1
|
Küng AJ, Dykun I, Totzeck M, Mincu R, Michel L, Kill C, Witzke O, Buer J, Rassaf T, Mahabadi AA. Epicardial adipose tissue in patients with and without COVID-19 infection. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2025; 54:100548. [PMID: 40322277 PMCID: PMC12049814 DOI: 10.1016/j.ahjo.2025.100548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/09/2025] [Accepted: 04/18/2025] [Indexed: 05/08/2025]
Abstract
Background Acute COVID-19 infection frequently affects the cardiovascular system and causes acute myocardial injury. Epicardial Adipose Tissue (EAT), a visceral adipose tissue surrounding the myocardium and coronary arteries, has unique paracrine and endocrine effects, modulating the heart's inflammatory environment. Systemic inflammation stimulates TNF-α and Interleukin-6 secretion from EAT, contributing to cytokine storms and intensifying systemic responses. We aimed to determine whether EAT amount differs in patients with and without acute COVID-19 infection and myocardial injury. Methods This study analyzed the CoV-COR registry cohort, conducted at the University Hospital Essen, including patients with symptoms suggestive of COVID-19 infection. The infection was confirmed by PCR. EAT thickness was measured by two-dimensional TTE. Results A total of 296 patients (mean age 63.6 ± 17.26 years, 55.4 % male) were included. Patients with confirmed COVID-19 infection were younger, more frequently treated with antihypertensive medication, and had higher BMI and systolic blood pressures. Univariate logistic regression showed no association between EAT and myocardial injury 0.97 (0.74; 1.28, p = 0.82). A trend towards an association was observed between increasing EAT thickness and COVID-19 infection 1.25 (0.99; 1.59, p = 0.060). Adjusting for age and gender strengthened the association, with a 48 % (1.14; 1.93, p = 0.004) increased odds of COVID-19 infection per increase in EAT thickness. Multivariable regression yielded consistent effect sizes 1.47 (1.01; 2.16, p = 0.047). Conclusion EAT thickness is associated with the presence of an acute COVID-19 infection but not with a myocardial injury. Further research is needed to assess if systemic viral infection induces dynamic changes in EAT.
Collapse
Affiliation(s)
- Alexander J. Küng
- West German Heart and Vascular Center Essen, Department of Cardiology and Vascular Medicine, University Hospital Essen, Hufelandstr, 55, 45147 Essen, Germany
| | - Iryna Dykun
- West German Heart and Vascular Center Essen, Department of Cardiology and Vascular Medicine, University Hospital Essen, Hufelandstr, 55, 45147 Essen, Germany
| | - Matthias Totzeck
- West German Heart and Vascular Center Essen, Department of Cardiology and Vascular Medicine, University Hospital Essen, Hufelandstr, 55, 45147 Essen, Germany
| | - Raluca Mincu
- West German Heart and Vascular Center Essen, Department of Cardiology and Vascular Medicine, University Hospital Essen, Hufelandstr, 55, 45147 Essen, Germany
| | - Lars Michel
- West German Heart and Vascular Center Essen, Department of Cardiology and Vascular Medicine, University Hospital Essen, Hufelandstr, 55, 45147 Essen, Germany
| | - Clemens Kill
- Center for Emergency Medicine, University Hospital Essen, Essen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, Essen, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, Germany
| | - Tienush Rassaf
- West German Heart and Vascular Center Essen, Department of Cardiology and Vascular Medicine, University Hospital Essen, Hufelandstr, 55, 45147 Essen, Germany
| | - Amir A. Mahabadi
- West German Heart and Vascular Center Essen, Department of Cardiology and Vascular Medicine, University Hospital Essen, Hufelandstr, 55, 45147 Essen, Germany
| |
Collapse
|
2
|
Ralston MR, McCreath G, Lees ZJ, Salt IP, Sim MA, Watson MJ, Freeman DJ. Beyond body mass index: exploring the role of visceral adipose tissue in intensive care unit outcomes. BJA OPEN 2025; 14:100391. [PMID: 40223920 PMCID: PMC11986990 DOI: 10.1016/j.bjao.2025.100391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 02/11/2025] [Indexed: 04/15/2025]
Abstract
Obesity is a worldwide health crisis and poses significant challenges in critical care. Many studies suggest an 'obesity paradox', in which obesity, defined by body mass index (BMI), is associated with better outcomes. However, the inability of BMI to discriminate between fat and muscle or between visceral adipose tissue and subcutaneous adipose tissue, limits its prediction of metabolic ill health. We suggest that the 'obesity paradox' may be more reflective of the limitations of BMI than the protective effect of obesity. We explore the biological processes leading to visceral fat accumulation, and the evidence linking it to outcomes in critical illness. In the 'spillover' hypothesis of adipose tissue expansion, caloric excess and impaired expansion of storage capacity in the subcutaneous adipose tissue lead to accumulation of visceral adipose tissue. This is associated with a chronic inflammatory state, which is integral to the link between visceral adiposity, type 2 diabetes mellitus, and ischaemic heart disease. We review the current evidence on visceral adiposity and critical illness outcomes. In COVID-19, increased visceral adipose tissue, irrespective of BMI, is associated with more severe disease. This is mirrored in acute pancreatitis, suggesting visceral adiposity is linked to poorer outcomes in some hyperinflammatory conditions. We suggest that visceral adiposity's chronic inflammatory state may potentiate acute inflammation in conditions such as COVID-19 and acute pancreatitis. Further work is required to investigate other critical illnesses, especially sepsis and acute respiratory distress syndrome, in which current evidence is scarce. This may give further insights into pathophysiology and inform tailored treatment and nutrition strategies based on body fat distribution.
