1
|
Mondragón-Rosas F, Florencio-Martínez LE, Villa-Delavequia GS, Manning-Cela RG, Carrero JC, Nepomuceno-Mejía T, Martínez-Calvillo S. Characterization of Tau95 led to the identification of a four-subunit TFIIIC complex in trypanosomatid parasites. Appl Microbiol Biotechnol 2024; 108:109. [PMID: 38204130 PMCID: PMC10781861 DOI: 10.1007/s00253-023-12903-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/20/2023] [Accepted: 09/30/2023] [Indexed: 01/12/2024]
Abstract
RNA polymerase III (RNAP III) synthetizes small essential non-coding RNA molecules such as tRNAs and 5S rRNA. In yeast and vertebrates, RNAP III needs general transcription factors TFIIIA, TFIIIB, and TFIIIC to initiate transcription. TFIIIC, composed of six subunits, binds to internal promoter elements in RNAP III-dependent genes. Limited information is available about RNAP III transcription in the trypanosomatid protozoa Trypanosoma brucei and Leishmania major, which diverged early from the eukaryotic lineage. Analyses of the first published draft of the trypanosomatid genome sequences failed to recognize orthologs of any of the TFIIIC subunits, suggesting that this transcription factor is absent in these parasites. However, a putative TFIIIC subunit was recently annotated in the databases. Here we characterize this subunit in T. brucei and L. major and demonstrate that it corresponds to Tau95. In silico analyses showed that both proteins possess the typical Tau95 sequences: the DNA binding region and the dimerization domain. As anticipated for a transcription factor, Tau95 localized to the nucleus in insect forms of both parasites. Chromatin immunoprecipitation (ChIP) assays demonstrated that Tau95 binds to tRNA and U2 snRNA genes in T. brucei. Remarkably, by performing tandem affinity purifications we identified orthologs of TFIIIC subunits Tau55, Tau131, and Tau138 in T. brucei and L. major. Thus, contrary to what was assumed, trypanosomatid parasites do possess a TFIIIC complex. Other putative interacting partners of Tau95 were identified in T. brucei and L. major. KEY POINTS: • A four-subunit TFIIIC complex is present in T. brucei and L. major • TbTau95 associates with tRNA and U2 snRNA genes • Putative interacting partners of Tau95 might include some RNAP II regulators.
Collapse
Affiliation(s)
- Fabiola Mondragón-Rosas
- Facultad de Estudios Superiores Iztacala, Unidad de Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
| | - Luis E Florencio-Martínez
- Facultad de Estudios Superiores Iztacala, Unidad de Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
| | - Gino S Villa-Delavequia
- Facultad de Estudios Superiores Iztacala, Unidad de Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
| | - Rebeca G Manning-Cela
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Ciudad de Mexico, CP 07360, México
| | - Julio C Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de Mexico, 04510, México
| | - Tomás Nepomuceno-Mejía
- Facultad de Estudios Superiores Iztacala, Unidad de Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
| | - Santiago Martínez-Calvillo
- Facultad de Estudios Superiores Iztacala, Unidad de Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México.
| |
Collapse
|
2
|
Cano-Santiago A, Florencio-Martínez LE, Vélez-Ramírez DE, Romero-Chaveste AJ, Manning-Cela RG, Nepomuceno-Mejía T, Martínez-Calvillo S. Analyses of the essential C82 subunit uncovered some differences in RNA polymerase III transcription between Trypanosoma brucei and Leishmania major. Parasitology 2024; 151:1185-1200. [PMID: 39523652 PMCID: PMC11894013 DOI: 10.1017/s0031182024000921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 11/16/2024]
Abstract
The 17-subunit RNA polymerase III (RNAP III) synthesizes essential untranslated RNAs such as tRNAs and 5S rRNA. In yeast and vertebrates, subunit C82 forms a stable subcomplex with C34 and C31 that is necessary for promoter-specific transcription initiation. Little is known about RNAP III transcription in trypanosomatid parasites. To narrow this knowledge gap, we characterized the C82 subunit in Trypanosoma brucei and Leishmania major. Bioinformatic analyses showed that the 4 distinctive extended winged-helix (eWH) domains and the coiled-coil motif are present in C82 in these microorganisms. Nevertheless, C82 in trypanosomatids presents certain unique traits, including an exclusive loop within the eWH1 domain. We found that C82 localizes to the nucleus and binds to RNAP III-dependent genes in the insect stages of both parasites. Knock-down of C82 by RNA interference significantly reduced the levels of tRNAs and 5S rRNA and led to the death of procyclic forms of T. brucei. Tandem affinity purifications with both parasites allowed the identification of several C82-interacting partners, including C34 and some genus-specific putative regulators of transcription. However, the orthologue of C31 was not found in trypanosomatids. Interestingly, our data suggest a strong association of C82 with TFIIIC subunits in T. brucei, but not in L. major.
