1
|
Fei K, Wang J, Pan L, Wang X, Chen B. A sleep staging model on wavelet-based adaptive spectrogram reconstruction and light weight CNN. Comput Biol Med 2024; 173:108300. [PMID: 38547654 DOI: 10.1016/j.compbiomed.2024.108300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 04/17/2024]
Abstract
Effective methods for automatic sleep staging are important for diagnosis and treatment of sleep disorders. EEG has weak signal properties and complex frequency components during the transition of sleep stages. Wavelet-based adaptive spectrogram reconstruction (WASR) by seed growth is utilized to capture dominant time-frequency patterns of sleep EEG. We introduced variant energy from Teager operator in WASR to capture hidden dynamic patterns of EEG, which produced additional spectrograms. These spectrograms enabled a light weight CNN to detect and extract finer details of different sleep stages, which improved the feature representation of EEG. With specially designed depthwise separable convolution, the light weight CNN achieved more robust sleep stage classification. Experimental results on Sleep-EDF 20 dataset showed that our proposed model yielded overall accuracy of 87.6%, F1-score of 82.1%, and Cohen kappa of 0.83, which is competitive compared with baselines with reduced computation cost.
Collapse
Affiliation(s)
- Keling Fei
- School of Mechanical Engineering, Changzhou University, Changzhou 213164, China.
| | - Jianghui Wang
- School of Mechanical Engineering, Changzhou University, Changzhou 213164, China
| | - Lizhen Pan
- School of Mechanical Engineering, Changzhou University, Changzhou 213164, China
| | - Xu Wang
- Gansu Provincial Maternity and Child-care Hospital, Lanzhou, 730070, China
| | - Baohong Chen
- School of Mechanical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
2
|
Yue H, Chen Z, Guo W, Sun L, Dai Y, Wang Y, Ma W, Fan X, Wen W, Lei W. Research and application of deep learning-based sleep staging: Data, modeling, validation, and clinical practice. Sleep Med Rev 2024; 74:101897. [PMID: 38306788 DOI: 10.1016/j.smrv.2024.101897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 02/04/2024]
Abstract
Over the past few decades, researchers have attempted to simplify and accelerate the process of sleep stage classification through various approaches; however, only a few such approaches have gained widespread acceptance. Artificial intelligence technology, particularly deep learning, is promising for earning the trust of the sleep medicine community in automated sleep-staging systems, thus facilitating its application in clinical practice and integration into daily life. We aimed to comprehensively review the latest methods that are applying deep learning for enhancing sleep staging efficiency and accuracy. Starting from the requisite "data" for constructing deep learning algorithms, we elucidated the current landscape of this domain and summarized the fundamental modeling process, encompassing signal selection, data pre-processing, model architecture, classification tasks, and performance metrics. Furthermore, we reviewed the applications of automated sleep staging in scenarios such as sleep-disorder screening, diagnostic procedures, and health monitoring and management. Finally, we conducted an in-depth analysis and discussion of the challenges and future in intelligent sleep staging, particularly focusing on large-scale sleep datasets, interdisciplinary collaborations, and human-computer interactions.
Collapse
Affiliation(s)
- Huijun Yue
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zhuqi Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wenbin Guo
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Lin Sun
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yidan Dai
- School of Computer Science, South China Normal University, Guangzhou, People's Republic of China
| | - Yiming Wang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wenjun Ma
- School of Computer Science, South China Normal University, Guangzhou, People's Republic of China
| | - Xiaomao Fan
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, People's Republic of China
| | - Weiping Wen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; Department of Otolaryngology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.
| | - Wenbin Lei
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.
| |
Collapse
|