1
|
Saleem M, Ahmad I, Salem AM, Almarshedy SM, Moursi SA, Syed Khaja AS, Rakha E, Azhar A, Ashammari MN, Almalaq H, Alshurtan K, Khan MS. Molecular and genetic analysis of methicillin-resistant Staphylococcus aureus (MRSA) in a tertiary care hospital in Saudi Arabia. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03771-8. [PMID: 39777537 DOI: 10.1007/s00210-024-03771-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) continues to pose significant challenges in healthcare settings due to its multi-drug resistance (MDR) and virulence. This retrospective study examines the molecular and resistance profiles of MRSA isolates from a tertiary care hospital in Saudi Arabia, providing valuable insights into regional epidemiology. A total of 190 MRSA strains were analysed to assess antimicrobial susceptibility, genetic diversity, and virulence factors. Antimicrobial susceptibility testing was conducted according to CLSI guidelines, while molecular characterization involved spa typing, SCCmec typing, and DNA microarray analysis to determine clonal complexes (CCs), resistance genes, and virulence determinants. The isolates showed extensive resistance to beta-lactam antibiotics, with 78% classified as MDR. Notably, resistance to fusidic acid and ciprofloxacin was detected in 70% and 55% of isolates, respectively. The most prevalent clonal complexes-CC5, CC6, and CC22-comprised over 60% of the isolates and exhibited diverse spa types. The Panton-Valentine leukocidin (PVL) gene, linked to heightened virulence, was identified in approximately 20% of isolates, particularly within CC5, CC30, and CC80. Enterotoxin genes (sea and seb) and immune evasion genes (sak, chp, and scn) were also commonly detected, reflecting the isolates' capacity to adapt and persist within the hospital environment. These findings underscore the high burden of MDR MRSA with considerable genetic diversity and virulence potential. The study highlights the urgent need for strengthened molecular surveillance and targeted infection control measures to limit MRSA transmission and effectively manage infection risks in healthcare facilities.
Collapse
Affiliation(s)
- Mohd Saleem
- Department of Pathology, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Alharbi Mohammed Salem
- Department of Internal Medicine, College of Medicine, University of Hail, Hail, Saudi Arabia
| | | | - Soha Abdallah Moursi
- Department of Pathology, College of Medicine, University of Hail, Hail, Saudi Arabia
| | | | - Ehab Rakha
- Laboratory Department, King Khalid Hospital, Hail, Saudi Arabia
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Asim Azhar
- NAP Lifesciences, Evershine City, Vasai East, Maharashtra, 401208, India
| | | | - Homoud Almalaq
- Department of Medical Supplies, Hail Health Cluster, Hail, Saudi Arabia
| | - Kareemah Alshurtan
- Department of Internal Medicine, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Mohd Shahid Khan
- Department of Microbiology, Hind Institute of Medical Sciences, Mau, Ataria, Sitapur, Uttar Pradesh, India, 261303.
| |
Collapse
|
2
|
Egyir B, Owusu-Nyantakyi C, Bortey A, Rabbi Amuasi G, Owusu FA, Boateng W, Ahmed H, Danso JK, Oclu AAG, Mohktar Q, Tetteh-Ocloo G, Amegbletor H, Fosu K, Tetteh FKM, Asante-Sefa S, Deberu ON, Osei KM, Twasam J, Kodom S, Gyinae E, Sampah J, Dzifa Dayie N, Obeng-Nkrumah N, Mills-Pappoe WA, Boateng G, Nilsson P, Bonful HA, Adu B, Hendriksen RS. Whole genome sequencing revealed high proportions of ST152 MRSA among clinical Staphylococcus aureus isolates from ten hospitals in Ghana. mSphere 2024; 9:e0044624. [PMID: 39565128 DOI: 10.1128/msphere.00446-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024] Open
Abstract
Previous studies in Ghana indicated low prevalence of methicillin-resistant Staphylococcus aureus (MRSA) and predominance of ST152 methicillin-susceptible S. aureus (MSSA) among clinical isolates. ST152 MRSA clones are associated with severe infections and epidemics. Using whole genome sequencing (WGS), 159 S. aureus isolated from clinical sources (wound, blood, urine, ear, abscess, umbilical cord, eye, vaginal samples, and others) from 10 hospitals across Ghana were investigated. mecA (gene for methicillin resistance) was detected in 38% of the isolates. Panton-Valentine leucocidin toxin (PVL) gene occurred in 65% isolates, with 84% of the MRSA's harboring the PVL gene. ST152 was the major clone, with 74% harboring the mecA gene. Other MRSA clones detected were ST5, ST5204, ST852, and ST1. MSSA clones included ST3249, ST152, ST5, ST1, and ST8. Twenty-three genes encoding resistance to 12 antimicrobial classes were observed with blaZ (97%) being the most prevalent. Other predominant resistance genes included tetK (46%), cat (42%), and dfrG (36%) encoding resistance for tetracyclines, phenicols, and diaminopyrimidine, respectively. Virulence genes for enterotoxins, biofilms, toxic-shock-syndrome toxins, hemolysins, and leukotoxins