1
|
Yu S, Wang X, Li Z, Jin D, Yu M, Li J, Li Y, Liu X, Zhang Q, Liu Y, Liu R, Wang X, Fang B, Zhang C, Wang R, Ren F. Solobacterium moorei promotes the progression of adenomatous polyps by causing inflammation and disrupting the intestinal barrier. J Transl Med 2024; 22:169. [PMID: 38368407 DOI: 10.1186/s12967-024-04977-3if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/11/2024] [Indexed: 07/26/2024] Open
Abstract
BACKGROUND Adenomatous polyps (APs) with inflammation are risk factors for colorectal cancer. However, the role of inflammation-related gut microbiota in promoting the progression of APs is unknown. METHODS Sequencing of the 16S rRNA gene was conducted to identify characteristic bacteria in AP tissues and normal mucosa. Then, the roles of inflammation-related bacteria were clarified by Spearman correlation analysis. Furthermore, colorectal HT-29 cells, normal colon NCM460 cells, and azoxymethane-treated mice were used to investigate the effects of the characteristic bacteria on progression of APs. RESULTS The expression levels of inflammation-related markers (diamine oxidase, D-lactate, C-reactive protein, tumor necrosis factor-α, interleukin-6 and interleukin-1β) were increased, whereas the expression levels of anti-inflammatory factors (interleukin-4 and interleukin-10) were significantly decreased in AP patients as compared to healthy controls. Solobacterium moorei (S. moorei) was enriched in AP tissues and fecal samples, and significantly positively correlated with serum inflammation-related markers. In vitro, S. moorei preferentially attached to HT-29 cells and stimulated cell proliferation and production of pro-inflammatory factors. In vivo, the incidence of intestinal dysplasia was significantly increased in the S. moorei group. Gavage of mice with S. moorei upregulated production of pro-inflammatory factors, suppressed proliferation of CD4+ and CD8+cells, and disrupted the integrity of the intestinal barrier, thereby accelerating progression of APs. CONCLUSIONS S. moorei accelerated the progression of AP in mice via activation of the NF-κB signaling pathway, chronic low-grade inflammation, and intestinal barrier disruption. Targeted reduction of S. moorei presents a potential strategy to prevent the progression of APs.
Collapse
Affiliation(s)
- Shoujuan Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xifan Wang
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, 10032, USA
| | - Ziyang Li
- Key Laboratory of Functional Dairy, Co-Constructed By Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Dekui Jin
- Department of General Practice, The Third Centers of Chinese PLA General Hospital, Beijing, 100039, China
| | - Mengyang Yu
- Department of General Practice, The Third Centers of Chinese PLA General Hospital, Beijing, 100039, China
| | - Jingnan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Yixuan Li
- Key Laboratory of Functional Dairy, Co-Constructed By Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Xiaoxue Liu
- Key Laboratory of Functional Dairy, Co-Constructed By Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Qi Zhang
- Key Laboratory of Functional Dairy, Co-Constructed By Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Yinghua Liu
- Department of Nutrition, The First Center of Chinese PLA General Hospital, Beijing, 100037, China
| | - Rong Liu
- Key Laboratory of Functional Dairy, Co-Constructed By Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Xiaoyu Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Bing Fang
- Key Laboratory of Functional Dairy, Co-Constructed By Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Chengying Zhang
- Department of General Practice, The Third Centers of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Ran Wang
- Key Laboratory of Functional Dairy, Co-Constructed By Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China.
| | - Fazheng Ren
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
2
|
Yu S, Wang X, Li Z, Jin D, Yu M, Li J, Li Y, Liu X, Zhang Q, Liu Y, Liu R, Wang X, Fang B, Zhang C, Wang R, Ren F. Solobacterium moorei promotes the progression of adenomatous polyps by causing inflammation and disrupting the intestinal barrier. J Transl Med 2024; 22:169. [PMID: 38368407 PMCID: PMC10874563 DOI: 10.1186/s12967-024-04977-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/11/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND Adenomatous polyps (APs) with inflammation are risk factors for colorectal cancer. However, the role of inflammation-related gut microbiota in promoting the progression of APs is unknown. METHODS Sequencing of the 16S rRNA gene was conducted to identify characteristic bacteria in AP tissues and normal mucosa. Then, the roles of inflammation-related bacteria were clarified by Spearman correlation analysis. Furthermore, colorectal HT-29 cells, normal colon NCM460 cells, and azoxymethane-treated mice were used to investigate the effects of the characteristic bacteria on progression of APs. RESULTS The expression levels of inflammation-related markers (diamine oxidase, D-lactate, C-reactive protein, tumor necrosis factor-α, interleukin-6 and interleukin-1β) were increased, whereas the expression levels of anti-inflammatory factors (interleukin-4 and interleukin-10) were significantly decreased in AP patients as compared to healthy controls. Solobacterium moorei (S. moorei) was enriched in AP tissues and fecal samples, and significantly positively correlated with serum inflammation-related markers. In vitro, S. moorei preferentially attached to HT-29 cells and stimulated cell proliferation and production of pro-inflammatory factors. In vivo, the incidence of intestinal dysplasia was significantly increased in the S. moorei group. Gavage of mice with S. moorei upregulated production of pro-inflammatory factors, suppressed proliferation of CD4+ and CD8+cells, and disrupted the integrity of the intestinal barrier, thereby accelerating progression of APs. CONCLUSIONS S. moorei accelerated the progression of AP in mice via activation of the NF-κB signaling pathway, chronic low-grade inflammation, and intestinal barrier disruption. Targeted reduction of S. moorei presents a potential strategy to prevent the progression of APs.
Collapse
Affiliation(s)
- Shoujuan Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xifan Wang
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, 10032, USA
| | - Ziyang Li
- Key Laboratory of Functional Dairy, Co-Constructed By Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Dekui Jin
- Department of General Practice, The Third Centers of Chinese PLA General Hospital, Beijing, 100039, China
| | - Mengyang Yu
- Department of General Practice, The Third Centers of Chinese PLA General Hospital, Beijing, 100039, China
| | - Jingnan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Yixuan Li
- Key Laboratory of Functional Dairy, Co-Constructed By Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Xiaoxue Liu
- Key Laboratory of Functional Dairy, Co-Constructed By Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Qi Zhang
- Key Laboratory of Functional Dairy, Co-Constructed By Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Yinghua Liu
- Department of Nutrition, The First Center of Chinese PLA General Hospital, Beijing, 100037, China
| | - Rong Liu
- Key Laboratory of Functional Dairy, Co-Constructed By Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Xiaoyu Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Bing Fang
- Key Laboratory of Functional Dairy, Co-Constructed By Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Chengying Zhang
- Department of General Practice, The Third Centers of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Ran Wang
- Key Laboratory of Functional Dairy, Co-Constructed By Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China.
| | - Fazheng Ren
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|