1
|
Sharan RV, Xiong H. Wet and dry cough classification using cough sound characteristics and machine learning: A systematic review. Int J Med Inform 2025; 199:105912. [PMID: 40203586 DOI: 10.1016/j.ijmedinf.2025.105912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 03/10/2025] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Distinguishing between productive (wet) and non-productive (dry) cough types is important for evaluating respiratory health, assisting in differential diagnosis, and monitoring disease progression. However, assessing cough type through the perception of cough sounds in clinical settings poses challenges due to its subjectivity. Employing objective cough sound analysis holds promise for aiding diagnostic assessments and guiding the management of respiratory conditions. This systematic review aims to assess and summarize the predictive capabilities of machine learning algorithms in analyzing cough sounds to determine cough type. METHOD A systematic search of the Scopus, Medline, and Embase databases conducted on March 8, 2025, yielded three studies that met the inclusion criteria. The quality assessment of these studies was conducted using the checklist for the assessment of medical artificial intelligence (ChAMAI). RESULTS The inter-rater agreement for annotating wet and dry coughs ranged from 0.22 to 0.81 across the three studies. Furthermore, these studies employed diverse inputs for their machine learning algorithms, including different cough sound features and time-frequency representations. The algorithms used ranged from conventional classifiers like logistic regression to neural networks. While the classification accuracy for identifying wet and dry coughs ranged from 78% to 87% across these studies, none of them assessed their algorithms through external validation. CONCLUSION The high variability in inter-rater agreement highlights the subjectivity in manually interpreting cough sounds and underscores the need for objective cough sound analysis methods. The predictive ability of cough-type classification algorithms shows promise in the small number of studies analyzed in this systematic review. However, more studies are needed, particularly those validating their models on independent and external datasets.
Collapse
Affiliation(s)
- Roneel V Sharan
- School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, United Kingdom.
| | - Hao Xiong
- Australian Institute of Health Innovation, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
2
|
Ruchonnet-Métrailler I, Siebert JN, Hartley MA, Lacroix L. Automated Interpretation of Lung Sounds by Deep Learning in Children With Asthma: Scoping Review and Strengths, Weaknesses, Opportunities, and Threats Analysis. J Med Internet Res 2024; 26:e53662. [PMID: 39178033 PMCID: PMC11380063 DOI: 10.2196/53662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/28/2024] [Accepted: 07/10/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND The interpretation of lung sounds plays a crucial role in the appropriate diagnosis and management of pediatric asthma. Applying artificial intelligence (AI) to this task has the potential to better standardize assessment and may even improve its predictive potential. OBJECTIVE This study aims to objectively review the literature on AI-assisted lung auscultation for pediatric asthma and provide a balanced assessment of its strengths, weaknesses, opportunities, and threats. METHODS A scoping review on AI-assisted lung sound analysis in children with asthma was conducted across 4 major scientific databases (PubMed, MEDLINE Ovid, Embase, and Web of Science), supplemented by a gray literature search on Google Scholar, to identify relevant studies published from January 1, 2000, until May 23, 2023. The search strategy incorporated a combination of keywords related to AI, pulmonary auscultation, children, and asthma. The quality of eligible studies was assessed using the ChAMAI (Checklist for the Assessment of Medical Artificial Intelligence). RESULTS The search identified 7 relevant studies out of 82 (9%) to be included through an academic literature search, while 11 of 250 (4.4%) studies from the gray literature search were considered but not included in the subsequent review and quality assessment. All had poor to medium ChAMAI scores, mostly due to the absence of external validation. Identified strengths were improved predictive accuracy of AI to allow for prompt and early diagnosis, personalized management strategies, and remote monitoring capabilities. Weaknesses were the heterogeneity between studies and the lack of standardization in data collection and interpretation. Opportunities were the potential of coordinated surveillance, growing data sets, and new ways of collaboratively learning from distributed data. Threats were both generic for the field of medical AI (loss of interpretability) but also specific to the use case, as clinicians might lose the skill of auscultation. CONCLUSIONS To achieve the opportunities of automated lung auscultation, there is a need to address weaknesses and threats with large-scale coordinated data collection in globally representative populations and leveraging new approaches to collaborative learning.