were also detected. Phylogenetic analysis revealed a shift in the dominant clone from MSSA ST152 to MRSA ST152 over the past decade. The study provides valuable insights into the genomic content of S. aureus from clinical sources in Ghana. The finding of ST152 MRSA in high numbers suggests a shifting epidemiological landscape of these pathogens and continuous surveillance using robust tools like WGS is needed to monitor the rise and spread of these epidemic clones in the country.IMPORTANCESince its emergence in 1959, MRSA has been a significant public health concern, causing infections in both clinical and community settings. Patients with MRSA-related infections experience higher mortality rates due to its ability to evade antimicrobials and immune defenses. In Ghana, understanding the molecular epidemiology of MRSA has been hindered by the lack of appropriate laboratory infrastructure and the limited capacity for molecular data analysis. This study, the largest genomic study of S. aureus in Ghana, addresses this gap by utilizing whole genome sequencing to examine the diversity of circulating S. aureus strains from 10 hospitals. Our findings highlight the predominance of pandemic clones, particularly ST152, and the notable transition of ST152 MSSA to ST152 MRSA over the past decade. The findings from this study supports AMR surveillance efforts in Ghana and emphasize the importance of implementing genomic surveillance using WGS to comprehensively monitor the rise and spread of multi-drug-resitant organisms such as MRSA in the country.
Collapse
Affiliation(s)
- Beverly Egyir
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Christian Owusu-Nyantakyi
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Alfred Bortey
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Grebstad Rabbi Amuasi
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Felicia Amoa Owusu
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - William Boateng
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Hawawu Ahmed
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Justice Kwesi Danso
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Agnes Akosua Gyamaah Oclu
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Quaneeta Mohktar
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | | | | | | | | | - Solomon Asante-Sefa
- Sekondi Public Health Laboratory, Effia Nkwanta Regional Hospital, Takoradi, Ghana
| | | | | | | | | | | | | | - Nicholas Dzifa Dayie
- Department of Medical Microbiology, University of Ghana Medical School, Korle-Bu, Ghana
| | - Noah Obeng-Nkrumah
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | | | | | - Pernille Nilsson
- Research Group for Global Capacity Building, National Food Institute, WHO Collaborating Centre (WHO CC) for Antimicrobial Resistance in Foodborne Pathogens and Genomics, FAO Reference Laboratory (FAO RL) for Antimicrobial Resistance, European Union Reference Laboratory for Antimicrobial Resistance (EURL-AR), Technical University of Denmark, Kongens Lyngby, Denmark
| | - Harriet Affran Bonful
- Department of Epidemiology and Disease Control, School of Public Health, University of Ghana, Accra, Ghana
| | - Bright Adu
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Rene S Hendriksen
- Research Group for Global Capacity Building, National Food Institute, WHO Collaborating Centre (WHO CC) for Antimicrobial Resistance in Foodborne Pathogens and Genomics, FAO Reference Laboratory (FAO RL) for Antimicrobial Resistance, European Union Reference Laboratory for Antimicrobial Resistance (EURL-AR), Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
3
|
Ishwarlall TZ, Okpeku M, Adeniyi AA, Adeleke MA. The search for a Buruli Ulcer vaccine and the effectiveness of the Bacillus Calmette-Guérin vaccine. Acta Trop 2022; 228:106323. [PMID: 35065013 DOI: 10.1016/j.actatropica.2022.106323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 11/01/2022]
Abstract
Buruli Ulcer is a neglected tropical disease that is caused by Mycobacterium ulcerans. It is not fatal; however, it manifests a range of devastating symptoms on the hosts' bodies. Various drugs and treatments are available for the disease; however, they are often costly and have adverse effects. There is still much uncertainty regarding the mode of transmission, vectors, and reservoir. At present, there are no official vector control methods, prevention methods, or a vaccine licensed to prevent infection. The Bacillus Calmette-Guérin vaccine developed against tuberculosis has some effectiveness against M. ulcerans. However, it is unable to induce long-lasting protection. Various types of vaccines have been developed based specifically against M. ulcerans; however, to date, none has entered clinical trials or has been released for public use. Additional awareness and funding are needed for research in this field and the development of more treatments, diagnostic tools, and vaccines.
