites (SM C16:1, glycine, lysoPC a C26:1, PC ae C34:0) that were particularly associated with VZV meningoencephalitis. SM(OH) C14:1 accurately distinguished facial nerve zoster from Bell’s palsy. Random forest construction revealed even more accurate classifiers (signatures comprising 2–4 metabolites) for most comparisons. Some of the most accurate biomarkers correlated only weakly with CSF leukocyte count, indicating that they do not merely reflect recruitment of inflammatory cells but, rather, specific pathophysiological mechanisms. Across all samples, only the sum of hexoses and the amino acids arginine, serine, and tryptophan correlated negatively with leukocyte count. Increased expression of the metabolites associated with VZV meningoencephalitis could be linked to processes relating to neuroinflammation/immune activation, neuronal signaling, and cell stress, turnover, and death (e.g., autophagy and apoptosis), suggesting that these metabolites might sense processes relating to end-organ damage. Conclusions The results provide proof-of-concept for the value of CSF metabolites as (1) disease-associated signatures suggesting pathophysiological mechanisms, (2) degree and nature of neuroinflammation, and (3) biomarkers for diagnosis and risk stratification of VZV reactivation and, likely, neuroinfections due to other pathogens. Trial registration Not applicable (non-interventional study). Electronic supplementary material The online version of this article (10.1186/s12974-017-1041-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maike Kuhn
- TWINCORE Centre for Experimental and Clinical Infection Research GmbH, Feodor-Lynen-Str. 7, 30625, Hannover, Germany.,Helmholtz-Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany.,Centre for Individualized Infection Medicine, Feodor-Lynen-Str. 15, 30625, Hannover, Germany
| | - Kurt-Wolfram Sühs
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Manas K Akmatov
- TWINCORE Centre for Experimental and Clinical Infection Research GmbH, Feodor-Lynen-Str. 7, 30625, Hannover, Germany.,Helmholtz-Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany.,Centre for Individualized Infection Medicine, Feodor-Lynen-Str. 15, 30625, Hannover, Germany
| | - Frank Klawonn
- Helmholtz-Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany.,Ostfalia University, Salzdahlumer Str. 46/48, 38302, Wolfenbüttel, Germany
| | - Junxi Wang
- Helmholtz-Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Thomas Skripuletz
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Martin Stangel
- Centre for Individualized Infection Medicine, Feodor-Lynen-Str. 15, 30625, Hannover, Germany. .,Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany. .,Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany.
| | - Frank Pessler
- TWINCORE Centre for Experimental and Clinical Infection Research GmbH, Feodor-Lynen-Str. 7, 30625, Hannover, Germany. .,Helmholtz-Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany. .,Centre for Individualized Infection Medicine, Feodor-Lynen-Str. 15, 30625, Hannover, Germany.
| |
Collapse
|
9
|
Brain perfusion alterations in tick-borne encephalitis-preliminary report. Int J Infect Dis 2018; 68:26-30. [PMID: 29337197 DOI: 10.1016/j.ijid.2018.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/27/2017] [Accepted: 01/04/2018] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Magnetic resonance imaging (MRI) changes in tick-borne encephalitis (TBE) are non-specific and the pathophysiological mechanisms leading to their formation remain unclear. This study investigated brain perfusion in TBE patients using dynamic susceptibility-weighted contrast-enhanced magnetic resonance perfusion imaging (DSC-MRI perfusion). METHODS MRI scans were performed for 12 patients in the acute phase, 3-5days after the diagnosis of TBE. Conventional MRI and DSC-MRI perfusion studies were performed. Cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), and time to peak (TTP) parametric maps were created. The bilateral frontal, parietal, and temporal subcortical regions and thalamus were selected as regions of interest. Perfusion parameters of TBE patients were compared to those of a control group. RESULTS There was a slight increase in CBF and CBV, with significant prolongation of TTP in subcortical areas in the study subjects, while MTT values were comparable to those of the control group. A significant increase in thalamic CBF (p<0.001) and increased CBV (p<0.05) were observed. Increased TTP and a slight reduction in MTT were also observed within this area. CONCLUSIONS The DSC-MRI perfusion study showed that TBE patients had brain perfusion disturbances, expressed mainly in the thalami. These results suggest that DSC-MRI perfusion may provide important information regarding the areas affected in TBE patients.
Collapse
|
10
|
Lyden P, Mayer SA, Lurie K, Schmutzhard E. Temperature Management in Neurological and Neurosurgical Intensive Care Unit. Ther Hypothermia Temp Manag 2017; 7:70-74. [PMID: 28586295 DOI: 10.1089/ther.2017.29029.pjl] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Patrick Lyden
- 1 Department of Neurology, Cedars-Sinai Medical Center , Los Angeles, California
| | - Stephan A Mayer
- 2 Department of Neurology, Henry Ford Health System , Detroit, Michigan
| | - Keith Lurie
- 3 Department of Internal and Emergency Medicine, University of Minnesota , Minneapolis, Minnesota.,4 St. Cloud Hospital , St. Cloud, Minnesota
| | - Erich Schmutzhard
- 5 Department of Neurology and Neurocritical Care Unit, Medical University Innsbruck , Innsbruck, Austria
| |
Collapse
|