1
|
Castro-Rodriguez B, Franco-Sotomayor G, Orlando SA, Garcia-Bereguiain MÁ. Molecular epidemiology of Mycobacterium tuberculosis in Ecuador: Recent advances and future challenges. J Clin Tuberc Other Mycobact Dis 2024; 37:100465. [PMID: 39184342 PMCID: PMC11342892 DOI: 10.1016/j.jctube.2024.100465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024] Open
Abstract
Tuberculosis (TB) is one of the three leading causes of death from a single infectious agent, Mycobacterium tuberculosis (MTB), together with COVID-19 and HIV/AIDS. This disease places a heavy burden on countries with low socio-economic development and aggravates existing inequalities. For the year 2021, estimations for Ecuador were 8500 TB cases, of which 370 were associated to multiple drug resistance (TB-MDR), and 1160 deaths. In the same year, Ecuador notified 5973 total cases, 401 of them were TB-MDR, pointing out an under diagnosis problem. The few molecular epidemiology studies available conclude that L4 is the most prevalent MTB lineage in Ecuador (with LAM as the main L4 sublineage), but L2-Beijing family is also present at low prevalence. Nevertheless, with less than 1 % MTB isolates genetically characterized by either MIRU-VNTR, spolygotyping or WGS to date, molecular epidemiology research must me improved to assist the TB surveillance and control program in Ecuador.
Collapse
Affiliation(s)
| | - Greta Franco-Sotomayor
- Instituto Nacional de Investigación y Salud Pública, Guayaquil, Ecuador
- Universidad Católica Santiago de Guayaquil, Guayaquil, Ecuador
| | - Solón Alberto Orlando
- Instituto Nacional de Investigación y Salud Pública, Guayaquil, Ecuador
- Universidad Espíritu Santo, Guayaquil, Ecuador
| | | |
Collapse
|
2
|
Dekhil N, Mardassi H. Delineating the evolutionary pathway to multidrug-resistant outbreaks of a Mycobacterium tuberculosis L4.1.2.1/Haarlem sublineage. Int J Infect Dis 2024; 144:107077. [PMID: 38697608 DOI: 10.1016/j.ijid.2024.107077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024] Open
Abstract
OBJECTIVES We sought to capture the evolutionary itinerary of the Mycobacterium tuberculosis L4.1.2.1/Haarlem sublineage in northern Tunisia, where it caused a major multidrug-resistant (MDR) tuberculosis outbreak in a context strictly negative for HIV infection. METHODS We combined whole genome sequencing and Bayesian approaches using a representative collection of drug-susceptible and drug-resistant L4.1.2.1/Haarlem clinical strains (n = 121) recovered from the outbreak region over 16 years. RESULTS In the absence of drug resistance, the L4.1.2.1/Haarlem sublineage showed a propensity for rapid transmission as witnessed by the high clustering (44.6%) and recent transmission rates (25%), as well as the reduced mean distance between genome pairs. The entire pool of L4.1.2.1/Haarlem MDR strains was found to be linked to either the aforementioned major outbreak (68 individuals, 2001-2016) or to a minor, newly uncovered outbreak (six cases, 2001-2011). Strikingly, the two outbreaks descended independently from a common ancestor that can be dated back to 1886. CONCLUSIONS Our data point to the intrinsic propensity for rapid transmission of the M. tuberculosis L4.1.2.1/Haarlem sublineage in northern Tunisia, linking the overall MDR tuberculosis epidemic to a single ancestor. These findings bring out the important role of the bacillus' genetic background in the emergence of successful MDR M. tuberculosis clones.
Collapse
Affiliation(s)
- Naira Dekhil
- Unit of Typing & Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Helmi Mardassi
- Unit of Typing & Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia.
