1
|
Yabsley MJ, Garrett KB, Thompson AT, Box EK, Giner MR, Haynes E, Barron H, Schneider RM, Coker SM, Beasley JC, Borchert EJ, Tumlison R, Surf A, Dukes CG, Olfenbuttel C, Brown JD, Swanepoel L, Cleveland CA. Otterly diverse - A high diversity of Dracunculus species (Spirurida: Dracunculoidea) in North American river otters ( Lontra canadensis). Int J Parasitol Parasites Wildl 2024; 23:100922. [PMID: 38516639 PMCID: PMC10955650 DOI: 10.1016/j.ijppaw.2024.100922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/23/2024]
Abstract
The genus Dracunculus contains numerous species of subcutaneous parasites of mammals and reptiles. In North America, there are at least three mammal-infecting species of Dracunculus. Reports of Dracunculus infections have been reported from river otters (Lontra canadensis) since the early 1900s; however, little is known about the species infecting otters or their ecology. Most reports of Dracunculus do not have a definitive species identified because females, the most common sex found due to their larger size and location in the extremities of the host, lack distinguishing morphological characteristics, and few studies have used molecular methods to confirm identifications. Thus, outside of Ontario, Canada, where both D. insignis and D. lutrae have been confirmed in otters, the species of Dracunculus in river otters is unknown. In the current study, molecular characterization of nematodes from river otters revealed a high diversity of Dracunculus species. In addition to confirming D. insignis infections, two new clades were detected. One clade was a novel species in any host and the other was a clade previously detected in Virginia opossums (Didelphis virginiana) from the USA and a domestic dog from Spain. No infections with D. lutrae were detected and neither new lineage was genetically similar to D. jaguape, which was recently described from a neotropical otter (Lontra longicaudis) from Argentina. These data also indicate that Dracunculus spp. infections in otters are widespread throughout Eastern North America. Currently the life cycles for most of the Dracunculus spp. infecting otters are unknown. Studies on the diversity, life cycle, and natural history of Dracunculidae parasites in wildlife are important because the related parasite, D. medinensis (human Guinea worm) is the subject of an international eradication campaign and there are increasing reports of these parasites in new geographic locations and new hosts, including new species in humans and domestic dogs.
Collapse
Affiliation(s)
- Michael J. Yabsley
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602, USA
- Center for Ecology of Infectious Diseases, Athens, GA, 30602, USA
| | - Kayla B. Garrett
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602, USA
| | - Alec T. Thompson
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
- Center for Ecology of Infectious Diseases, Athens, GA, 30602, USA
| | - Erin K. Box
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Madeline R. Giner
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Ellen Haynes
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Heather Barron
- Clinic for the Rehabilitation of Wildlife, Sanibel, FL, 33957, USA
| | | | - Sarah M. Coker
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - James C. Beasley
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602, USA
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA
| | - Ernest J. Borchert
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602, USA
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA
| | - Renn Tumlison
- Applied Science and Technology, Henderson State University, Arkadelphia, AR, 71999, USA
| | - Allison Surf
- Applied Science and Technology, Henderson State University, Arkadelphia, AR, 71999, USA
| | - Casey G. Dukes
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
- North Carolina Wildlife Resources Commission, NCSU Centennial Campus, 1751 Varsity Drive, Raleigh, NC, 27606, USA
| | - Colleen Olfenbuttel
- North Carolina Wildlife Resources Commission, NCSU Centennial Campus, 1751 Varsity Drive, Raleigh, NC, 27606, USA
| | - Justin D. Brown
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Liandrie Swanepoel
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Christopher A. Cleveland
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
- Center for Ecology of Infectious Diseases, Athens, GA, 30602, USA
| |
Collapse
|
2
|
Fagundes-Moreira R, Bezerra-Santos MA, May-Junior JA, Baggio-Souza V, Rampim LE, Sartorello LR, Lia RP, Soares JF, Otranto D. The jaguar (Panthera onca) as a potential new host of Dracunculus sp. Parasitol Res 2023; 122:2951-2956. [PMID: 37823992 DOI: 10.1007/s00436-023-07984-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Nematode species of the genus Dracunculus (Spirurida: Dracunculoidea) infect tissues and body cavities of reptiles, domestic and wild carnivores, and humans. The definitive hosts acquire the infection by ingesting intermediate (i.e., cyclopoid copepod) or paratenic (i.e., amphibians and fishes) hosts. Here we report the jaguar (Panthera onca) as a potential new host for Dracunculus sp. The nematode was collected from an ulcerated cutaneous nodule on the left anterior limb of a female jaguar in the municipality of Miranda, Mato Grosso do Sul state, Brazil. Based on the morphology of first stage larvae collected from a small fragment of the uterus of the adult nematode, the species was identified as Dracunculus sp. Reichard, 1759. Additionally, the morphological identification was molecularly confirmed by sequencing the cox1 gene. This report advocates for further investigations into the transmission cycle of this parasite in the Brazilian Pantanal wetland, considering the role of wildlife hosts and the zoonotic potential of Dracunculus species in that area.