Collapse
Affiliation(s)
- Maximilian R. Ralston
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow, UK
- Academic Unit of Anaesthesia, Critical Care & Perioperative Medicine, University of Glasgow, Glasgow, UK
| | - Gordan McCreath
- Academic Unit of Anaesthesia, Critical Care & Perioperative Medicine, University of Glasgow, Glasgow, UK
| | - Zoe J. Lees
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow, UK
| | - Ian P. Salt
- School of Molecular Biosciences, University of Glasgow, Glasgow, UK
| | - Malcolm A.B. Sim
- Academic Unit of Anaesthesia, Critical Care & Perioperative Medicine, University of Glasgow, Glasgow, UK
- Department of Critical Care, Queen Elizabeth University Hospital, Glasgow, UK
| | - Malcolm J. Watson
- School of Medicine, Dentistry & Nursing, University of Glasgow, Glasgow, UK
- Department of Anaesthesia, Queen Elizabeth University Hospital, Glasgow, UK
| | - Dilys J. Freeman
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow, UK
| |
Collapse
|
3
|
Che A, Si S, Liu J. Efficacy and safety of misoprostol versus oxytocin for labor induction in women with prelabor rupture of membranes: a meta-analysis. BMC Pregnancy Childbirth 2025; 25:461. [PMID: 40259229 PMCID: PMC12012967 DOI: 10.1186/s12884-025-07592-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 04/10/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND Prelabor rupture of membranes (PROM) complicates 8% of pregnancies, often necessitating labor induction to prevent maternal and neonatal complications. Misoprostol, a cost-effective prostaglandin, has been proposed as an alternative to oxytocin for labor induction in PROM cases, but its efficacy and safety remain debated. METHODS The PubMed, Web of science, Embase, Google scholar, ClinicalTrials.gov, and Cochrane Library databases were searched on January 25, 2025. Randomized controlled trials (RCTs) comparing misoprostol and oxytocin for labor induction in term PROM were eligible. The primary outcomes were vaginal birth within 24 h and the induction to delivery interval. Secondary outcomes included the duration of second stage of labor, the induction to active labor, cesarean section, postpartum hemorrhage (PPH), and other maternal/neonatal complications. RESULTS Data from 20 RCTs involving 2,980 participants were analyzed. Misoprostol significantly reduced the induction-to-delivery interval and the duration of the second stage of labor compared to oxytocin (WMD = -62.82, 95% CI (-110.56, -15.08); WMD = -4.29, 95% CI (-8.05, -0.52), respectively). It also lowered the risk of PPH (OR = 0.63, 95% CI (0.41, 0.98)). However, no significant differences were found in other outcomes between misoprostol and oxytocin. CONCLUSIONS Misoprostol is a viable alternative to oxytocin for labor induction in PROM, offering shorter labor durations and reduced PPH risk without compromising maternal and neonatal outcomes. Further researches are needed to optimize dosing, administration routes, and assess maternal satisfaction.
Collapse
Affiliation(s)
- Anluzi Che
- Department of Obstetrics, Shunyi Women's and Children's Hospital of Beijing Children's Hospital, Beijing, China
| | - Si Si
- Department of Obstetrics, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Jing Liu
- Department of Obstetrics, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
4
|
McGonagle D, Giryes S. An immunology model for accelerated coronary atherosclerosis and unexplained sudden death in the COVID-19 era. Autoimmun Rev 2024; 23:103642. [PMID: 39313122 DOI: 10.1016/j.autrev.2024.103642] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
The immunological basis for cardiac deaths remote from potential triggering viral infection, including SARS-CoV-2 infection, remains enigmatic. Cardiac surface inflammation, including the pericardium, epicardium and superficial myocardium with associated coronary artery vasculitis in infant Kawasaki Disease (KD) and multisystem inflammatory syndrome in children (MIS-C) is well recognised. In this perspective, we review the evidence pointing towards prominent post-viral infection related epicardial inflammation in older subjects, resulting in atherosclerotic plaque destabilisation with seemingly unrelated myocardial infarction that may be temporally distant from the actual infectious triggers. Cardiac surface inflammation in the relatively immune cell rich tissues in the territory though where the coronary arteries traverse is common in the adult post-COVD pneumonic phase and is also well described after vaccination including pre-COVID era vaccinations. Immunologically, the pericardium/epicardium tissue was known to be critical for coronary artery territory atherosclerotic disease prior to the COVID-19 era and may be linked to the involvement of the coronary artery vasa vasorum that physiologically oxygenates the coronary artery walls. We highlight how viral infection or vaccination-associated diffuse epicardial tissue inflammation adjacent to the coronary artery vasa vasorum territory represents a critical unifying concept for seemingly unrelated fatal coronary artery atherosclerotic disease, that could occur soon after or remote from infection or vaccination in adults. Mechanistically, such epicardial inflammation impacting coronary artery vasa vasorum immunity acts as gateways towards the slow destabilisation of pre-existing atherosclerotic plaques, with resultant myocardial infarction and other cardiac pathology. This model offers immunologists and academic cardiologists an immunopathological roadmap between innocuous viral infections or vaccinations and seemingly temporally remote "unrelated" atherosclerotic disease with excess cardiac deaths.