Collapse
Affiliation(s)
- Isabelle Ruchonnet-Métrailler
- Pediatric Pulmonology Unit, Department of Pediatrics, Geneva Children's Hospital, University Hospitals of Geneva, Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Johan N Siebert
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Pediatric Emergency Medicine, Department of Pediatrics, Geneva Children's Hospital, Geneva University Hospitals, Geneva, Switzerland
| | - Mary-Anne Hartley
- Intelligent Global Health Research Group, Machine Learning and Optimization Laboratory, Swiss Federal Institute of Technology, Lausanne, Switzerland
- Laboratory of Intelligent Global Health Technologies, Bioinformatics and Data Science, Yale School of Medicine, New Haven, CT, United States
| | - Laurence Lacroix
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Pediatric Emergency Medicine, Department of Pediatrics, Geneva Children's Hospital, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
3
|
Georgakopoulou VE. The Role of Artificial Intelligence in Combatting Respiratory Tract Infections. Cureus 2024; 16:e63635. [PMID: 39092333 PMCID: PMC11293016 DOI: 10.7759/cureus.63635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Respiratory tract infections (RTIs) such as pneumonia, bronchitis, and COVID-19 are significant global health concerns due to their high morbidity and mortality rates. The advent of artificial intelligence (AI) offers innovative solutions across various aspects of RTI management, including diagnosis, prediction, treatment, and prevention. AI algorithms enhance diagnostic accuracy by analyzing extensive data from electronic health records and imaging studies, often surpassing human radiologists in identifying diseases such as pneumonia. For instance, AI-based image recognition tools have demonstrated remarkable precision in detecting pneumonia from chest X-rays. Additionally, AI models can predict disease outbreaks and optimize public health responses, as exemplified during the COVID-19 pandemic where AI predicted infection hotspots and evaluated the effectiveness of containment measures. In personalized medicine, AI tailors treatments based on individual patient profiles, thereby improving therapeutic outcomes and accelerating drug discovery. Wearable AI devices facilitate early detection and prevention of RTIs through continuous health monitoring. Despite its transformative potential, AI implementation in healthcare faces challenges, including data privacy, algorithm transparency, and ethical concerns. Addressing these issues necessitates collaboration among technologists, healthcare providers, and policymakers to ensure responsible and equitable integration of AI technologies. This editorial underscores the transformative potential of AI in managing RTIs and calls for robust frameworks to harness AI's benefits while safeguarding patient rights.
Collapse
|
4
|
Wieland-Jorna Y, van Kooten D, Verheij RA, de Man Y, Francke AL, Oosterveld-Vlug MG. Natural language processing systems for extracting information from electronic health records about activities of daily living. A systematic review. JAMIA Open 2024; 7:ooae044. [PMID: 38798774 PMCID: PMC11126158 DOI: 10.1093/jamiaopen/ooae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/21/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Objective Natural language processing (NLP) can enhance research on activities of daily living (ADL) by extracting structured information from unstructured electronic health records (EHRs) notes. This review aims to give insight into the state-of-the-art, usability, and performance of NLP systems to extract information on ADL from EHRs. Materials and Methods A systematic review was conducted based on searches in Pubmed, Embase, Cinahl, Web of Science, and Scopus. Studies published between 2017 and 2022 were selected based on predefined eligibility criteria. Results The review identified 22 studies. Most studies (65%) used NLP for classifying unstructured EHR data on 1 or 2 ADL. Deep learning, combined with a ruled-based method or machine learning, was the approach most commonly used. NLP systems varied widely in terms of the pre-processing and algorithms. Common performance evaluation methods were cross-validation and train/test datasets, with F1, precision, and sensitivity as the most frequently reported evaluation metrics. Most studies reported relativity high overall scores on the evaluation metrics. Discussion NLP systems are valuable for the extraction of unstructured EHR data on ADL. However, comparing the performance of NLP systems is difficult due to the diversity of the studies and challenges related to the dataset, including restricted access to EHR data, inadequate documentation, lack of granularity, and small datasets. Conclusion This systematic review indicates that NLP is promising for deriving information on ADL from unstructured EHR notes. However, what the best-performing NLP system is, depends on characteristics of the dataset, research question, and type of ADL.
Collapse
Affiliation(s)
- Yvonne Wieland-Jorna
- Netherlands Institute for Health Services Research (Nivel), Utrecht, Postbus 1568, 3500 BN, The Netherlands
- Tranzo, School of Social Sciences and Behavioural Research, Tilburg University, Tilburg, Postbus 90153, 5000 LE, The Netherlands
| | - Daan van Kooten
- Netherlands Institute for Health Services Research (Nivel), Utrecht, Postbus 1568, 3500 BN, The Netherlands
| | - Robert A Verheij
- Netherlands Institute for Health Services Research (Nivel), Utrecht, Postbus 1568, 3500 BN, The Netherlands
- Tranzo, School of Social Sciences and Behavioural Research, Tilburg University, Tilburg, Postbus 90153, 5000 LE, The Netherlands
| | - Yvonne de Man
- Netherlands Institute for Health Services Research (Nivel), Utrecht, Postbus 1568, 3500 BN, The Netherlands
| | - Anneke L Francke
- Netherlands Institute for Health Services Research (Nivel), Utrecht, Postbus 1568, 3500 BN, The Netherlands
- Department of Public and Occupational Health, Location Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Postbus 7057, 1007 MB, The Netherlands