Collapse
Affiliation(s)
- Renata Fagundes-Moreira
- Laboratório de Protozoologia E Rickettsioses Vetoriais, Faculty of Veterinary, Federal University of Rio Grande Do Sul (UFRGS), Avenida Bento Gonçalves 9090, Porto Alegre, Rio Grande Do Sul, 91540-000, Brazil
| | | | - Joares Adenilson May-Junior
- Laboratório de Protozoologia E Rickettsioses Vetoriais, Faculty of Veterinary, Federal University of Rio Grande Do Sul (UFRGS), Avenida Bento Gonçalves 9090, Porto Alegre, Rio Grande Do Sul, 91540-000, Brazil
- Onçafari Association, São Paulo, Brazil
- Panthera Corporation, New York, NY, USA
| | - Vinicius Baggio-Souza
- Laboratório de Protozoologia E Rickettsioses Vetoriais, Faculty of Veterinary, Federal University of Rio Grande Do Sul (UFRGS), Avenida Bento Gonçalves 9090, Porto Alegre, Rio Grande Do Sul, 91540-000, Brazil
| | | | | | | | - João Fabio Soares
- Laboratório de Protozoologia E Rickettsioses Vetoriais, Faculty of Veterinary, Federal University of Rio Grande Do Sul (UFRGS), Avenida Bento Gonçalves 9090, Porto Alegre, Rio Grande Do Sul, 91540-000, Brazil.
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| |
Collapse
|
3
|
Mathison BA, Bradbury RS, Pritt BS. Medical Parasitology Taxonomy Update, June 2020-June 2022. J Clin Microbiol 2023; 61:e0028622. [PMID: 36809084 PMCID: PMC10204622 DOI: 10.1128/jcm.00286-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
The taxonomy of medically important parasites continues to evolve. This minireview provides an update of additions and updates in the field of human parasitology from June 2020 through June 2022. A list of previously reported nomenclatural changes that have not been broadly adapted by the medical community is also included.
Collapse
Affiliation(s)
- Blaine A. Mathison
- Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA
| | | | - Bobbi S. Pritt
- Division of Clinical Microbiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
4
|
Abstract
Helminth zoonoses remain a global problem to public health and the economy of many countries. Polymerase chain reaction-based techniques and sequencing have resolved many taxonomic issues and are now essential to understanding the epidemiology of helminth zoonotic infections and the ecology of the causative agents. This is clearly demonstrated from research on Echinococcus (echinococcosis) and Trichinella (trichinosis). Unfortunately, a variety of anthropogenic factors are worsening the problems caused by helminth zoonoses. These include cultural factors, urbanization and climate change. Wildlife plays an increasingly important role in the maintenance of many helminth zoonoses making surveillance and control increasingly difficult. The emergence or re-emergence of helminth zoonoses such as Ancylostoma ceylanicum, Toxocara, Dracunculus and Thelazia exacerbate an already discouraging scenario compounding the control of a group of long neglected diseases.
Collapse
|
5
|
Guinea Worm Disease: A Neglected Diseases on the Verge of Eradication. Trop Med Infect Dis 2022; 7:tropicalmed7110366. [PMID: 36355908 PMCID: PMC9699583 DOI: 10.3390/tropicalmed7110366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Background: Dracunculiasis, also known as Guinea worm disease (GWD), is a neglected tropical disease (NTD) caused by a parasite (Dracunculus medinensis). In the past, dracunculiasis was known as “the disease of the empty granary” because of the difficulties patients had in going to work in fields or to school when affected by this disease. In tropical areas, the condition has been widespread in economically disadvantaged communities, and has been associated with reduced economic status and low levels of education. Methods: we searched PubMed, Scopus, Google Scholar, EMBASE, Cochrane Library, and WHO websites for literature addressing dracunculiasis published in the last 50 years. Results: by development and optimization of multi-layered control measures, transmission by the vector has been interrupted, but there are foci in several African countries with a high risk of compromising the results obtained in the control of this neglected disease. Conclusion: this review features state-of-the-art data on the infection prevalence, geographical distribution, diagnostics, parasite–host interactions, and the pathology of dracunculiasis. Also described are the current state and future perspectives for vector control and elimination strategies.