Collapse
Affiliation(s)
- Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom; National Institute for Health Research (NIHR) Leeds Biomedical Research Centre (BRC), Leeds Teaching Hospitals, Leeds, United Kingdom.
| | - Sami Giryes
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom; B. Shine Rheumatology Institute, Rambam Healthcare Campus, Haifa, Israel
| |
Collapse
|
5
|
Surov A, Zimmermann S, Hinnerichs M, Meyer HJ, Aghayev A, Borggrefe J. Radiomics parameters of epicardial adipose tissue predict mortality in acute pulmonary embolism. Respir Res 2024; 25:356. [PMID: 39354441 PMCID: PMC11446110 DOI: 10.1186/s12931-024-02977-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/10/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Accurate prediction of short-term mortality in acute pulmonary embolism (APE) is very important. The aim of the present study was to analyze the prognostic role of radiomics values of epicardial adipose tissue (EAT) in APE. METHODS Overall, 508 patients were included into the study, 209 female (42.1%), mean age, 64.7 ± 14.8 years. 4.6%and 12.4% died (7- and 30-day mortality, respectively). For external validation, a cohort of 186 patients was further analysed. 20.2% and 27.7% died (7- and 30-day mortality, respectively). CTPA was performed at admission for every patient before any previous treatment on multi-slice CT scanners. A trained radiologist, blinded to patient outcomes, semiautomatically segmented the EAT on a dedicated workstation using ImageJ software. Extraction of radiomic features was applied using the pyradiomics library. After correction for correlation among features and feature cleansing by random forest and feature ranking, we implemented feature signatures using 247 features of each patient. In total, 26 feature combinations with different feature class combinations were identified. Patients were randomly assigned to a training and a validation cohort with a ratio of 7:3. We characterized two models (30-day and 7-day mortality). The models incorporate a combination of 13 features of seven different image feature classes. FINDINGS We fitted the characterized models to a validation cohort (n = 169) in order to test accuracy of our models. We observed an AUC of 0.776 (CI 0.671-0.881) and an AUC of 0.724 (CI 0.628-0.820) for the prediction of 30-day mortality and 7-day mortality, respectively. The overall percentage of correct prediction in this regard was 88% and 79% in the validation cohorts. Lastly, the AUC in an independent external validation cohort was 0.721 (CI 0.633-0.808) and 0.750 (CI 0.657-0.842), respectively. INTERPRETATION Radiomics parameters of EAT are strongly associated with mortality in patients with APE. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Alexey Surov
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Hans-Nolte-Str. 1, 32429, Minden, Minden, Germany.
| | - Silke Zimmermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany
| | - Mattes Hinnerichs
- Clinic for Radiology and Nuclear Medicine, University Hospital Magdeburg, Magdeburg, Germany
| | - Hans-Jonas Meyer
- Department of Diagnostic and Interventional Radiology, University of Leipzig, Leipzig, Germany
| | - Anar Aghayev
- Clinic for Radiology and Nuclear Medicine, University Hospital Magdeburg, Magdeburg, Germany
| | - Jan Borggrefe
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Hans-Nolte-Str. 1, 32429, Minden, Minden, Germany
| |
Collapse
|
6
|
Aghayev A, Hinnerichs M, Wienke A, Meyer HJ, Surov A. Epicardial adipose tissue as a prognostic marker in acute pulmonary embolism. Herz 2024; 49:219-223. [PMID: 37847316 PMCID: PMC11136740 DOI: 10.1007/s00059-023-05210-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Epicardial adipose tissue (EAT) has been established as a quantitative imaging biomarker associated with disease severity in coronary heart disease. Our aim was to use this prognostic marker derived from computed tomography pulmonary angiography (CTPA) for the prediction of mortality and prognosis in patients with acute pulmonary embolism. METHODS The clinical database was retrospectively screened for patients with acute pulmonary embolism between 2015 and 2021. Overall, 513 patients (216 female, 42.1%) were included in the analysis. The study end-point was 30-day mortality. Epicardial adipose tissue was measured on the diagnostic CTPA in a semiquantitative manner. The volume and density of EAT were measured for every patient. RESULTS Overall, 60 patients (10.4%) died within the 30-day observation period. The mean EAT volume was 128.3 ± 65.0 cm3 in survivors and 154.6 ± 84.5 cm3 in nonsurvivors (p = 0.02). The density of EAT was -79.4 ± 8.3 HU in survivors and -76.0 ± 8.4 HU in nonsurvivors (p = 0.86), and EAT density was associated with 30-day mortality (odds ratio [OR] = 1.07; 95% confidence interval [CI]: 1.03; 1.1, p < 0.001) but did not remain statistically significant in multivariable analysis. No association was identified between EAT volume and 30-day mortality (OR = 1.0; 95% CI: 1.0; 1.0, p = 0.48). CONCLUSION There might be an association between EAT density and mortality in patients with acute pulmonary embolism. Further studies are needed to elucidate the prognostic relevance of EAT parameters in patients with acute pulmonary embolism.