Collapse
|
4
|
Orujyan D, Narinyan W, Rangarajan S, Rangchaikul P, Prasad C, Saviola B, Venketaraman V. Protective Efficacy of BCG Vaccine against Mycobacterium leprae and Non-Tuberculous Mycobacterial Infections. Vaccines (Basel) 2022; 10:vaccines10030390. [PMID: 35335022 PMCID: PMC8952781 DOI: 10.3390/vaccines10030390] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/16/2022] [Accepted: 03/02/2022] [Indexed: 02/06/2023] Open
Abstract
The genus mycobacterium includes several species that are known to cause infections in humans. The microorganisms are classified into tuberculous and non-tuberculous based on their morphological characteristics, defined by the dynamic relationship between the host defenses and the infectious agent. Non-tuberculous mycobacteria (NTM) include all the species of mycobacterium other than the ones that cause tuberculosis (TB). The group of NTM contains almost 200 different species and they are found in soil, water, animals—both domestic and wild—milk and food products, and from plumbed water resources such as sewers and showerhead sprays. A systematic review of Medline between 1946 and 2014 showed an 81% decline in TB incidence rates with a simultaneous 94% increase in infections caused by NTM. Prevalence of infections due to NTM has increased relative to infections caused by TB owing to the stringent prevention and control programs in Western countries such as the USA and Canada. While the spread of typical mycobacterial infections such as TB and leprosy involves human contact, NTM seem to spread easily from the environment without the risk of acquiring from a human contact except in the case of M. abscessus in patients with cystic fibrosis, where human transmission as well as transmission through fomites and aerosols has been recorded. NTM are opportunistic in their infectious processes, making immunocompromised individuals such as those with other systemic infections such as HIV, immunodeficiencies, pulmonary disease, or usage of medications such as long-term corticosteroids/TNF-α inhibitors more susceptible. This review provides insight on pathogenesis, treatment, and BCG vaccine efficacy against M. leprae and some important NTM infections.
Collapse
|
5
|
Kember M, Grandy S, Raudonis R, Cheng Z. Non-Canonical Host Intracellular Niche Links to New Antimicrobial Resistance Mechanism. Pathogens 2022; 11:pathogens11020220. [PMID: 35215166 PMCID: PMC8876822 DOI: 10.3390/pathogens11020220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 12/04/2022] Open
Abstract
Globally, infectious diseases are one of the leading causes of death among people of all ages. The development of antimicrobials to treat infectious diseases has been one of the most significant advances in medical history. Alarmingly, antimicrobial resistance is a widespread phenomenon that will, without intervention, make currently treatable infections once again deadly. In an era of widespread antimicrobial resistance, there is a constant and pressing need to develop new antibacterial drugs. Unraveling the underlying resistance mechanisms is critical to fight this crisis. In this review, we summarize some emerging evidence of the non-canonical intracellular life cycle of two priority antimicrobial-resistant bacterial pathogens: Pseudomonas aeruginosa and Staphylococcus aureus. The bacterial factors that modulate this unique intracellular niche and its implications in contributing to resistance are discussed. We then briefly discuss some recent research that focused on the promises of boosting host immunity as a combination therapy with antimicrobials to eradicate these two particular pathogens. Finally, we summarize the importance of various strategies, including surveillance and vaccines, in mitigating the impacts of antimicrobial resistance in general.
