1
|
Jegatheesan A, Micciche M, Ngo J, Bradley PJ, Howe DK, Dangoudoubiyam S. Characterization of SnROP9, a rhoptry protein homologue of Sarcocystis neurona that is expressed in lifecycle stages lacking rhoptry organelles. Int J Parasitol 2025; 55:327-337. [PMID: 39993621 DOI: 10.1016/j.ijpara.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/03/2025] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
Proteins released by the club-shaped, apically located, specialized secretory organelles called rhoptries play an essential role in host cell invasion and intracellular survival of apicomplexans. Sarcocystis neurona, the apicomplexan responsible for equine protozoal myeloencephalitis (EPM), lacks rhoptries in its asexual developmental stages, viz., merozoites and schizonts. Nevertheless, rhoptry protein (ROP) homologues were detected in the S. neurona transcriptome and proteome, and SnROP9 was particularly abundant. In this study, we performed in vitro assays to characterize SnROP9 and determine its expression in the merozoite and schizont stages. SnROP9 is a 351 amino acids long protein with two consensus rhoptry protein cleavage motifs. Partition and secretory assays confirmed that SnROP9 is a soluble protein secreted into the excretory-secretory fraction. The total lysate of S. neurona merozoites revealed the full-length protein at ∼38 kDa and two additional peptides at ∼30 kDa and 25 kDa, consistent with its cleavage by a rhoptry processing enzyme. In the schizont stages, the presumed processed SnROP9 peptides migrated differently than in the merozoite and appeared as doublets. In the merozoite, SnROP9 localized predominantly to the apical pole but did not co-localize with the microneme protein, SnMIC10, suggesting that SnROP9 is not trafficked via micronemes, another type of apical secretory organelle. Interestingly, SnROP9 redistributed shortly after the invasion and remained dispersed with a granular appearance throughout the schizont during intracellular development. Despite several attempts, disruption of Snrop9 was unsuccessful, suggesting that there might be an essential role for SnROP9 in S. neurona. Further investigation of SnROP9 and other rhoptry protein homologues will help in better understanding their role in S. neurona biology, particularly in lifecycle stages that lack rhoptry organelles.
Collapse
Affiliation(s)
- Annapoorani Jegatheesan
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.
| | - Margaret Micciche
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA.
| | - Jennifer Ngo
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA.
| | - Peter J Bradley
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA.
| | - Daniel K Howe
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA.
| | - Sriveny Dangoudoubiyam
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
2
|
Dangoudoubiyam S, Norris JK, Namasivayam S, de Paula Baptista R, Cannes do Nascimento N, Camp J, Schardl CL, Kissinger JC, Howe DK. Temporal gene expression during asexual development of the apicomplexan Sarcocystis neurona. mSphere 2024; 9:e0011124. [PMID: 38809064 PMCID: PMC11332336 DOI: 10.1128/msphere.00111-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
Asexual replication in the apicomplexan Sarcocystis neurona involves two main developmental stages: the motile extracellular merozoite and the sessile intracellular schizont. Merozoites invade host cells and transform into schizonts that undergo replication via endopolygeny to form multiple (64) daughter merozoites that are invasive to new host cells. Given that the capabilities of the merozoite vary significantly from the schizont, the patterns of transcript levels throughout the asexual lifecycle were determined and compared in this study. RNA-Seq data were generated from extracellular merozoites and four intracellular schizont development time points. Of the 6,938 genes annotated in the S. neurona genome, 6,784 were identified in the transcriptome. Of these, 4,111 genes exhibited significant differential expression between the merozoite and at least one schizont development time point. Transcript levels were significantly higher for 2,338 genes in the merozoite and 1,773 genes in the schizont stages. Included in this list were genes encoding the secretory pathogenesis determinants (SPDs), which encompass the surface antigen and SAG-related sequence (SAG/SRS) and the secretory organelle proteins of the invasive zoite stage (micronemes, rhoptries, and dense granules). As anticipated, many of the S. neurona SPD gene transcripts were abundant in merozoites. However, several SPD transcripts were elevated in intracellular schizonts, suggesting roles unrelated to host cell invasion and the initial establishment of the intracellular niche. The hypothetical genes that are potentially unique to the genus Sarcocystis are of particular interest. Their conserved expression patterns are instructive for future investigations into the possible functions of these putative Sarcocystis-unique genes. IMPORTANCE The genus Sarcocystis is an expansive clade within the Apicomplexa, with the species S. neurona being an important cause of neurological disease in horses. Research to decipher the biology of S. neurona and its host-pathogen interactions can be enhanced by gene expression data. This study has identified conserved apicomplexan orthologs in S. neurona, putative Sarcocystis-unique genes, and gene transcripts abundant in the merozoite and schizont stages. Importantly, we have identified distinct clusters of genes with transcript levels peaking during different intracellular schizont development time points, reflecting active gene expression changes across endopolygeny. Each cluster also has subsets of transcripts with unknown functions, and investigation of these seemingly Sarcocystis-unique transcripts will provide insights into the interesting biology of this parasite genus.