Collapse
Affiliation(s)
- Anar Aghayev
- Department of Radiology and Nuclear Medicine, Otto von Guericke University, Magdeburg, Germany
| | - Mattes Hinnerichs
- Department of Radiology and Nuclear Medicine, Otto von Guericke University, Magdeburg, Germany
| | - Andreas Wienke
- Institute of Medical Epidemiology, Biostatistics, and Informatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Hans-Jonas Meyer
- Department of Diagnostic and Interventional Radiology, University of Leipzig, Leipzig, Germany.
| | - Alexey Surov
- Department of Radiology and Nuclear Medicine, Otto von Guericke University, Magdeburg, Germany
- Ruhr-University-Bochum, Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Minden, Germany
| |
Collapse
|
7
|
Jalil JE, Gabrielli L, Ocaranza MP, MacNab P, Fernández R, Grassi B, Jofré P, Verdejo H, Acevedo M, Cordova S, Sanhueza L, Greig D. New Mechanisms to Prevent Heart Failure with Preserved Ejection Fraction Using Glucagon-like Peptide-1 Receptor Agonism (GLP-1 RA) in Metabolic Syndrome and in Type 2 Diabetes: A Review. Int J Mol Sci 2024; 25:4407. [PMID: 38673991 PMCID: PMC11049921 DOI: 10.3390/ijms25084407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
This review examines the impact of obesity on the pathophysiology of heart failure with preserved ejection fraction (HFpEF) and focuses on novel mechanisms for HFpEF prevention using a glucagon-like peptide-1 receptor agonism (GLP-1 RA). Obesity can lead to HFpEF through various mechanisms, including low-grade systemic inflammation, adipocyte dysfunction, accumulation of visceral adipose tissue, and increased pericardial/epicardial adipose tissue (contributing to an increase in myocardial fat content and interstitial fibrosis). Glucagon-like peptide 1 (GLP-1) is an incretin hormone that is released from the enteroendocrine L-cells in the gut. GLP-1 reduces blood glucose levels by stimulating insulin synthesis, suppressing islet α-cell function, and promoting the proliferation and differentiation of β-cells. GLP-1 regulates gastric emptying and appetite, and GLP-1 RA is currently indicated for treating type 2 diabetes (T2D), obesity, and metabolic syndrome (MS). Recent evidence indicates that GLP-1 RA may play a significant role in preventing HFpEF in patients with obesity, MS, or obese T2D. This effect may be due to activating cardioprotective mechanisms (the endogenous counter-regulatory renin angiotensin system and the AMPK/mTOR pathway) and by inhibiting deleterious remodeling mechanisms (the PKA/RhoA/ROCK pathway, aldosterone levels, and microinflammation). However, there is still a need for further research to validate the impact of these mechanisms on humans.
Collapse
Affiliation(s)
- Jorge E. Jalil
- Pontificia Universidad Católica de Chile, School of Medicine, Division of Cardiovascular Diseases, Santiago 8330055, Chile; (L.G.); (P.M.); (R.F.); (H.V.); (M.A.); (S.C.); (L.S.); (D.G.)
| | - Luigi Gabrielli
- Pontificia Universidad Católica de Chile, School of Medicine, Division of Cardiovascular Diseases, Santiago 8330055, Chile; (L.G.); (P.M.); (R.F.); (H.V.); (M.A.); (S.C.); (L.S.); (D.G.)
| | - María Paz Ocaranza
- Pontificia Universidad Católica de Chile, School of Medicine, Division of Cardiovascular Diseases, Santiago 8330055, Chile; (L.G.); (P.M.); (R.F.); (H.V.); (M.A.); (S.C.); (L.S.); (D.G.)
| | - Paul MacNab
- Pontificia Universidad Católica de Chile, School of Medicine, Division of Cardiovascular Diseases, Santiago 8330055, Chile; (L.G.); (P.M.); (R.F.); (H.V.); (M.A.); (S.C.); (L.S.); (D.G.)
| | - Rodrigo Fernández
- Pontificia Universidad Católica de Chile, School of Medicine, Division of Cardiovascular Diseases, Santiago 8330055, Chile; (L.G.); (P.M.); (R.F.); (H.V.); (M.A.); (S.C.); (L.S.); (D.G.)
| | - Bruno Grassi
- Pontificia Universidad Católica de Chile, School of Medicine, Department of Nutrition and Diabetes, Santiago 8330055, Chile; (B.G.); (P.J.)