| | - Mariska G Oosterveld-Vlug
- Netherlands Institute for Health Services Research (Nivel), Utrecht, Postbus 1568, 3500 BN, The Netherlands
| |
Collapse
|
5
|
Carrillo-Larco RM. Recognition of Patient Gender: A Machine Learning Preliminary Analysis Using Heart Sounds from Children and Adolescents. Pediatr Cardiol 2024:10.1007/s00246-024-03561-2. [PMID: 38937337 DOI: 10.1007/s00246-024-03561-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Research has shown that X-rays and fundus images can classify gender, age group, and race, raising concerns about bias and fairness in medical AI applications. However, the potential for physiological sounds to classify sociodemographic traits has not been investigated. Exploring this gap is crucial for understanding the implications and ensuring fairness in the field of medical sound analysis. We aimed to develop classifiers to determine gender (men/women) based on heart sound recordings and using machine learning (ML). Data-driven ML analysis. We utilized the open-access CirCor DigiScope Phonocardiogram Dataset obtained from cardiac screening programs in Brazil. Volunteers < 21 years of age. Each participant completed a questionnaire and underwent a clinical examination, including electronic auscultation at four cardiac points: aortic (AV), mitral (MV), pulmonary (PV), and tricuspid (TV). We used Mel-frequency cepstral coefficients (MFCCs) to develop the ML classifiers. From each patient and from each auscultation sound recording, we extracted 10 MFCCs. In sensitivity analysis, we additionally extracted 20, 30, 40, and 50 MFCCs. The most effective gender classifier was developed using PV recordings (AUC ROC = 70.3%). The second best came from MV recordings (AUC ROC = 58.8%). AV and TV recordings produced classifiers with an AUC ROC of 56.4% and 56.1%, respectively. Using more MFCCs did not substantially improve the classifiers. It is possible to classify between males and females using phonocardiogram data. As health-related audio recordings become more prominent in ML applications, research is required to explore if these recordings contain signals that could distinguish sociodemographic features.
Collapse
Affiliation(s)
- Rodrigo M Carrillo-Larco
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
6
|
Isangula KG, Haule RJ. Leveraging AI and Machine Learning to Develop and Evaluate a Contextualized User-Friendly Cough Audio Classifier for Detecting Respiratory Diseases: Protocol for a Diagnostic Study in Rural Tanzania. JMIR Res Protoc 2024; 13:e54388. [PMID: 38652526 PMCID: PMC11077412 DOI: 10.2196/54388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Respiratory diseases, including active tuberculosis (TB), asthma, and chronic obstructive pulmonary disease (COPD), constitute substantial global health challenges, necessitating timely and accurate diagnosis for effective treatment and management. OBJECTIVE This research seeks to develop and evaluate a noninvasive user-friendly artificial intelligence (AI)-powered cough audio classifier for detecting these respiratory conditions in rural Tanzania. METHODS This is a nonexperimental cross-sectional research with the primary objective of collection and analysis of cough sounds from patients with active TB, asthma, and COPD in outpatient clinics to generate and evaluate a noninvasive cough audio classifier. Specialized cough sound recording devices, designed to be nonintrusive and user-friendly, will facilitate the collection of diverse cough sound samples from patients attending outpatient clinics in 20 health care facilities in the Shinyanga region. The collected cough sound data will undergo rigorous analysis, using advanced AI signal processing and machine learning techniques. By comparing acoustic features and patterns associated with TB, asthma, and COPD, a robust algorithm capable of automated disease discrimination will be generated facilitating the development of a smartphone-based cough sound classifier. The classifier will be evaluated against the calculated reference standards including clinical assessments, sputum smear, GeneXpert, chest x-ray, culture and sensitivity, spirometry and peak expiratory flow, and sensitivity and predictive values. RESULTS This research represents a vital step toward enhancing the diagnostic capabilities available in outpatient clinics, with the potential to revolutionize the field of respiratory disease diagnosis. Findings from the 4 phases of the study will be presented as descriptions supported by relevant images, tables, and figures. The anticipated outcome of this research is the creation of a reliable, noninvasive diagnostic cough classifier that empowers health care professionals and patients themselves to identify and differentiate these respiratory diseases based on cough sound patterns. CONCLUSIONS Cough sound classifiers use advanced technology for early detection and management of respiratory conditions, offering a less invasive and more efficient alternative to traditional diagnostics. This technology promises to ease public health burdens, improve patient outcomes, and enhance health care access in under-resourced areas, potentially transforming respiratory disease management globally. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/54388.
Collapse
Affiliation(s)
- Kahabi Ganka Isangula
- School of Nursing and Midwifery, Aga Khan University, Dar Es Salaam, United Republic of Tanzania
| | - Rogers John Haule
- School of Nursing and Midwifery, Aga Khan University, Dar Es Salaam, United Republic of Tanzania
| |
Collapse
|
7
|
Ginsburg AS, McCollum ED. Artificial intelligence and pneumonia: a rapidly evolving frontier. Lancet Glob Health 2023; 11:e1849-e1850. [PMID: 37956684 DOI: 10.1016/s2214-109x(23)00463-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 11/15/2023]
Affiliation(s)
- Amy Sarah Ginsburg
- Clinical Trials Center, University of Washington, Seattle, WA 98115, USA.
| | - Eric D McCollum
- Eudowood Division of Pediatric Respiratory Sciences, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|