Collapse
Affiliation(s)
- Andrés Cano-Santiago
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México
| | - Luis E. Florencio-Martínez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México
| | - Daniel E. Vélez-Ramírez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México
| | - Adrián J. Romero-Chaveste
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México
| | - Rebeca G. Manning-Cela
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Tomás Nepomuceno-Mejía
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México
| | - Santiago Martínez-Calvillo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México
| |
Collapse
|
3
|
Rivera-Rivas LA, Florencio-Martínez LE, Romero-Meza G, Ortega-Ortiz RC, Manning-Cela RG, Carrero JC, Nepomuceno-Mejía T, Martínez-Calvillo S. Transcriptome and proteome changes triggered by overexpression of the transcriptional regulator Maf1 in the human pathogen Leishmania major. FASEB J 2024; 38:e23888. [PMID: 39157983 DOI: 10.1096/fj.202400636rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Maf1, originally described as a repressor of RNA polymerase III (RNAP III) transcription in yeast, participates in multiple functions across eukaryotes. However, the knowledge about Maf1 in protozoan parasites is scarce. To initiate the study of Maf1 in Leishmania major, we generated a cell line that overexpresses this protein. Overexpression of Maf1 led to a significant reduction in the abundance of tRNAs, 5S rRNA, and U4 snRNA, demonstrating that Maf1 regulates RNAP III activity in L. major. To further explore the roles played by Maf1 in this microorganism, global transcriptomic and proteomic changes due to Maf1 overexpression were determined using RNA-sequencing and label-free quantitative mass spectrometry. Compared to wild-type cells, differential expression was observed for 1082 transcripts (615 down-regulated and 467 up-regulated) and 205 proteins (132 down-regulated and 73 up-regulated) in the overexpressing cells. A correlation of 44% was found between transcriptomic and proteomic results. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the differentially expressed genes and proteins are mainly involved in transcription, cell cycle regulation, lipid metabolism and transport, ribosomal biogenesis, carbohydrate metabolism, autophagy, and cytoskeleton modification. Thus, our results suggest the involvement of Maf1 in the regulation of all these processes in L. major, as reported in other species, indicating that the functions performed by Maf1 were established early in eukaryotic evolution. Notably, our data also suggest the participation of L. major Maf1 in mRNA post-transcriptional control, a role that, to the best of our knowledge, has not been described in other organisms.