| | - Paulina Jofré
- Pontificia Universidad Católica de Chile, School of Medicine, Department of Nutrition and Diabetes, Santiago 8330055, Chile; (B.G.); (P.J.)
| | - Hugo Verdejo
- Pontificia Universidad Católica de Chile, School of Medicine, Division of Cardiovascular Diseases, Santiago 8330055, Chile; (L.G.); (P.M.); (R.F.); (H.V.); (M.A.); (S.C.); (L.S.); (D.G.)
| | - Monica Acevedo
- Pontificia Universidad Católica de Chile, School of Medicine, Division of Cardiovascular Diseases, Santiago 8330055, Chile; (L.G.); (P.M.); (R.F.); (H.V.); (M.A.); (S.C.); (L.S.); (D.G.)
| | - Samuel Cordova
- Pontificia Universidad Católica de Chile, School of Medicine, Division of Cardiovascular Diseases, Santiago 8330055, Chile; (L.G.); (P.M.); (R.F.); (H.V.); (M.A.); (S.C.); (L.S.); (D.G.)
| | - Luis Sanhueza
- Pontificia Universidad Católica de Chile, School of Medicine, Division of Cardiovascular Diseases, Santiago 8330055, Chile; (L.G.); (P.M.); (R.F.); (H.V.); (M.A.); (S.C.); (L.S.); (D.G.)
| | - Douglas Greig
- Pontificia Universidad Católica de Chile, School of Medicine, Division of Cardiovascular Diseases, Santiago 8330055, Chile; (L.G.); (P.M.); (R.F.); (H.V.); (M.A.); (S.C.); (L.S.); (D.G.)
| |
Collapse
|
8
|
Fukushima T, Maetani T, Chubachi S, Tanabe N, Asakura T, Namkoong H, Tanaka H, Shimada T, Azekawa S, Otake S, Nakagawara K, Watase M, Shiraishi Y, Terai H, Sasaki M, Ueda S, Kato Y, Harada N, Suzuki S, Yoshida S, Tateno H, Yamada Y, Jinzaki M, Hirai T, Okada Y, Koike R, Ishii M, Kimura A, Imoto S, Miyano S, Ogawa S, Kanai T, Fukunaga K. Epicardial adipose tissue measured from analysis of adipose tissue area using chest CT imaging is the best potential predictor of COVID-19 severity. Metabolism 2024; 150:155715. [PMID: 37918794 DOI: 10.1016/j.metabol.2023.155715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/03/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Computed tomography (CT) imaging is widely used for diagnosing and determining the severity of coronavirus disease 2019 (COVID-19). Chest CT imaging can be used to calculate the epicardial adipose tissue (EAT) and upper abdominal visceral adipose tissue (Abd-VAT) areas. The EAT is the main source of inflammatory cytokines involved in chest inflammatory diseases; thus, the EAT area might be a more useful severity predictor than the Abd-VAT area for COVID-19. However, to the best of our knowledge, there are no large-scale reports that sufficiently consider this issue. In addition, there are no reports on the characteristics of patients with normal body mass index (BMI) and high adipose tissue. AIM The purpose of this study was to analyze whether the EAT area, among various adipose tissues, was the most associated factor with COVID-19 severity. Using a multicenter COVID-19 patient database, we analyzed the associations of chest subcutaneous, chest visceral, abdominal subcutaneous, and Abd-VAT areas with COVID-19 outcomes. In addition, the clinical significance of central obesity, commonly disregarded by BMI, was examined. METHODS This retrospective cohort study evaluated patients with COVID-19 aged ≥18 years In Japan. Data including from chest CT images collected between February 2020 and October 2022 in four hospitals of the Japan COVID-19 Task Force were analyzed. Patient characteristics and COVID-19 severity were compared according to the adipose tissue areas (chest and abdominal subcutaneous adipose tissue [Chest-SAT and Abd-SAT], EAT, and Abd-VAT) calculated from chest CT images. RESULTS We included 1077 patients in the analysis. Patients with risk factors of severe COVID-19 such as old age, male sex, and comorbidities had significantly higher areas of EAT and Abd-VAT. High EAT area but not high Abd-VAT area was significantly associated with COVID-19 severity (adjusted odds ratio (aOR): 2.66, 95 % confidence interval [CI]: 1.19-5.93). There was no strong correlation between BMI and VAT. Patients with high VAT area accounted for 40.7 % of the non-obesity population (BMI < 25 kg/m2). High EAT area was also significantly associated with COVID-19 severity in the non-obesity population (aOR: 2.50, 95 % CI: 1.17-5.34). CONCLUSIONS Our study indicated that VAT is significantly associated with COVID-19 severity and that EAT is the best potential predictor for risk stratification in COVID-19 among adipose tissue areas. Body composition assessment using EAT is an appropriate marker for identifying obesity patients overlooked by BMI. Considering the next pandemic of the global health crisis, our findings open new avenues for implementing appropriate body composition assessments based on CT imaging.