Collapse
|
6
|
Umeda K, Ono HK, Wada T, Motooka D, Nakamura S, Nakamura H, Hu DL. High production of egc2-related staphylococcal enterotoxins caused a food poisoning outbreak. Int J Food Microbiol 2021; 357:109366. [PMID: 34454396 DOI: 10.1016/j.ijfoodmicro.2021.109366] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
Staphylococcal enterotoxins (SEs) produced by enterotoxigenic Staphylococcus aureus in food cause staphylococcal food poisoning. We recently reported a foodborne outbreak due to S. aureus harboring new SE/SE-like (SEl) genes (seg, sei, sem, sen, seo, and selu) related to enterotoxin gene cluster (egc) 2 as with other research groups. However, the pathogenicity of SEs production remains unclear. Therefore, we herein investigated egc2-related SEs production from S. aureus isolates and leftover food items during a foodborne outbreak using a sandwich enzyme-linked immunosorbent assay suitable for the quantification of SEs. S. aureus isolates produced markedly high levels of egc2-related SEs, and the leftover food item "Sushi" contained SEs over the toxin dose that causes food poisoning symptoms. A representative isolate was subjected to whole-genome sequencing. The isolate was homologous with previously reported ST45 strains, particularly the unique genomic island νSaβ structure mostly consisting of egc2. The present study indicates that egc2-related SEs are food poisoning causative agents based on high SE production levels within an actual foodborne outbreak.
Collapse
Affiliation(s)
- Kaoru Umeda
- Division of Microbiology, Osaka Institute of Public Health, 8-34 Tojo-cho, Tennoji-ku, Osaka 543-0026, Japan.
| | - Hisaya K Ono
- Laboratory of Zoonoses, Kitasato University School of Veterinary Medicine, 23-35-1 Higashi, Towada City, Aomori 034-8628, Japan
| | - Takayuki Wada
- Graduate School of Human Life Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Shota Nakamura
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Hiromi Nakamura
- Division of Microbiology, Osaka Institute of Public Health, 8-34 Tojo-cho, Tennoji-ku, Osaka 543-0026, Japan
| | - Dong-Liang Hu
- Laboratory of Zoonoses, Kitasato University School of Veterinary Medicine, 23-35-1 Higashi, Towada City, Aomori 034-8628, Japan
| |
Collapse
|
7
|
Dhungel L, Burcham L, Park JY, Sampathkumar HD, Cudjoe A, Seo KS, Jordan H. Responses to chemical cross-talk between the Mycobacterium ulcerans toxin, mycolactone, and Staphylococcus aureus. Sci Rep 2021; 11:11746. [PMID: 34083568 PMCID: PMC8175560 DOI: 10.1038/s41598-021-89177-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/22/2021] [Indexed: 02/01/2023] Open
Abstract
Buruli ulcer is a neglected tropical disease caused by the environmental pathogen, Mycobacterium ulcerans whose major virulence factor is mycolactone, a lipid cytotoxic molecule. Buruli ulcer has high morbidity, particularly in rural West Africa where the disease is endemic. Data have shown that infected lesions of Buruli ulcer patients can be colonized by quorum sensing bacteria such as Staphylococcus aureus, S. epidermidis, and Pseudomonas aeruginosa, but without typical pathology associated with those pathogens' colonization. M. ulcerans pathogenesis may not only be an individual act but may also be dependent on synergistic or antagonistic mechanisms within a polymicrobial network. Furthermore, co-colonization by these pathogens may promote delayed wound healing, especially after the initiation of antibiotic therapy. Hence, it is important to understand the interaction of M. ulcerans with other bacteria encountered during skin infection. We added mycolactone to S. aureus and incubated for 3, 6 and 24 h. At each timepoint, S. aureus growth and hemolytic activity was measured, and RNA was isolated to measure virulence gene expression through qPCR and RNASeq analyses. Results showed that mycolactone reduced S. aureus hemolytic activity, suppressed hla promoter activity, and attenuated virulence genes, but did not affect S. aureus growth. RNASeq data showed mycolactone greatly impacted S. aureus metabolism. These data are relevant and significant as mycolactone and S. aureus sensing and response at the transcriptional, translational and regulation levels will provide insight into biological mechanisms of interspecific interactions that may play a role in regulation of responses such as effects between M. ulcerans, mycolactone, and S. aureus virulence that will be useful for treatment and prevention.