| |
Collapse
|
3
|
Castro-Rodriguez B, León-Ordóñez K, Franco-Sotomayor G, Benítez-Medina JM, Jiménez-Pizarro N, Cárdenas-Franco G, Granda JC, Aguirre-Martínez JL, Orlando SA, Hermoso de Mendoza J, García-Bereguiain MÁ. Population structure of Mycobacterium tuberculosis in El Oro: A first insight into Ecuador-Peru tuberculosis transmission. J Infect Public Health 2024; 17:527-534. [PMID: 38310744 DOI: 10.1016/j.jiph.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/06/2024] Open
Abstract
BACKGROUND Tuberculosis (TB) is a major public health concern in Ecuador and Peru, both settings of high burden of drug resistance TB. Molecular epidemiology tools are important to understand the transmission dynamics of Mycobacterium tuberculosis Complex (MTBC) and to track active transmission clusters of regional importance. This study is the first to address the transmission of TB between Peru and Ecuador through the population structure of MTBC lineages circulating in the Ecuadorian border province of "El Oro". METHODS A total number of 56 MTBC strains from this province for years 2012-2015 were included in the study and analyzed by 24-loci MIRU-VNTR and spoligotyping. RESULTS Genotyping revealed a high degree of diversity for MTBC in "El Oro", without active transmission clusters. MTBC L4 was predominant, with less than 2% of strains belonging to MTBC L2-Beijing. CONCLUSIONS These results may suggest that TB dynamics in this rural and semi-urban area would not be linked to highly transmitted strains like MTBC L2-Beijing from Peru, but related to TB relapse; although further studies with larger MTBC cultures collection from recent years are needed. Nevertheless, we recommend to reinforce TB surveillance programs in remote rural settings and border regions in Ecuador.
Collapse
Affiliation(s)
| | - Kerly León-Ordóñez
- One Health Research Group. Universidad de las Américas, Quito, Ecuador; Yachay Tech University, Urcuquí, Ecuador
| | - Greta Franco-Sotomayor
- Instituto Nacional de Investigación en Salud Pública "Leopoldo Izquieta Pérez", Guayaquil, Ecuador; Universidad Católica Santiago de Guayaquil, Guayaquil, Ecuador
| | | | - Natalia Jiménez-Pizarro
- Departamento de Sanidad Animal. Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | | | - Juan Carlos Granda
- Instituto Nacional de Investigación en Salud Pública "Leopoldo Izquieta Pérez", Guayaquil, Ecuador
| | | | - Solon Alberto Orlando
- Instituto Nacional de Investigación en Salud Pública "Leopoldo Izquieta Pérez", Guayaquil, Ecuador; Universidad Espíritu Santo, Guayaquil, Ecuador
| | | | | |
Collapse
|
4
|
Castro-Rodriguez B, Espinoza-Andrade S, Franco-Sotomayor G, Benítez-Medina JM, Jiménez-Pizarro N, Cárdenas-Franco C, Granda JC, Jouvin JL, Orlando SA, Hermoso de Mendoza J, García-Bereguiain MÁ. A first insight into tuberculosis transmission at the border of Ecuador and Colombia: a retrospective study of the population structure of Mycobacterium tuberculosis in Esmeraldas province. Front Public Health 2024; 12:1343350. [PMID: 38384875 PMCID: PMC10879341 DOI: 10.3389/fpubh.2024.1343350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
Objective Tuberculosis (TB) is a major public health concern in Ecuador and Colombia, considering that both countries are high-burden TB settings. Molecular epidemiology is crucial to understand the transmission dynamics of Mycobacterium tuberculosis complex (MTBC) and to identify active transmission clusters of regional importance. Methods We studied the potential transmission of TB between Colombia and Ecuador through the analysis of the population structure of MTBC lineages circulating in the Ecuadorian province of Esmeraldas at the border with Colombia. A total of 105 MTBC strains were characterized by 24-loci MIRU-VNTR and spoligotyping. Results MTBC lineage 4 is only present in Esmeraldas; no MTBC strains belonging to Lineage 2-sublineage Beijing were found despite its presence in other provinces of Ecuador and, in Colombia. Genotyping results revealed a high degree of diversity for MTBC in Esmeraldas: Neither active transmission clusters within this province nor including MTBC strains from Colombia or other provinces of Ecuador were found. Conclusion Our data suggest that tuberculosis dynamics in this rural and isolated area may be not related to highly transmitted strains but could be influenced by other health determinants that favor TB relapse such as poverty and poor health system access. Further studies including a larger number of MTBC strains from Esmeraldas are necessary to test this hypothesis.