Collapse
Affiliation(s)
- Takahiro Fukushima
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tomoki Maetani
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shotaro Chubachi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Naoya Tanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Takanori Asakura
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan; Department of Clinical Medicine (Laboratory of Bioregulatory Medicine), Kitasato University School of Pharmacy, Tokyo, Japan; Department of Respiratory Medicine, Kitasato University, Kitasato Institute Hospital, Tokyo, Japan
| | - Ho Namkoong
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan; Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Hiromu Tanaka
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Shimada
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shuhei Azekawa
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shiro Otake
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kensuke Nakagawara
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Mayuko Watase
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yusuke Shiraishi
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideki Terai
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Mamoru Sasaki
- Internal Medicine, JCHO (Japan Community Health care Organization) Saitama Medical Center, Saitama, Japan
| | - Soichiro Ueda
- Internal Medicine, JCHO (Japan Community Health care Organization) Saitama Medical Center, Saitama, Japan
| | - Yukari Kato
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Norihiro Harada
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Shoji Suzuki
- Department of Pulmonary Medicine, Saitama City Hospital, Saitama, Japan
| | - Shuichi Yoshida
- Department of Pulmonary Medicine, Saitama City Hospital, Saitama, Japan
| | - Hiroki Tateno
- Department of Pulmonary Medicine, Saitama City Hospital, Saitama, Japan
| | - Yoshitake Yamada
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan; Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Ryuji Koike
- Health Science Research and Development Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Makoto Ishii
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan; Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akinori Kimura
- Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoru Miyano
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Cheng X, Feng Z, Pan B, Liu Q, Han Y, Zou L, Rong P, Meng J. Establishment and application of the BRP prognosis model for idiopathic pulmonary fibrosis. J Transl Med 2023; 21:805. [PMID: 37951977 PMCID: PMC10638707 DOI: 10.1186/s12967-023-04668-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is the most common idiopathic interstitial lung disease. Clinical models to accurately evaluate the prognosis of IPF are currently lacking. This study aimed to construct an easy-to-use and robust prediction model for transplant-free survival (TFS) of IPF based on clinical and radiological information. METHODS A multicenter prognostic study was conducted involving 166 IPF patients who were followed up for 3 years. The end point of follow-up was death or lung transplantation. Clinical information, lung function tests, and chest computed tomography (CT) scans were collected. Body composition quantification on CT was performed using 3D Slicer software. Risk factors in blood routine examination-radiology-pulmonary function (BRP) were identified by Cox regression and utilized to construct the "BRP Prognosis Model". The performance of the BRP model and the gender-age-physiology variables (GAP) model was compared using time-ROC curves, calibration curves, and decision curve analysis (DCA). Furthermore, histopathology fibrosis scores in clinical specimens were compared between the different risk stratifications identified by the BRP model. The correlations among body composition, lung function, serum inflammatory factors, and profibrotic factors were analyzed. RESULTS Neutrophil percentage > 68.3%, pericardial adipose tissue (PAT) > 94.91 cm3, pectoralis muscle radiodensity (PMD) ≤ 36.24 HU, diffusing capacity of the lung for carbon monoxide/alveolar ventilation (DLCO/VA) ≤ 56.03%, and maximum vital capacity (VCmax) < 90.5% were identified as independent risk factors for poor TFS among patients with IPF. We constructed a BRP model, which showed superior accuracy, discrimination, and clinical practicability to the GAP model. Median TFS differed significantly among patients at different risk levels identified by the BRP model (low risk: TFS > 3 years; intermediate risk: TFS = 2-3 years; high risk: TFS ≈ 1 year). Patients with a high-risk stratification according to the BRP model had a higher fibrosis score on histopathology. Additionally, serum proinflammatory markers were positively correlated with visceral fat volume and infiltration. CONCLUSIONS In this study, the BRP prognostic model of IPF was successfully constructed and validated. Compared with the commonly used GAP model, the BRP model had better performance and generalization with easily obtainable indicators. The BRP model is suitable for clinical promotion.
Collapse
Affiliation(s)
- Xiaoyun Cheng
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Tongzipo Road 138, Yuelu District, Changsha, 410000, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Tongzipo Road 138, Yuelu District, Changsha, 410000, China
| | - Zhichao Feng
- Departments of Radiology, The Third Xiangya Hospital of Central South University, Tongzipo Road 138, Yuelu District, Changsha, 410000, Hunan, China
| | - Boyu Pan
- Departments of Orthopedics, The Third Xiangya Hospital of Central South University, Tongzipo Road 138, Yuelu District, Changsha, 410000, Hunan, China
| | - Qingxiang Liu
- Hunan Key Laboratory of Organ Fibrosis, Tongzipo Road 138, Yuelu District, Changsha, 410000, China
| | - Yuanyuan Han
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Tongzipo Road 138, Yuelu District, Changsha, 410000, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Tongzipo Road 138, Yuelu District, Changsha, 410000, China
| | - Lijun Zou
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Tongzipo Road 138, Yuelu District, Changsha, 410000, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Tongzipo Road 138, Yuelu District, Changsha, 410000, China
| | - Pengfei Rong
- Departments of Radiology, The Third Xiangya Hospital of Central South University, Tongzipo Road 138, Yuelu District, Changsha, 410000, Hunan, China.
| | - Jie Meng
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Tongzipo Road 138, Yuelu District, Changsha, 410000, Hunan, China.