Collapse
Affiliation(s)
- Laxmi Dhungel
- Department of Biological Sciences, Mississippi State University, P.O. Box GY, Starkville, MS, 39762, USA
| | - Lindsey Burcham
- Department of Biological Sciences, Mississippi State University, P.O. Box GY, Starkville, MS, 39762, USA
| | - Joo Youn Park
- Department of Biological Sciences, Mississippi State University, P.O. Box GY, Starkville, MS, 39762, USA
| | - Harshini Devi Sampathkumar
- Department of Biological Sciences, Mississippi State University, P.O. Box GY, Starkville, MS, 39762, USA
| | | | - Keun Seok Seo
- Department of Biological Sciences, Mississippi State University, P.O. Box GY, Starkville, MS, 39762, USA
| | - Heather Jordan
- Department of Biological Sciences, Mississippi State University, P.O. Box GY, Starkville, MS, 39762, USA.
| |
Collapse
|
8
|
Gyamfi E, Narh CA, Quaye C, Abbass A, Dzudzor B, Mosi L. Microbiology of secondary infections in Buruli ulcer lesions; implications for therapeutic interventions. BMC Microbiol 2021; 21:4. [PMID: 33402095 PMCID: PMC7783985 DOI: 10.1186/s12866-020-02070-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/15/2020] [Indexed: 11/10/2022] Open
Abstract
Background Buruli ulcer (BU) is a skin disease caused by Mycobacterium ulcerans and is the second most common mycobacterial disease after tuberculosis in Ghana and Côte d’Ivoire. M. ulcerans produces mycolactone, an immunosuppressant macrolide toxin, responsible for the characteristic painless nature of the infection. Secondary infection of ulcers before, during and after treatment has been associated with delayed wound healing and resistance to streptomycin and rifampicin. However, not much is known of the bacteria causing these infections as well as antimicrobial drugs for treating the secondary microorganism. This study sought to identify secondary microbial infections in BU lesions and to determine their levels of antibiotic resistance due to the prolonged antibiotic therapy required for Buruli ulcer. Results Swabs from fifty-one suspected BU cases were sampled in the Amansie Central District from St. Peters Hospital (Jacobu) and through an active case surveillance. Forty of the samples were M. ulcerans (BU) positive. Secondary bacteria were identified in all sampled lesions (N = 51). The predominant bacteria identified in both BU and Non-BU groups were Staphylococci spp and Bacilli spp. The most diverse secondary bacteria were detected among BU patients who were not yet on antibiotic treatment. Fungal species identified were Candida spp, Penicillium spp and Trichodema spp. Selected secondary bacteria isolates were all susceptible to clarithromycin and amikacin among both BU and Non-BU patients. Majority, however, had high resistance to streptomycin. Conclusions Microorganisms other than M. ulcerans colonize and proliferate on BU lesions. Secondary microorganisms of BU wounds were mainly Staphylococcus spp, Bacillus spp and Pseudomonas spp. These secondary microorganisms were less predominant in BU patients under treatment compared to those without treatment. The delay in healing that are experienced by some BU patients could be as a result of these bacteria and fungi colonizing and proliferating in BU lesions. Clarithromycin and amikacin are likely suitable drugs for clearance of secondary infection of Buruli ulcer.
Collapse
Affiliation(s)
- Elizabeth Gyamfi
- Department of Medical Biochemistry, University of Ghana Medical School, Korle Bu, Accra, Ghana.,Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana.,West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana
| | - Charles A Narh
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana.,Burnet Institute for Medical Research, Melbourne, Australia
| | - Charles Quaye
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Adiza Abbass
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana.,West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana
| | - Bartholomew Dzudzor
- Department of Medical Biochemistry, University of Ghana Medical School, Korle Bu, Accra, Ghana
| | - Lydia Mosi
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana. .,West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana.
| |
Collapse
|
9
|
Silence as a way of niche adaptation: mecC-MRSA with variations in the accessory gene regulator (agr) functionality express kaleidoscopic phenotypes. Sci Rep 2020; 10:14787. [PMID: 32901059 PMCID: PMC7479134 DOI: 10.1038/s41598-020-71640-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 08/19/2020] [Indexed: 11/09/2022] Open
Abstract
Functionality of the accessory gene regulator (agr) quorum sensing system is an important factor promoting either acute or chronic infections by the notorious opportunistic human and veterinary pathogen Staphylococcus aureus. Spontaneous alterations of the agr system are known to frequently occur in human healthcare-associated S. aureus lineages. However, data on agr integrity and function are sparse regarding other major clonal lineages. Here we report on the agr system functionality and activity level in mecC-carrying methicillin resistant S. aureus (MRSA) of various animal origins (n = 33) obtained in Europe as well as in closely related human isolates (n = 12). Whole genome analysis assigned all isolates to four clonal complexes (CC) with distinct agr types (CC599 agr I, CC49 agr II, CC130 agr III and CC1943 agr IV). Agr functionality was assessed by a combination of phenotypic assays and proteome analysis. In each CC, isolates with varying agr activity levels were detected, including the presence of completely non-functional variants. Genomic comparison of the agr I-IV encoding regions associated these phenotypic differences with variations in the agrA and agrC genes. The genomic changes were detected independently in divergent lineages, suggesting that agr variation might foster viability and adaptation of emerging MRSA lineages to distinct ecological niches.