Collapse
Affiliation(s)
- Luis A Rivera-Rivas
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Luis E Florencio-Martínez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Gabriela Romero-Meza
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| | - Roberto C Ortega-Ortiz
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Rebeca G Manning-Cela
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, Mexico
| | - Julio C Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Tomás Nepomuceno-Mejía
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Santiago Martínez-Calvillo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| |
Collapse
|
4
|
Macías F, Afonso-Lehmann R, Carreira PE, Thomas MC. TBP and SNAP50 transcription factors bind specifically to the Pr77 promoter sequence from trypanosomatid non-LTR retrotransposons. Parasit Vectors 2021; 14:313. [PMID: 34108018 PMCID: PMC8190864 DOI: 10.1186/s13071-021-04803-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022] Open
Abstract
Background Trypanosomatid genomes are colonized by active and inactive mobile DNA elements, such as LINE, SINE-like, SIDER and DIRE retrotransposons. These elements all share a 77-nucleotide-long sequence at their 5′ ends, known as Pr77, which activates transcription, thereby generating abundant unspliced and translatable transcripts. However, transcription factors that mediates this process have still not been reported. Methods TATA-binding protein (TBP) and small nuclear RNA-activating protein 50 kDa (SNAP50) recombinant proteins and specific antibodies raised against them were generated. Protein capture assay, electrophoretic mobility-shift assays (EMSA) and EMSA competition assays carried out using these proteins and nuclear proteins of the parasite together to specific DNA sequences used as probes allowed detecting direct interaction of these transcription factors to Pr77 sequence. Results This study identified TBP and SNAP50 as part of the DNA-protein complex formed by the Pr77 promoter sequence and nuclear proteins of Trypanosoma cruzi. TBP establishes direct and specific contact with the Pr77 sequence, where the DPE and DPE downstream regions are docking sites with preferential binding. TBP binds cooperatively (Hill coefficient = 1.67) to Pr77 and to both strands of the Pr77 sequence, while the conformation of this highly structured sequence is not involved in TBP binding. Direct binding of SNAP50 to the Pr77 sequence is weak and may be mediated by protein–protein interactions through other trypanosomatid nuclear proteins. Conclusions Identification of the transcription factors that mediate Pr77 transcription may help to elucidate how these retrotransposons are mobilized within the trypanosomatid genomes and their roles in gene regulation processes in this human parasite. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04803-5.
Collapse
Affiliation(s)
- Francisco Macías
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina "López Neyra", Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, 18016, Granada, Spain
| | - Raquel Afonso-Lehmann
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina "López Neyra", Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, 18016, Granada, Spain
| | - Patricia E Carreira
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina "López Neyra", Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, 18016, Granada, Spain.,Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD, 4102, Australia
| | - M Carmen Thomas
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina "López Neyra", Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, 18016, Granada, Spain.
| |
Collapse
|
5
|
Participation of TFIIIB Subunit Brf1 in Transcription Regulation in the Human Pathogen Leishmania major. Genes (Basel) 2021; 12:genes12020280. [PMID: 33669344 PMCID: PMC7920299 DOI: 10.3390/genes12020280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/02/2021] [Accepted: 02/11/2021] [Indexed: 12/24/2022] Open
Abstract
In yeast and higher eukaryotes, transcription factor TFIIIB is required for accurate initiation of transcription by RNA Polymerase III (Pol III), which synthesizes transfer RNAs (tRNAs), 5S ribosomal RNA (rRNA), and other essential RNA molecules. TFIIIB is composed of three subunits: B double prime 1 (Bdp1), TATA-binding protein (TBP), and TFIIB-related factor 1 (Brf1). Here, we report the molecular characterization of Brf1 in Leishmania major (LmBrf1), a parasitic protozoan that shows distinctive transcription characteristics, including the apparent absence of Pol III general transcription factors TFIIIA and TFIIIC. Although single-knockout parasites of LmBrf1 were obtained, attempts to generate LmBrf1-null mutants were unsuccessful, which suggests that LmBrf1 is essential in promastigotes of L. major. Notably, Northern blot analyses showed that the half-lives of the messenger RNAs (mRNAs) from LmBrf1 and other components of the Pol III transcription machinery (Bdp1 and Pol III subunit RPC1) are very similar (~40 min). Stabilization of these transcripts was observed in stationary-phase parasites. Chromatin immunoprecipitation (ChIP) experiments showed that LmBrf1 binds to tRNA, small nuclear RNA (snRNA), and 5S rRNA genes. Unexpectedly, the results also indicated that LmBrf1 associates to the promoter region of the 18S rRNA genes and to three Pol II-dependent regions here analyzed. Tandem affinity purification and mass spectrometry analyses allowed the identification of a putative TFIIIC subunit. Moreover, several proteins involved in transcription by all three RNA polymerases co-purified with the tagged version of LmBrf1.
