1
|
Hashimoto M, Mao BH, Chiou CS, Huang WC, Nyoman Putra Dwija IB, Jeng SL, Wu JJ, Wang MC, Lin WH, Tseng CC, Teng CH. Association between Escherichia coli with NotI-restriction resistance and urinary tract infections. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:686-694. [PMID: 34963576 DOI: 10.1016/j.jmii.2021.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 11/12/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Escherichia coli is the most common cause of urinary tract infections (UTIs). It is widely accepted that uropathogenic E. coli (UPEC) mainly emerge from the distal gut microbiota. Identification of bacterial characteristics that are able to differentiate UPEC from fecal commensal strains will facilitate the development of novel strategies to detect and monitor the spread of UPEC. METHODS Fifty fecal commensal, 83 UTI-associated and 40 biliary tract infection (BTI)-associated E. coli isolates were analyzed. The NotI restriction patterns of chromosomal DNA in the isolates were determined by pulse-field gel electrophoresis. The phylogenetic types and the presence of 9 known virulence genes of each isolate were determined by PCR analyses. Additionally, the susceptibilities of the isolates to antibiotics were revealed. Then the associations of NotI resistance with UTI-associated isolates, phylotypes, and antibiotic resistance were assessed. RESULTS NotI resistance was correlated with UTI-associated isolates, compared to the fecal isolates. Consistently, NotI-resistant isolates harbored a greater number of virulence factors and mainly belonged to phylotype B2. Additionally NotI resistance was correlated with chloramphenicol resistance among the bacteria. Among the fecal, UTI-associated and BTI-associated groups, the distribution of NotI-resistant group B2 isolates was correlated with UTI-associated bacteria. CONCLUSION NotI resistance alone is a potential marker for distinguishing fecal strains and UPEC, while the combination of NotI resistance and B2 phylogeny is a candidate marker to differentiate UPEC from fecal and other extraintestinal pathogenic E. coli. Additionally, NotI resistance may be valuable for assessing the potential of chloramphenicol resistance of E. coli.
Collapse
Affiliation(s)
- Masayuki Hashimoto
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Bin-Hsu Mao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Chien-Shun Chiou
- The Central Region Laboratory, Center of Research and Diagnostics, Centers for Disease Control, Taichung City, Taiwan
| | - Wen-Chun Huang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ida Bagus Nyoman Putra Dwija
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Microbiology Clinic Department, Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia
| | - Shuen-Lin Jeng
- Department of Statistics, Institute of Data Science, and Center for Innovative FinTech Business Models, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ming-Cheng Wang
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan; Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Wei-Hung Lin
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Chin-Chung Tseng
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Ching-Hao Teng
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
2
|
Cornick NA, Pitzer J, Helgerson AF, Madsen ML, Kurth KT, Xiao Q, Minion FC. Use of signature-tagged mutagenesis to identify genes associated with colonization of sheep by E. coli O157:H7. Vet Microbiol 2017; 201:177-182. [PMID: 28284606 DOI: 10.1016/j.vetmic.2017.01.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 01/24/2017] [Accepted: 01/27/2017] [Indexed: 10/20/2022]
Abstract
Outbreaks of Escherichia coli O157:H7 in the United States due to contaminated foods are a public health issue and a continuing problem. The major reservoir for these organisms is the gastrointestinal tract of ruminants where they are a member of the resident microbiota. Several factors that contribute to the colonization of cattle have been identified, but a systematic screen of genes that might contribute to the colonization and persistence phenotype in mature ruminants has not been reported. Using a sheep model of persistence, signature tagged mutagenesis (STM) was used to screen 1326 mutants for a persistence-negative phenotype of E. coli O157:H7. We identified 9 genes by STM that appeared to be required for colonization and/or survival in sheep. Three of the genes had functions associated with central metabolism (thiK, ftrA and nrdB), one was involved with LPS formation (wbdP), one encodes a non-LEE encoded effector protein (nleB) and one was a methyltransferase encoded on a prophage (Z2389). The remaining three genes did not have homology with any known genes. Six sheep given ΔwbdP and 2 sheep each were given mutants (ΔthiK (Z1745), ΔftrA (Z2164) and Z2389). The ΔwbdP mutant was recovered from the feces of 4/6 sheep at 6 days pi with a mean number of 1.42log10CFU/g feces compared to 4.6log10CFU/g feces for the wild type strain. This difference was significant (P<0.001) over the time course of the experiment (days 6-23). Both ΔthiK and ΔftrA mutants were recovered from 1 of 2 sheep at 9 days PI by enrichment procedures (<50CFU/g feces) whereas mutant Z2389 was not recovered from either animal past 2 days pi. The roles of all of these gene products require further study to determine how the persistence phenotype of a given strain of E. coli O157:H7 interacts with host factors.
Collapse
Affiliation(s)
- Nancy A Cornick
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, 50011, United States.
| | - Josh Pitzer
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, 50011, United States
| | - Amy F Helgerson
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, 50011, United States
| | - Melissa L Madsen
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, 50011, United States
| | - Kathy T Kurth
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, 50011, United States
| | - Qianjun Xiao
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, 50011, United States
| | - F Chris Minion
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, 50011, United States
| |
Collapse
|