Collapse
|
10
|
Van Der Werf TS, Barogui YT, Converse PJ, Phillips RO, Stienstra Y. Pharmacologic management of Mycobacterium ulcerans infection. Expert Rev Clin Pharmacol 2020; 13:391-401. [PMID: 32310683 DOI: 10.1080/17512433.2020.1752663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Pharmacological treatment of Buruli ulcer (Mycobacterium ulcerans infection; BU) is highly effective, as shown in two randomized trials in Africa. AREAS COVERED We review BU drug treatment - in vitro, in vivo and clinical trials (PubMed: '(Buruli OR (Mycobacterium AND ulcerans)) AND (treatment OR therapy).' We also highlight the pathogenesis of M. ulcerans infection that is dominated by mycolactone, a secreted exotoxin, that causes skin and soft tissue necrosis, and impaired immune response and tissue repair. Healing is slow, due to the delayed wash-out of mycolactone. An array of repurposed tuberculosis and leprosy drugs appears effective in vitro and in animal models. In clinical trials and observational studies, only rifamycins (notably, rifampicin), macrolides (notably, clarithromycin), aminoglycosides (notably, streptomycin) and fluoroquinolones (notably, moxifloxacin, and ciprofloxacin) have been tested. EXPERT OPINION A combination of rifampicin and clarithromycin is highly effective but lesions still take a long time to heal. Novel drugs like telacebec have the potential to reduce treatment duration but this drug may remain unaffordable in low-resourced settings. Research should address ulcer treatment in general; essays to measure mycolactone over time hold promise to use as a readout for studies to compare drug treatment schedules for larger lesions of Buruli ulcer.
Collapse
Affiliation(s)
- Tjip S Van Der Werf
- Departments of Internal Medicine/Infectious Diseases, University Medical Centre Groningen, University of Groningen , Groningen, Netherlands.,Pulmonary Diseases & Tuberculosis, University Medical Centre Groningen, University of Groningen , Groningen, Netherlands
| | - Yves T Barogui
- Ministère De La Sante ́, Programme National Lutte Contre La Lèpre Et l'Ulcère De Buruli , Cotonou, Benin
| | - Paul J Converse
- Department of Medicine, Johns Hopkins University Center for Tuberculosis Research , Baltimore, Maryland, USA
| | - Richard O Phillips
- Kumasi, Ghana And Kwame Nkrumah University of Science and Technology, Komfo Anokye Teaching Hospital , Kumasi, Ghana
| | - Ymkje Stienstra
- Departments of Internal Medicine/Infectious Diseases, University Medical Centre Groningen, University of Groningen , Groningen, Netherlands
| |
Collapse
|
11
|
Verdú-Expósito C, Romanyk J, Cuadros-González J, TesfaMariam A, Copa-Patiño JL, Pérez-Serrano J, Soliveri J. Study of susceptibility to antibiotics and molecular characterization of high virulence Staphylococcus aureus strains isolated from a rural hospital in Ethiopia. PLoS One 2020; 15:e0230031. [PMID: 32163464 PMCID: PMC7067403 DOI: 10.1371/journal.pone.0230031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/19/2020] [Indexed: 11/20/2022] Open
Abstract
We characterised 80 Staphylococcus aureus strains isolated from human patients with SSTIs at a rural hospital in Ethiopia. Susceptibility to antibiotic of all strains was tested. The MLST method was used to type and a phylogenetic analysis was conducted employing the sequences of 7 housekeeping genes. PCR amplification was used to investigate the presence of the following virulence genes in all strains: hla (α-haemolysin), tstH (toxic shock syndrome toxin), luk PV (Panton-Valentine leukocidin), fnbA (fibronectin binding protein A) and mecA (methicillin resistance). Most of the strains were resistant to penicillin and ampicillin, but only 3 strains were resistant to oxacillin, and 1 of them was a true MRSA. The MLST results showed a high diversity of sequence types (ST), 55% of which were new, and ST152 was the most prevalent. A phylogeny study showed that many of the new STs were phylogenetically related to other previously described STs, but bore little relationship to the only ST from Ethiopia described in the database. Virulence gene detection showed a high prevalence of strains encoding the hla, fnbA and pvl genes (98.77%, 96.3% and 72.84%, respectively), a low prevalence of the tst gene (13.58%) and a markedly low prevalence of MRSA (1.25%). S. aureus strains isolated from patients in a rural area in Ethiopia showed low levels of antibiotic resistance, except to penicillin. Moreover, this study reveals new STs in Eastern Africa that are phylogenetically related to other previously described STs, and confirm the high prevalence of the pvl gene and the low prevalence of MRSA on the continent.