Collapse
Affiliation(s)
| | | | - Greta Franco-Sotomayor
- Instituto Nacional de Investigación en Salud Pública “Leopoldo Izquieta Pérez”, Guayaquil, Ecuador
- Facultad de Medicina, Universidad Católica Santiago de Guayaquil, Guayaquil, Ecuador
| | - José Manuel Benítez-Medina
- Departamento de Patología Infecciosa, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Natalia Jiménez-Pizarro
- Departamento de Patología Infecciosa, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | | | - Juan Carlos Granda
- Instituto Nacional de Investigación en Salud Pública “Leopoldo Izquieta Pérez”, Guayaquil, Ecuador
| | - Jose Luis Jouvin
- Facultad de Medicina, Universidad Católica Santiago de Guayaquil, Guayaquil, Ecuador
| | - Solon Alberto Orlando
- Instituto Nacional de Investigación en Salud Pública “Leopoldo Izquieta Pérez”, Guayaquil, Ecuador
- Universidad Espíritu Santo, Guayaquil, Ecuador
| | - Javier Hermoso de Mendoza
- Departamento de Patología Infecciosa, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | | |
Collapse
|
5
|
Mokrousov I, Vyazovaya A, Shitikov E, Badleeva M, Belopolskaya O, Bespiatykh D, Gerasimova A, Ioannidis P, Jiao W, Khromova P, Masharsky A, Naizabayeva D, Papaventsis D, Pasechnik O, Perdigão J, Rastogi N, Shen A, Sinkov V, Skiba Y, Solovieva N, Tafaj S, Valcheva V, Kostyukova I, Zhdanova S, Zhuravlev V, Ogarkov O. Insight into pathogenomics and phylogeography of hypervirulent and highly-lethal Mycobacterium tuberculosis strain cluster. BMC Infect Dis 2023; 23:426. [PMID: 37353765 PMCID: PMC10288800 DOI: 10.1186/s12879-023-08413-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/21/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND . The Mycobacterium tuberculosis Beijing genotype is globally spread lineage with important medical properties that however vary among its subtypes. M. tuberculosis Beijing 14717-15-cluster was recently discovered as both multidrug-resistant, hypervirulent, and highly-lethal strain circulating in the Far Eastern region of Russia. Here, we aimed to analyze its pathogenomic features and phylogeographic pattern. RESULTS . The study collection included M. tuberculosis DNA collected between 1996 and 2020 in different world regions. The bacterial DNA was subjected to genotyping and whole genome sequencing followed by bioinformatics and phylogenetic analysis. The PCR-based assay to detect specific SNPs of the Beijing 14717-15-cluster was developed and used for its screening in the global collections. Phylogenomic and phylogeographic analysis confirmed endemic prevalence of the Beijing 14717-15-cluster in the Asian part of Russia, and distant common ancestor with isolates from Korea (> 115 SNPs). The Beijing 14717-15-cluster isolates had two common resistance mutations RpsL Lys88Arg and KatG Ser315Thr and belonged to spoligotype SIT269. The Russian isolates of this cluster were from the Asian Russia while 4 isolates were from the Netherlands and Spain. The cluster-specific SNPs that significantly affect the protein function were identified in silico in genes within different categories (lipid metabolism, regulatory proteins, intermediary metabolism and respiration, PE/PPE, cell wall and cell processes). CONCLUSIONS . We developed a simple method based on real-time PCR to detect clinically significant MDR and hypervirulent Beijing 14717-15-cluster. Most of the identified cluster-specific mutations were previously unreported and could potentially be associated with increased pathogenic properties of this hypervirulent M. tuberculosis strain. Further experimental study to assess the pathobiological role of these mutations is warranted.
Collapse
Affiliation(s)
- Igor Mokrousov
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, St. Petersburg, Russia.
- Henan International Joint Laboratory of Children's Infectious Diseases, Henan Children's Hospital, Children's Hospital, Zhengzhou University, Zhengzhou Children's Hospital, Zhengzhou, China.