Collapse
|
6
|
Parra-Marín O, López-Pacheco K, Hernández R, López-Villaseñor I. The highly diverse TATA box-binding proteins among protists: A review. Mol Biochem Parasitol 2020; 239:111312. [PMID: 32771681 DOI: 10.1016/j.molbiopara.2020.111312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/28/2020] [Accepted: 07/22/2020] [Indexed: 10/23/2022]
Abstract
Transcription is the first step of gene expression regulation and is a fundamental mechanism for establishing the viability and development of a cell. The TATA box-binding protein (TBP) interaction with a TATA box in a promoter is one of the best studied mechanisms in transcription initiation. TBP is a transcription factor that is highly conserved from archaea to humans and is essential for the transcription initiated by each of the three RNA polymerases. In addition, the discovery of TBP-related factor 1 (TRF1) and other factors related to TBP shed light on the variability among transcription initiation complexes, thus demonstrating that the compositions of these complexes are, in fact, more complicated than originally believed. Despite these facts, the majority of studies on transcription have been performed on animal, plant and fungal cells, which serve as canonical models, and information regarding protist cells is relatively scarce. The aim of this work is to review the diversity of the TBPs that have been documented in protists and describe some of the specific features that differentiate them from their counterparts in higher eukaryotes.
Collapse
Affiliation(s)
- Olivia Parra-Marín
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Karla López-Pacheco
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Roberto Hernández
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Imelda López-Villaseñor
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, Mexico.
| |
Collapse
|
7
|
Romero-Meza G, Vélez-Ramírez DE, Florencio-Martínez LE, Román-Carraro FC, Manning-Cela R, Hernández-Rivas R, Martínez-Calvillo S. Maf1 is a negative regulator of transcription in Trypanosoma brucei. Mol Microbiol 2016; 103:452-468. [PMID: 27802583 DOI: 10.1111/mmi.13568] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2016] [Indexed: 11/29/2022]
Abstract
RNA polymerase III (Pol III) produces small RNA molecules that play essential roles in mRNA processing and translation. Maf1, originally described as a negative regulator of Pol III transcription, has been studied from yeast to human. Here we characterized Maf1 in the parasitic protozoa Trypanosoma brucei (TbMaf1), representing the first report to analyse Maf1 in an early-diverged eukaryote. While Maf1 is generally encoded by a single-copy gene, the T. brucei genome contains two almost identical TbMaf1 genes. The TbMaf1 protein has the three conserved sequences and is predicted to fold into a globular structure. Unlike in yeast, TbMaf1 localizes to the nucleus in procyclic forms of T. brucei under normal growth conditions. Cell lines that either downregulate or overexpress TbMaf1 were generated, and growth curve analysis with them suggested that TbMaf1 participates in the regulation of cell growth of T. brucei. Nuclear run-on and chromatin immunoprecipitation analyses demonstrated that TbMaf1 represses Pol III transcription of tRNA and U2 snRNA genes by associating with their promoters. Interestingly, 5S rRNA levels do not change after TbMaf1 ablation or overexpression. Notably, our data also revealed that TbMaf1 regulates Pol I transcription of procyclin gene and Pol II transcription of SL RNA genes.
Collapse
Affiliation(s)
- Gabriela Romero-Meza
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP, 54090, México.,Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, México, DF, 07360, México
| | - Daniel E Vélez-Ramírez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP, 54090, México
| | - Luis E Florencio-Martínez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP, 54090, México
| | - Fiordaliso C Román-Carraro
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP, 54090, México
| | - Rebeca Manning-Cela
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, México, DF, 07360, México
| | - Rosaura Hernández-Rivas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, México, DF, 07360, México
| | - Santiago Martínez-Calvillo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP, 54090, México
| |
Collapse
|
8
|
Teixeira ARL, Nitz N, Bernal FM, Hecht MM. Parasite induced genetically driven autoimmune Chagas heart disease in the chicken model. J Vis Exp 2012:3716. [PMID: 22951533 PMCID: PMC3476407 DOI: 10.3791/3716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Trypanosoma cruzi acute infections acquired in infancy and childhood seem asymptomatic, but approximately one third of the chronically infected cases show Chagas disease up to three decades or later. Autoimmunity and parasite persistence are competing theories to explain the pathogenesis of Chagas disease. To separate roles played by parasite persistence and autoimmunity in Chagas disease we inoculate the T. cruzi in the air chamber of fertilized eggs. The mature chicken immune system is a tight biological barrier against T. cruzi and the infection is eradicated upon development of its immune system by the end of the first week of growth. The chicks are parasite-free at hatching, but they retain integrated parasite mitochondrial kinetoplast DNA (kDNA) minicircle within their genome that are transferred to their progeny. Documentation of the kDNA minicircle integration in the chicken genome was obtained by a targeted prime TAIL-PCR, Southern hybridizations, cloning, and sequencing. The kDNA minicircle integrations rupture open reading frames for transcription and immune system factors, phosphatase (GTPase), adenylate cyclase and phosphorylases (PKC, NF-Kappa B activator, PI-3K) associated with cell physiology, growth, and differentiation, and other gene functions. Severe myocarditis due to rejection of target heart fibers by effectors cytotoxic lymphocytes is seen in the kDNA mutated chickens, showing an inflammatory cardiomyopathy similar to that seen in human Chagas disease. Notably, heart failure and skeletal muscle weakness are present in adult chickens with kDNA rupture of the dystrophin gene in chromosome 1. Similar genotipic alterations are associated with tissue destruction carried out by effectors CD45+, CD8γδ+, CD8α lymphocytes. Thus this protozoan infection can induce genetically driven autoimmune disease.