Collapse
Affiliation(s)
- Cristina Verdú-Expósito
- Department of Biomedicine and Biotechnology, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Juan Romanyk
- Microbiology Service, Hospital Universitario Príncipe de Asturias, Alcalá-Meco, Alcalá de Henares, Madrid, Spain
| | - Juan Cuadros-González
- Microbiology Service, Hospital Universitario Príncipe de Asturias, Alcalá-Meco, Alcalá de Henares, Madrid, Spain
| | - Abraham TesfaMariam
- Department of General Medicine, Gambo General Rural Hospital, West-Arsi, Ethiopia
| | - José Luis Copa-Patiño
- Department of Biomedicine and Biotechnology, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Jorge Pérez-Serrano
- Department of Biomedicine and Biotechnology, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Juan Soliveri
- Department of Biomedicine and Biotechnology, University of Alcalá, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
12
|
Aswani V, Najar F, Pantrangi M, Mau B, Schwan WR, Shukla SK. Virulence factor landscape of a Staphylococcus aureus sequence type 45 strain, MCRF184. BMC Genomics 2019; 20:123. [PMID: 30736742 PMCID: PMC6368776 DOI: 10.1186/s12864-018-5394-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/18/2018] [Indexed: 11/10/2022] Open
Abstract
Background We describe the virulence factors of a methicillin-sensitive Staphylococcus aureus sequence type (ST) 45 strain, MCRF184, (spa type t917), that caused severe necrotizing fasciitis in a 72-year-old diabetic male. The genome of MCRF184 possesses three genomic islands: a relatively large type III νSaα with 42 open reading frames (ORFs) that includes superantigen- and lipoprotein-like genes, a truncated νSaβ that consists mostly of the enterotoxin gene cluster (egc), and a νSaγ island with 18 ORFs including α-toxin. Additionally, the genome has two phage-related regions: phage φSa3 with three genes of the immune evasion cluster (IEC), and an incomplete phage that is distinct from other S. aureus phages. Finally, the region between orfX and orfY harbors a putative efflux pump, acetyltransferase, regulators, and mobilization genes instead of genes of SCCmec. Results Virulence factors included phenol soluble modulins (PSMs) α1 through α4 and PSMs β1 and β2. Ten ORFs identified in MCRF184 had not been reported in previously sequenced S. aureus strains. Conclusion The dire clinical outcome in the patient and the described virulence factors all suggest that MCRF184, a ST45 strain is a highly virulent strain of S. aureus. Electronic supplementary material The online version of this article (10.1186/s12864-018-5394-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vijay Aswani
- Department of Internal Medicine & Pediatrics, University at Buffalo, Buffalo, New York, USA
| | - Fares Najar
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Madhulatha Pantrangi
- Center for Human Genetics, 1000 North Oak Avenue # MLR, Marshfield, WI, 54449, USA
| | - Bob Mau
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA
| | - William R Schwan
- Department of Microbiology, University of Wisconsin -La Crosse, La Crosse, WI, USA
| | - Sanjay K Shukla
- Center for Human Genetics, 1000 North Oak Avenue # MLR, Marshfield, WI, 54449, USA.
