1
|
Xue K, Wang L, Liu J. Surface Modification of Bacteria to Optimize Immunomodulation for Advanced Immunotherapy. ChemMedChem 2023; 18:e202200574. [PMID: 36376260 DOI: 10.1002/cmdc.202200574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Bacteria have been widely exploited as therapeutic agents for immunotherapy due to their native immunogenicity, living characteristic, and genetic manipulability. However, conventional bacteria-based immunotherapy often suffers from dose-dependent safety issues and poor treatment efficacy. Harnessing surface modification of bacteria to carry additional immune modulators has emerged as a promising strategy to reduce bacterial dose and synergistically enhance the activation of immune responses. In this paper, bacteria-mediated immunomodulation and the underlying mechanisms are introduced, followed by a summarization on the concept of using surface-modification approaches including physical encapsulation, chemical conjugation, and metabolic labelling to combine diverse immune functions. The applications of modified bacteria as therapeutics for immunotherapy toward cancer and inflammatory bowel disease have been expounded further. Both challenges and future perspectives regarding the utilization of surface-modified bacteria for immunomodulation are also proposed. This work offers unique insights into developing safe yet potent bacteria-based therapeutics for advanced immunotherapy.
Collapse
Affiliation(s)
- Kaikai Xue
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Lu Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| |
Collapse
|
2
|
Pérez-Guillén I, Domènech Ò, Botet-Carreras A, Merlos A, Sierra JM, Albericio F, de la Torre BG, Montero MT, Viñas M, Borrell JH. Studying Lipid Membrane Interactions of a Super-Cationic Peptide in Model Membranes and Living Bacteria. Pharmaceutics 2022; 14:pharmaceutics14102191. [PMID: 36297628 PMCID: PMC9611851 DOI: 10.3390/pharmaceutics14102191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
The super-cationic peptide dendrimers (SCPD) family is a valuable class of antimicrobial peptide candidates for the future development of antibacterial agents against multidrug-resistant gram-negative bacteria. The deep knowledge of their mechanism of action is a major challenge in research, since it may be the basis for future modifications/optimizations. In this work we have explored the interaction between SCPD and membranes through biophysical and microbiological approaches in the case of the G1OLO-L2OL2 peptide. Results support the idea that the peptide is not only adsorbed or close to the surface of the membrane but associated/absorbed to some extent to the hydrophobic-hydrophilic region of the phospholipids. The presence of low concentrations of the peptide at the surface level is concomitant with destabilization of the cell integrity and this may contribute to osmotic stress, although other mechanisms of action cannot be ruled out.
Collapse
Affiliation(s)
- Isabel Pérez-Guillén
- Laboratory of Molecular Microbiology & Antimicrobials, Faculty of Medicine & Health Sciences, University of Barcelona, 08907 Barcelona, Spain
- Physical Chemistry Section, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Òscar Domènech
- Physical Chemistry Section, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Correspondence: (Ò.D.); (J.M.S.)
| | - Adrià Botet-Carreras
- Physical Chemistry Section, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Alexandra Merlos
- Laboratory of Molecular Microbiology & Antimicrobials, Faculty of Medicine & Health Sciences, University of Barcelona, 08907 Barcelona, Spain
| | - Josep M. Sierra
- Laboratory of Molecular Microbiology & Antimicrobials, Faculty of Medicine & Health Sciences, University of Barcelona, 08907 Barcelona, Spain
- Correspondence: (Ò.D.); (J.M.S.)
| | - Fernando Albericio
- Peptide Sciences Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, University Road, Westville, Durban 4001, South Africa
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Beatriz G. de la Torre
- KRISP, College of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4001, South Africa
| | - M. Teresa Montero
- Physical Chemistry Section, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Miguel Viñas
- Laboratory of Molecular Microbiology & Antimicrobials, Faculty of Medicine & Health Sciences, University of Barcelona, 08907 Barcelona, Spain
| | - Jordi H. Borrell
- Physical Chemistry Section, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
3
|
Zhang W, Hu E, Wang Y, Miao S, Liu Y, Hu Y, Liu J, Xu B, Chen D, Shen Y. Emerging Antibacterial Strategies with Application of Targeting Drug Delivery System and Combined Treatment. Int J Nanomedicine 2021; 16:6141-6156. [PMID: 34511911 PMCID: PMC8423451 DOI: 10.2147/ijn.s311248] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/17/2021] [Indexed: 01/12/2023] Open
Abstract
At present, some bacteria have developed significant resistance to almost all available antibiotics. One of the reasons that cannot be ignored is long-term exposure of bacteria to the sub-minimum inhibitory concentration (MIC) of antibiotics. Therefore, it is necessary to develop a targeted antibiotic delivery system to improve drug delivery behavior, in order to delay the generation of bacterial drug resistance. In recent years, with the continuous development of nanotechnology, various types of nanocarriers that respond to the infection microenvironment, targeting specific bacterial targets, and targeting infected cells, and so on, are gradually being used in the delivery of antibacterial agents to increase the concentration of drugs at the site of infection and reduce the side effects of drugs in normal tissues. Here, this article describes in detail the latest research progress on nanocarriers for antimicrobial, and commonly used targeted antimicrobial strategies. The advantages of the combination of nanotechnology and targeting strategies in combating bacterial infections are highlighted in this review, and the upcoming opportunities and remaining challenges in this field are rationally prospected.
Collapse
Affiliation(s)
- Wenli Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Enshi Hu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yajie Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Si Miao
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yanyan Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yumin Hu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Ji Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Bohui Xu
- School of Pharmacy, Nantong University, Nantong, 226001, People's Republic of China
| | - Daquan Chen
- School of Pharmacy, Yantai University, State Key Laboratory of Long-acting and Targeting Drug Delivery System, Yantai, 264005, People's Republic of China
| | - Yan Shen
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| |
Collapse
|
4
|
Substrate Inhibition of VanA by d-Alanine Reduces Vancomycin Resistance in a VanX-Dependent Manner. Antimicrob Agents Chemother 2016; 60:4930-9. [PMID: 27270282 DOI: 10.1128/aac.00276-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/30/2016] [Indexed: 12/12/2022] Open
Abstract
The increasing resistance of clinical pathogens against the glycopeptide antibiotic vancomycin, a last-resort drug against infections with Gram-positive pathogens, is a major problem in the nosocomial environment. Vancomycin inhibits peptidoglycan synthesis by binding to the d-Ala-d-Ala terminal dipeptide moiety of the cell wall precursor lipid II. Plasmid-transferable resistance is conferred by modification of the terminal dipeptide into the vancomycin-insensitive variant d-Ala-d-Lac, which is produced by VanA. Here we show that exogenous d-Ala competes with d-Lac as a substrate for VanA, increasing the ratio of wild-type to mutant dipeptide, an effect that was augmented by several orders of magnitude in the absence of the d-Ala-d-Ala peptidase VanX. Liquid chromatography-mass spectrometry (LC-MS) analysis showed that high concentrations of d-Ala led to the production of a significant amount of wild-type cell wall precursors, while vanX-null mutants produced primarily wild-type precursors. This enhanced the efficacy of vancomycin in the vancomycin-resistant model organism Streptomyces coelicolor, and the susceptibility of vancomycin-resistant clinical isolates of Enterococcus faecium (VRE) increased by up to 100-fold. The enhanced vancomycin sensitivity of S. coelicolor cells correlated directly to increased binding of the antibiotic to the cell wall. Our work offers new perspectives for the treatment of diseases associated with vancomycin-resistant pathogens and for the development of drugs that target vancomycin resistance.
Collapse
|