Collapse
|
9
|
Regulation of gene expression in protozoa parasites. J Biomed Biotechnol 2010; 2010:726045. [PMID: 20204171 PMCID: PMC2830571 DOI: 10.1155/2010/726045] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 11/10/2009] [Accepted: 01/08/2010] [Indexed: 12/25/2022] Open
Abstract
Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or drug resistance, and the comprehension of the mechanisms implicated in that control could help to develop novel therapeutic strategies. However, until now these mechanisms are poorly understood in protozoa. Recent investigations into gene expression in protozoa parasites suggest that they possess many of the canonical machineries employed by higher eukaryotes for the control of gene expression at transcriptional, posttranscriptional, and epigenetic levels, but they also contain exclusive mechanisms. Here, we review the current understanding about the regulation of gene expression in Plasmodium sp., Trypanosomatids, Entamoeba histolytica and Trichomonas vaginalis.
Collapse
|
10
|
Cribb P, Esteban L, Trochine A, Girardini J, Serra E. Trypanosoma cruzi TBP shows preference for C/G-rich DNA sequences in vitro. Exp Parasitol 2010; 124:346-9. [DOI: 10.1016/j.exppara.2009.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 09/28/2009] [Accepted: 11/12/2009] [Indexed: 11/16/2022]
|
11
|
Structure of the C-terminal domain of transcription factor IIB from Trypanosoma brucei. Proc Natl Acad Sci U S A 2009; 106:13242-7. [PMID: 19666603 DOI: 10.1073/pnas.0904309106] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In trypanosomes, the production of mRNA relies on the synthesis of the spliced leader (SL) RNA. Expression of the SL RNA is initiated at the only known RNA polymerase II promoter in these parasites. In the pathogenic trypanosome, Trypanosoma brucei, transcription factor IIB (tTFIIB) is essential for SL RNA gene transcription and cell viability, but has a highly divergent primary sequence in comparison to TFIIB in well-studied eukaryotes. Here we describe the 2.3 A resolution structure of the C-terminal domain of tTFIIB (tTFIIB(C)). The tTFIIB(C) structure consists of 2 closely packed helical modules followed by a C-terminal extension of 32 aa. Using the structure as a guide, alanine substitutions of basic residues in regions analogous to functionally important regions of the well-studied eukaryotic TFIIB support conservation of a general mechanism of TFIIB function in eukaryotes. Strikingly, tTFIIB(C) contains additional loops and helices, and, in contrast to the highly basic DNA binding surface of human TFIIB, contains a neutral surface in the corresponding region. These attributes probably mediate trypanosome-specific interactions and have implications for the apparent bidirectional transcription by RNA polymerase II in protein-encoding gene expression in these organisms.