| |
Collapse
|
13
|
Frimpong M, Ahor HS, Wahed AAE, Agbavor B, Sarpong FN, Laing K, Wansbrough-Jones M, Phillips RO. Rapid detection of Mycobacterium ulcerans with isothermal recombinase polymerase amplification assay. PLoS Negl Trop Dis 2019; 13:e0007155. [PMID: 30707706 PMCID: PMC6373974 DOI: 10.1371/journal.pntd.0007155] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/13/2019] [Accepted: 01/14/2019] [Indexed: 01/05/2023] Open
Abstract
Background Access to an accurate diagnostic test for Buruli ulcer (BU) is a research priority according to the World Health Organization. Nucleic acid amplification of insertion sequence IS2404 by polymerase chain reaction (PCR) is the most sensitive and specific method to detect Mycobacterium ulcerans (M. ulcerans), the causative agent of BU. However, PCR is not always available in endemic communities in Africa due to its cost and technological sophistication. Isothermal DNA amplification systems such as the recombinase polymerase amplification (RPA) have emerged as a molecular diagnostic tool with similar accuracy to PCR but having the advantage of amplifying a template DNA at a constant lower temperature in a shorter time. The aim of this study was to develop RPA for the detection of M. ulcerans and evaluate its use in Buruli ulcer disease. Methodology and principal findings A specific fragment of IS2404 of M. ulcerans was amplified within 15 minutes at a constant 42°C using RPA method. The detection limit was 45 copies of IS2404 molecular DNA standard per reaction. The assay was highly specific as all 7 strains of M. ulcerans tested were detected, and no cross reactivity was observed to other mycobacteria or clinically relevant bacteria species. The clinical performance of the M. ulcerans (Mu-RPA) assay was evaluated using DNA extracted from fine needle aspirates or swabs taken from 67 patients in whom BU was suspected and 12 patients with clinically confirmed non-BU lesions. All results were compared to a highly sensitive real-time PCR. The clinical specificity of the Mu-RPA assay was 100% (95% CI, 84–100), whiles the sensitivity was 88% (95% CI, 77–95). Conclusion The Mu-RPA assay represents an alternative to PCR, especially in areas with limited infrastructure. Current diagnostic methods to detect M. ulcerans suffer from delayed time-to-results in most endemic countries by the prolonged period of time for the shipment and storage of samples to a distant, centralized laboratory. The M. ulcerans recombinase polymerase amplification assay (Mu-RPA) is a new, rapid diagnostic test developed for the detection of M. ulcerans infection, known commonly as Buruli ulcer, a chronic, debilitating, necrotizing disease of the skin and soft tissues. This assay is suitable for use on a portable detection device, with the potential to be used for quick diagnosis at the point of need, providing timely results to health workers at Buruli ulcer treatment clinics.
Collapse
Affiliation(s)
- Michael Frimpong
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- * E-mail:
| | - Hubert Senanu Ahor
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Ahmed Abd El Wahed
- Division of Microbiology and Animal Hygiene, Georg-August University, Goettingen, Germany
| | - Bernadette Agbavor
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Francisca Naana Sarpong
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kenneth Laing
- Institute for Infection and Immunity, St. George’s University of London, London, United Kingdom
| | - Mark Wansbrough-Jones
- Institute for Infection and Immunity, St. George’s University of London, London, United Kingdom
| | - Richard Odame Phillips
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
14
|
Buruli Ulcer, a Prototype for Ecosystem-Related Infection, Caused by Mycobacterium ulcerans. Clin Microbiol Rev 2017; 31:31/1/e00045-17. [PMID: 29237707 DOI: 10.1128/cmr.00045-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Buruli ulcer is a noncontagious disabling cutaneous and subcutaneous mycobacteriosis reported by 33 countries in Africa, Asia, Oceania, and South America. The causative agent, Mycobacterium ulcerans, derives from Mycobacterium marinum by genomic reduction and acquisition of a plasmid-borne, nonribosomal cytotoxin mycolactone, the major virulence factor. M. ulcerans-specific sequences have been readily detected in aquatic environments in food chains involving small mammals. Skin contamination combined with any type of puncture, including insect bites, is the most plausible route of transmission, and skin temperature of <30°C significantly correlates with the topography of lesions. After 30 years of emergence and increasing prevalence between 1970 and 2010, mainly in Africa, factors related to ongoing decreasing prevalence in the same countries remain unexplained. Rapid diagnosis, including laboratory confirmation at the point of care, is mandatory in order to reduce delays in effective treatment. Parenteral and potentially toxic streptomycin-rifampin is to be replaced by oral clarithromycin or fluoroquinolone combined with rifampin. In the absence of proven effective primary prevention, avoiding skin contamination by means of clothing can be implemented in areas of endemicity. Buruli ulcer is a prototype of ecosystem pathology, illustrating the impact of human activities on the environment as a source for emerging tropical infectious diseases.
Collapse
|