- Hunan Key Laboratory of Organ Fibrosis, Tongzipo Road 138, Yuelu District, Changsha, 410000, China.
| |
Collapse
|
10
|
Sun LJ, Xiao CW, Zhao XB, Guo S, Zhang F. Association between epicardial adipose tissue and myocardial work by non-invasive left ventricular pressure-strain loop in people with suspected metabolic syndrome. Sci Rep 2023; 13:14415. [PMID: 37660205 PMCID: PMC10475131 DOI: 10.1038/s41598-023-41779-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/31/2023] [Indexed: 09/04/2023] Open
Abstract
Given the inconsistent results on the prognostic significance of epicardial adipose tissue (EAT), the purpose of the present study was to investigate the association of EAT thickness and myocardial work by non-invasive left ventricular pressure-strain loop in people with suspected metabolic syndrome (MS). A total of 194 participants imaged with echocardiography were evaluated. In accordance with the median EAT thickness, MS patients fell into thin EAT group and thick EAT group. Conventional echocardiographic parameters, global longitudinal strain (GLS) and the global myocardial work parameters obtained by pressure-strain loop analysis, comprising the global work index (GWI), global work efficiency (GWE), global constructive work (GCW) and global wasted work (GWW) were compared between the two groups. In comparison with the thin EAT group, thick EAT group achieved significantly higher values in interventricular septal thickness, end-diastolic left ventricular posterior wall thickness, left ventricular mass index and GWW (p < 0.05). while the absolute value of GLS, GWI, GCW, and GWE were notably lower in the thick EAT group (p < 0.001). EAT thickness showed a significant correlation with GWI and GCW (r = - 0.328, p = 0.001; r = - 0.253, p = 0.012), and also independently correlated with GWI and GCW in the multivariate regression analysis (β = - 0.310, p = 0.001; β = - 0.199, p = 0.049). EAT thickness is associated with left ventricular myocardial function in subjects with suspected metabolic syndrome, independently of other risk factors. Further studies are supposed to ensure the causal associations and related mechanisms.
Collapse
Affiliation(s)
- Li-Juan Sun
- Department of Ultrasound, First Hospital of Qinhuangdao, Qinhuangdao, 066000, Hebei, China
| | - Cheng-Wei Xiao
- Department of Ultrasound, First Hospital of Qinhuangdao, Qinhuangdao, 066000, Hebei, China
- Hebei Medical University, Shijiazhuang, China
| | - Xue-Bing Zhao
- Department of Ultrasound, First Hospital of Qinhuangdao, Qinhuangdao, 066000, Hebei, China
- Hebei Medical University, Shijiazhuang, China
| | - Shuai Guo
- Department of Ultrasound, First Hospital of Qinhuangdao, Qinhuangdao, 066000, Hebei, China
| | - Fang Zhang
- Department of Ultrasound, First Hospital of Qinhuangdao, Qinhuangdao, 066000, Hebei, China.
| |
Collapse
|
11
|
Guaricci AI, Neglia D, Acampa W, Andreini D, Baggiano A, Bianco F, Carrabba N, Conte E, Gaudieri V, Mushtaq S, Napoli G, Pergola V, Pontone G, Pedrinelli R, Mercuro G, Indolfi C, Guglielmo M. Computed tomography and nuclear medicine for the assessment of coronary inflammation: clinical applications and perspectives. J Cardiovasc Med (Hagerstown) 2023; 24:e67-e76. [PMID: 37052223 DOI: 10.2459/jcm.0000000000001433] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
There is increasing evidence that in patients with atherosclerotic cardiovascular disease (ASCVD) under optimal medical therapy, a persisting dysregulation of the lipid and glucose metabolism, associated with adipose tissue dysfunction and inflammation, predicts a substantial residual risk of disease progression and cardiovascular events. Despite the inflammatory nature of ASCVD, circulating biomarkers such as high-sensitivity C-reactive protein and interleukins may lack specificity for vascular inflammation. As known, dysfunctional epicardial adipose tissue (EAT) and pericoronary adipose tissue (PCAT) produce pro-inflammatory mediators and promote cellular tissue infiltration triggering further pro-inflammatory mechanisms. The consequent tissue modifications determine the attenuation of PCAT as assessed and measured by coronary computed tomography angiography (CCTA). Recently, relevant studies have demonstrated a correlation between EAT and PCAT and obstructive coronary artery disease, inflammatory plaque status and coronary flow reserve (CFR). In parallel, CFR is well recognized as a marker of coronary vasomotor function that incorporates the haemodynamic effects of epicardial, diffuse and small-vessel disease on myocardial tissue perfusion. An inverse relationship between EAT volume and coronary vascular function and the association of PCAT attenuation and impaired CFR have already been reported. Moreover, many studies demonstrated that 18F-FDG PET is able to detect PCAT inflammation in patients with coronary atherosclerosis. Importantly, the perivascular FAI (fat attenuation index) showed incremental value for the prediction of adverse clinical events beyond traditional risk factors and CCTA indices by providing a quantitative measure of coronary inflammation. As an indicator of increased cardiac mortality, it could guide early targeted primary prevention in a wide spectrum of patients. In this review, we summarize the current evidence regarding the clinical applications and perspectives of EAT and PCAT assessment performed by CCTA and the prognostic information derived by nuclear medicine.