Collapse
|
12
|
Thomas S, Green A, Sturm NR, Campbell DA, Myler PJ. Histone acetylations mark origins of polycistronic transcription in Leishmania major. BMC Genomics 2009; 10:152. [PMID: 19356248 PMCID: PMC2679053 DOI: 10.1186/1471-2164-10-152] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 04/08/2009] [Indexed: 11/19/2022] Open
Abstract
Background Many components of the RNA polymerase II transcription machinery have been identified in kinetoplastid protozoa, but they diverge substantially from other eukaryotes. Furthermore, protein-coding genes in these organisms lack individual transcriptional regulation, since they are transcribed as long polycistronic units. The transcription initiation sites are assumed to lie within the 'divergent strand-switch' regions at the junction between opposing polycistronic gene clusters. However, the mechanism by which Kinetoplastidae initiate transcription is unclear, and promoter sequences are undefined. Results The chromosomal location of TATA-binding protein (TBP or TRF4), Small Nuclear Activating Protein complex (SNAP50), and H3 histones were assessed in Leishmania major using microarrays hybridized with DNA obtained through chromatin immunoprecipitation (ChIP-chip). The TBP and SNAP50 binding patterns were almost identical and high intensity peaks were associated with tRNAs and snRNAs. Only 184 peaks of acetylated H3 histone were found in the entire genome, with substantially higher intensity in rapidly-dividing cells than stationary-phase. The majority of the acetylated H3 peaks were found at divergent strand-switch regions, but some occurred at chromosome ends and within polycistronic gene clusters. Almost all these peaks were associated with lower intensity peaks of TBP/SNAP50 binding a few kilobases upstream, evidence that they represent transcription initiation sites. Conclusion The first genome-wide maps of DNA-binding protein occupancy in a kinetoplastid organism suggest that H3 histones at the origins of polycistronic transcription of protein-coding genes are acetylated. Global regulation of transcription initiation may be achieved by modifying the acetylation state of these origins.
Collapse
Affiliation(s)
- Sean Thomas
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|
13
|
Cribb P, Serra E. One- and two-hybrid analysis of the interactions between components of the Trypanosoma cruzi spliced leader RNA gene promoter binding complex. Int J Parasitol 2009; 39:525-32. [DOI: 10.1016/j.ijpara.2008.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 09/10/2008] [Accepted: 09/14/2008] [Indexed: 01/06/2023]
|
14
|
|
15
|
The promoter and transcribed regions of the Leishmania tarentolae spliced leader RNA gene array are devoid of nucleosomes. BMC Microbiol 2007; 7:44. [PMID: 17517143 PMCID: PMC1888695 DOI: 10.1186/1471-2180-7-44] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 05/22/2007] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND The spliced leader (SL) RNA provides the 5' m7G cap and first 39 nt for all nuclear mRNAs in kinetoplastids. This small nuclear RNA is transcribed by RNA polymerase II from individual promoters. In Leishmania tarentolae the SL RNA genes reside in two multi-copy tandem arrays designated MINA and MINB. The transcript accumulation from the SL promoter on the drug-selected, episomal SL RNA gene cassette pX-tSL is ~10% that of the genomic array in uncloned L. tarentolae transfectants. This disparity is neither sequence- nor copy-number related, and thus may be due to interference of SL promoter function by epigenetic factors. To explore these possibilities we examined the nucleoplasmic localization of the SL RNA genes as well as their nucleosomal architecture. RESULTS The genomic SL RNA genes and the episome did not co-localize within the nucleus. Each genomic repeat contains one nucleosome regularly positioned within the non-transcribed intergenic region. The 363-bp MINA array was resistant to micrococcal nuclease digestion between the -258 and -72 positions relative to the transcription start point due to nucleosome association, leaving the promoter elements and the entire transcribed region exposed for protein interactions. A pattern of ~164-bp protected segments was observed, corresponding to the amount of DNA typically bound by a nucleosome. By contrast, nucleosomes on the pX-tSL episome were randomly distributed over the episomal SL cassette, reducing transcription factor access to the episomal promoter by approximately 74%. Cloning of the episome transfectants revealed a range of transcriptional activities, implicating a mechanism of epigenetic heredity. CONCLUSION The disorganized nucleosomes on the pX episome are in a permissive conformation for transcription of the SL RNA cassette approximately 25% of the time within a given parasite. Nucleosome interference is likely the major factor in the apparent transcriptional repression of the SL RNA gene cassette. Coupled with the requirement for run-around transcription that drives expression of the selectable drug marker, transcription of the episomal SL may be reduced even further due to sub-optimal nucleoplasmic localization and initiation complex disruption.
Collapse
|