| | - Anna Vyazovaya
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, St. Petersburg, Russia
| | - Egor Shitikov
- Department of Biomedicine and Genomics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Maria Badleeva
- Department of Infectious Diseases, Dorji Banzarov Buryat State University, Ulan-Ude, Buryatia, Russia
| | - Olesya Belopolskaya
- Resource Center Bio-bank Center, Research Park of St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Genogeography, Vavilov Institute of General Genetics Russian Academy of Sciences Moscow, Moscow, Russia
| | - Dmitry Bespiatykh
- Department of Biomedicine and Genomics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Alena Gerasimova
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, St. Petersburg, Russia
| | - Panayotis Ioannidis
- National Reference Laboratory for Mycobacteria, Sotiria Chest Diseases Hospital, Athens, Greece
| | - Weiwei Jiao
- National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Disease, Beijing Children's Hospital, Beijing Pediatric Research Institute, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Polina Khromova
- Department of Epidemiology and Microbiology, Scientific Centre of the Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - Aleksey Masharsky
- Resource Center Bio-bank Center, Research Park of St. Petersburg State University, St. Petersburg, Russia
| | - Dinara Naizabayeva
- Laboratory of Molecular Biology, Almaty Branch of National Center for Biotechnology in Central Reference Laboratory, Almaty, Kazakhstan
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Dimitrios Papaventsis
- National Reference Laboratory for Mycobacteria, Sotiria Chest Diseases Hospital, Athens, Greece
| | - Oksana Pasechnik
- Department of Public Health, Omsk State Medical University, Omsk, Russia
| | - João Perdigão
- iMed.ULisboa - Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de la Guadeloupe, Abymes, Guadeloupe, France
| | - Adong Shen
- National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Disease, Beijing Children's Hospital, Beijing Pediatric Research Institute, Capital Medical University, National Center for Children's Health, Beijing, China
- Henan Children's Hospital, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Viacheslav Sinkov
- Department of Epidemiology and Microbiology, Scientific Centre of the Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - Yuriy Skiba
- Laboratory of Molecular Biology, Almaty Branch of National Center for Biotechnology in Central Reference Laboratory, Almaty, Kazakhstan
| | - Natalia Solovieva
- St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| | - Silva Tafaj
- National Mycobacteria Reference Laboratory, University Hospital Shefqet Ndroqi, Tirana, Albania
| | - Violeta Valcheva
- Laboratory of Molecular Genetics of Mycobacteria, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Irina Kostyukova
- Bacteriology laboratory, Clinical Tuberculosis Dispensary, Omsk, Russia
| | - Svetlana Zhdanova
- Department of Epidemiology and Microbiology, Scientific Centre of the Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - Viacheslav Zhuravlev
- St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| | - Oleg Ogarkov
- Department of Epidemiology and Microbiology, Scientific Centre of the Family Health and Human Reproduction Problems, Irkutsk, Russia
| |
Collapse
|
6
|
Dekhil N, Mardassi H. Genomic changes underpinning the emergence of a successful Mycobacterium tuberculosis Latin American and Mediterranean clonal complex. Front Microbiol 2023; 14:1159994. [PMID: 37425998 PMCID: PMC10325029 DOI: 10.3389/fmicb.2023.1159994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/26/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction The Latin American and Mediterranean sublineage (L4.3/LAM) is the most common generalist sublineage of Mycobacterium tuberculosis lineage 4 (L4), yet certain L4.3/LAM genotypes appear to be confined to particular geographic regions. This is typically the case of a L4.3/LAM clonal complex (CC), TUN4.3_CC1, which is the most preponderant in Tunisia (61.5% of L4.3/LAM). Methods Here, we used whole-genome sequencing data of 346 globally distributed L4 clinical strains, including 278 L4.3/LAM isolates, to reconstruct the evolutionary history of TUN4.3_CC1 and delineate critical genomic changes underpinning its success. Results and Discussion Phylogenomic coupled to phylogeographic analyses indicated that TUN4.3_CC1 has evolved locally, being confined mainly to North Africa. Maximum likelihood analyses using the site and branch-site models of the PAML package disclosed strong evidence of positive selection in the gene category "cell wall and cell processes" of TUN4.3_CC1. Collectively, the data indicate that TUN4.3_CC1 has inherited several mutations, which could have potentially contributed to its evolutionary success. Of particular interest are amino acid replacements at the esxK and eccC2 genes of the ESX/Type VII secretion system, which were found to be specific to TUN4.3_CC1, being common to almost all isolates. Because of its homoplastic nature, the esxK mutation could potentially have endowed TUN4.3_CC1 with a selective advantage. Moreover, we noticed the occurrence of additional, previously described homoplasic nonsense mutations in ponA1 and Rv0197. The mutation in the latter gene, a putative oxido-reductase, has previously been shown to be correlated with enhanced transmissibility in vivo. In sum, our findings unveiled several features underpinning the success of a locally evolved L4.3/LAM clonal complex, lending further support to the critical role of genes encoded by the ESX/type VII secretion system.
Collapse
|