Collapse
Affiliation(s)
- Andrea Igoren Guaricci
- University Cardiology Unit, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari
| | - Danilo Neglia
- Cardiovascular Department, Fondazione Toscana Gabriele Monasterio (FTGM), Pisa
| | - Wanda Acampa
- Department of Advanced Biomedical Sciences, University of Naples 'Federico II', Naples
| | - Daniele Andreini
- Centro Cardiologico Monzino IRCCS
- Department of Clinical Sciences and Community Health, Cardiovascular Section, Milan
| | - Andrea Baggiano
- Centro Cardiologico Monzino IRCCS
- Department of Clinical Sciences and Community Health, Cardiovascular Section, Milan
| | - Francesco Bianco
- Cardiovascular Sciences Department - AOU 'Ospedali Riuniti', Ancona
| | - Nazario Carrabba
- Department of Cardiothoracovascular Medicine, Azienda Ospedaliero-Universitaria Careggi, Florence
| | - Edoardo Conte
- Centro Cardiologico Monzino IRCCS
- Department of Biomedical Sciences for Health, University of Milan, Milan
| | - Valeria Gaudieri
- Department of Advanced Biomedical Sciences, University of Naples 'Federico II', Naples
| | | | - Gianluigi Napoli
- University Cardiology Unit, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari
| | - Valeria Pergola
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova
| | | | | | - Giuseppe Mercuro
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari
| | - Ciro Indolfi
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Marco Guglielmo
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
12
|
Marcucci M, Fogante M, Tagliati C, Papiri G. Cut-off point of CT-assessed epicardial adipose tissue volume for predicting worse clinical burden of SARS-CoV-2 pneumonia. Emerg Radiol 2022; 29:645-653. [PMID: 35606630 PMCID: PMC9126108 DOI: 10.1007/s10140-022-02059-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022]
Abstract
Objective To identify a cut-off value of epicardial adipose tissue (EAT) volume quantified by CT associated with a worse clinical outcome in patients with SARS-CoV-2 pneumonia. Materials and methods In this retrospective study, sixty patients with a diagnosis of laboratory-confirmed COVID-19 pneumonia and a chest CT exam on admission were enrolled. Based on a total severity score (range 0–20), patients were divided into two groups: ordinary group (total severity score < 7) and severe/critical group (total severity score > 7). Clinical results and EAT volume were compared between the two groups. Results The severe/critical patients, compared to the ordinary ones, were older (66.83 ± 11.72 vs 58.57 ± 16.86 years; p = 0.031), had higher body mass index (27.77 ± 2.11 vs 25.07 ± 2.80 kg/m2; p < 0.001) and higher prevalence of comorbidities. EAT volume was higher in severe/critical group, compared with the ordinary group (151.40 ± 66.22 cm3 vs 92.35 ± 44.46 cm3, p < 0.001). In severe/critical group, 19 (73%) patients were admitted in intensive care unit (ICU), compared with 6 (20%) patients in the ordinary group (p < 0.001). The area under the ROC curve (AUC) is equal to 0.781 (p < 0.001) (95% CI: 0.662–0.900). The cut-off found, in correspondence with the highest value of the Youden Index, is 97 cm3: the sensitivity is equal to 83.3%, while the specificity is equal to 70% for predicting a worse outcome. The risk (odds ratio) of belonging to the severe/critical group in this population due to EAT ≥ 97 cm3 is 11.667 (95% CI: 3.384–40.220; p < 0.001). Conclusion An EAT volume of 97 cm3 has good sensitivity and specificity to predict a greater extent of pulmonary involvement and therefore a worse clinical outcome in patients with SARS-CoV-2 pneumonia.
Collapse
Affiliation(s)
- Matteo Marcucci
- U.O.C. Radiodiagnostica, Ospedale Generale Provinciale Di Macerata, Via Santa Lucia, 2, 62100, Macerata, Italy.
| | - Marco Fogante
- Radiology Department, Azienda Ospedaliero Universitaria "Ospedali Riuniti", Via Conca, 71, 60126, Ancona, Italy
| | - Corrado Tagliati
- U.O.S.D. Radiologia Ospedale "San Liberatore" Atri - Dipartimento Dei Servizi - ASL Teramo, Viale del Risorgimento, 1158, 64032, Atri, Teramo, Italy
| | - Giulio Papiri
- Neurology Unit, Ospedale Provinciale "Madonna del Soccorso", Via Luciano Manara, 8, 63074, San Benedetto del Tronto, Ascoli Piceno, Italy
| |
Collapse
|