Collapse
|
6
|
Coker SM, Box EK, Stilwell N, Thiele EA, Cotton JA, Haynes E, Yabsley MJ, Cleveland CA. Development and validation of a quantitative PCR for the detection of Guinea worm (Dracunculus medinensis). PLoS Negl Trop Dis 2022; 16:e0010830. [PMID: 36206300 PMCID: PMC9581357 DOI: 10.1371/journal.pntd.0010830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/19/2022] [Accepted: 09/17/2022] [Indexed: 11/07/2022] Open
Abstract
Dracunculus medinensis (Guinea worm) is a parasitic nematode that can cause the debilitating disease dracunculiasis (Guinea worm disease) in humans. The global Guinea Worm Eradication Program has led intervention and eradication efforts since the 1980s, and Guinea worm infections in people have decreased >99.99%. With the final goal of eradication drawing nearer, reports of animal infections from some remaining endemic countries pose unique challenges. Currently, confirmation of suspected Guinea worm infection relies on conventional molecular techniques such as polymerase chain reaction (PCR), which is not specific to Guinea worm and, therefore, requires sequencing of the PCR products to confirm the identity of suspect samples, a process that often takes a few weeks. To decrease the time required for species confirmation, we developed a quantitative PCR assay targeting the mitochondrial cytochrome b (cytb) gene of Guinea worm. Our assay has a limit of detection of 10 copies per reaction. The mean analytical parameters (± SE) were as follows: efficiency = 93.4 ± 7.7%, y-intercept = 40.93 ± 1.11, slope = -3.4896 ± 0.12, and the R2 = 0.999 ± 0.004. The assay did not amplify other nematodes found in Guinea worm-endemic regions and demonstrated 100% diagnostic sensitivity and specificity. Implementation of this quantitative PCR assay for Guinea worm identification could eliminate the need for DNA sequencing to confirm species. Thus, this approach can be implemented to provide more rapid confirmation of Guinea worm infections, leading to faster execution of Guinea worm interventions while increasing our understanding of infection patterns. Guinea worm (Dracunculus medinensis) is a parasitic nematode that causes debilitating disease in humans. The Guinea Worm Eradication Program would benefit from having a rapid molecular test that can confirm species identification without time-consuming DNA sequencing. We developed a qPCR protocol targeting the mitochondrial cytochrome b (cytb) gene of Guinea worm. The assay was validated analytically over 12 experiments using a standard serial dilution as well as diagnostically on DNA samples from non-target host species and other parasites (n = 180) and Guinea worm samples (n = 200) from a diversity of hosts and geographic regions. This assay could reliably detect 10 copies of the target DNA sequence and had a mean efficiency of 93.4% with 100% diagnostic sensitivity and specificity.
Collapse
Affiliation(s)
- Sarah M. Coker
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Erin K. Box
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Natalie Stilwell
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi, United States of America
| | - Elizabeth A. Thiele
- Department of Biology, Vassar College, Poughkeepsie, New York, United States of America
| | - James A. Cotton
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Ellen Haynes
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Michael J. Yabsley
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, United States of America
- Center for Ecology of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (MJY); (CAC)
| | - Christopher A. Cleveland
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- Center for Ecology of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (MJY); (CAC)
| |
Collapse
|
7
|
Hopkins DR, Weiss AJ, Torres-Velez FJ, Sapp SGH, Ijaz K. Dracunculiasis Eradication: End-Stage Challenges. Am J Trop Med Hyg 2022; 107:373-382. [PMID: 35895421 PMCID: PMC9393450 DOI: 10.4269/ajtmh.22-0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/03/2022] [Indexed: 11/07/2022] Open
Abstract
This report summarizes the status of the global Dracunculiasis Eradication Program as of the end of 2021. Dracunculiasis (Guinea worm disease) has been eliminated from 17 of 21 countries where it was endemic in 1986, when an estimated 3.5 million cases occurred worldwide. Only Chad, Ethiopia, Mali, and South Sudan reported cases in humans in 2021. Chad, Ethiopia, and Mali also reported indigenous infections of animals, mostly domestic dogs, with Dracunculus medinensis. Insecurity and infections in animals are the main obstacles remaining to interrupting dracunculiasis transmission completely.
Collapse
|
8
|
Mathison BA, Sapp SGH. An annotated checklist of the eukaryotic parasites of humans, exclusive of fungi and algae. Zookeys 2021; 1069:1-313. [PMID: 34819766 PMCID: PMC8595220 DOI: 10.3897/zookeys.1069.67403] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
The classification of "parasites" in the medical field is a challenging notion, a group which historically has included all eukaryotes exclusive of fungi that invade and derive resources from the human host. Since antiquity, humans have been identifying and documenting parasitic infections, and this collective catalog of parasitic agents has expanded considerably with technology. As our understanding of species boundaries and the use of molecular tools has evolved, so has our concept of the taxonomy of human parasites. Consequently, new species have been recognized while others have been relegated to synonyms. On the other hand, the decline of expertise in classical parasitology and limited curricula have led to a loss of awareness of many rarely encountered species. Here, we provide a comprehensive checklist of all reported eukaryotic organisms (excluding fungi and allied taxa) parasitizing humans resulting in 274 genus-group taxa and 848 species-group taxa. For each species, or genus where indicated, a concise summary of geographic distribution, natural hosts, route of transmission and site within human host, and vectored pathogens are presented. Ubiquitous, human-adapted species as well as very rare, incidental zoonotic organisms are discussed in this annotated checklist. We also provide a list of 79 excluded genera and species that have been previously reported as human parasites but are not believed to be true human parasites or represent misidentifications or taxonomic changes.
Collapse
Affiliation(s)
- Blaine A. Mathison
- Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, UT, USAInstitute for Clinical and Experimental PathologySalt Lake CityUnited States of America
| | - Sarah G. H. Sapp
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USACenters for Disease Control and PreventionAtlantaUnited States of America
| |
Collapse
|