Alam F, Mohammed Alnazzawi TS, Mehmood R, Al-maghthawi A. A Review of the Applications, Benefits, and Challenges of Generative AI for Sustainable Toxicology.
Curr Res Toxicol 2025;
8:100232. [PMID:
40331045 PMCID:
PMC12051651 DOI:
10.1016/j.crtox.2025.100232]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 03/10/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
Sustainable toxicology is vital for living species and the environment because it guarantees the safety, efficacy, and regulatory compliance of drugs, treatments, vaccines, and chemicals in living organisms and the environment. Conventional toxicological methods often lack sustainability as they are costly, time-consuming, and sometimes inaccurate. It means delays in producing new drugs, vaccines, and treatments and understanding the adverse effects of the chemicals on the environment. To address these challenges, the healthcare sector must leverage the power of the Generative-AI (GenAI) paradigm. This paper aims to help understand how the healthcare field can be revolutionized in multiple ways by using GenAI to facilitate sustainable toxicological developments. This paper first reviews the present literature and identifies the possible classes of GenAI that can be applied to toxicology. A generalized and holistic visualization of various toxicological processes powered by GenAI is presented in tandem. The paper discussed toxicological risk assessment and management, spotlighting how global agencies and organizations are forming policies to standardize and regulate AI-related development, such as GenAI, in these fields. The paper identifies and discusses the advantages and challenges of GenAI in toxicology. Further, the paper outlines how GenAI empowers Conversational-AI, which will be critical for highly tailored toxicological solutions. This review will help to develop a comprehensive understanding of the impacts and future potential of GenAI in the field of toxicology. The knowledge gained can be applied to create sustainable GenAI applications for various problems in toxicology, ultimately benefiting our societies and the environment.
Collapse