Collapse
Affiliation(s)
- Sriveny Dangoudoubiyam
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| | - Jamie K. Norris
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| | - Sivaranjani Namasivayam
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | - Rodrigo de Paula Baptista
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - Naila Cannes do Nascimento
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Joseph Camp
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | | | - Jessica C. Kissinger
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Genetics, University of Georgia, Athens, Georgia, USA
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - Daniel K. Howe
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
3
|
Pastor-Fernández I, Regidor-Cerrillo J, Álvarez-García G, Marugán-Hernández V, García-Lunar P, Hemphill A, Ortega-Mora LM. The tandemly repeated NTPase (NTPDase) from Neospora caninum is a canonical dense granule protein whose RNA expression, protein secretion and phosphorylation coincides with the tachyzoite egress. Parasit Vectors 2016; 9:352. [PMID: 27329357 PMCID: PMC4915099 DOI: 10.1186/s13071-016-1620-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/01/2016] [Indexed: 12/26/2022] Open
Abstract
Background NTPases (also NTPDases) are enzymes with apyrase activity. They are widely distributed among eukaryotes, and also among members of the family Sarcocystidae. In Toxoplasma gondii, the TgNTPase accumulates in the dense granules, and has been commonly associated with the strain virulence. In the closely related Neospora caninum, the NcNTPase lacks nucleoside diphosphate hydrolase activity and appears to be more abundant in virulent isolates, indicating that it may contribute to the pathogenicity of neosporosis. However, so far no additional information on NcNTPase has been provided. Methods Herein, the NcNTPase coding sequences were analysed by different in silico and de novo sequencing approaches. A comparative analysis of NcNTPase and NcGRA7 in terms of protein dynamics, secretion, phosphorylation, and mRNA expression profiles during the tachyzoite lytic cycle was also carried out. Moreover, NcNTPase immunolocalization was analysed by confocal microscopy techniques over a set number of time-points. Results We describe the presence of three different loci containing three copies of the NcNTPase within the Nc-Liv genome, and report the existence of up to four different NcNTPase alleles in Nc-Liv. We also provide evidence for the occurrence of diverse protein species of the NcNTPase by two-dimensional gel electrophoresis. Both NcNTPase and NcGRA7 were similarly up-regulated and secreted during the egress and/or early invasion phases, and were phosphorylated. However, its secretion was not affected by the addition of calcium modulators such as A23187 and ethanol. NcNTPase and NcGRA7 localized in dense granules and parasitophorous vacuole membrane throughout the lytic cycle, although differed in their inmunolocalization during early invasion and egress. Conclusions The present study reveals the complexity of the NcNTPase loci in N. caninum. We hypothesize that the expression of different isoforms of the NcNTPase protein could contribute to parasite virulence. Our findings showed regulation of expression, secretion and phosphorylation of NcNTPase suggesting a potential role for progression through the tachyzoites lytic cycle. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1620-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Iván Pastor-Fernández
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Javier Regidor-Cerrillo
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Gema Álvarez-García
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Virginia Marugán-Hernández
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Paula García-Lunar
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012, Berne, Switzerland
| | - Luis M Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| |
Collapse
|
4
|
Dubey JP, Howe DK, Furr M, Saville WJ, Marsh AE, Reed SM, Grigg ME. An update on Sarcocystis neurona infections in animals and equine protozoal myeloencephalitis (EPM). Vet Parasitol 2015; 209:1-42. [PMID: 25737052 DOI: 10.1016/j.vetpar.2015.01.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/27/2015] [Accepted: 01/29/2015] [Indexed: 01/27/2023]
Abstract
Equine protozoal myeloencephalitis (EPM) is a serious disease of horses, and its management continues to be a challenge for veterinarians. The protozoan Sarcocystis neurona is most commonly associated with EPM. S. neurona has emerged as a common cause of mortality in marine mammals, especially sea otters (Enhydra lutris). EPM-like illness has also been recorded in several other mammals, including domestic dogs and cats. This paper updates S. neurona and EPM information from the last 15 years on the advances regarding life cycle, molecular biology, epidemiology, clinical signs, diagnosis, treatment and control.
Collapse
Affiliation(s)
- J P Dubey
- United States Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Building 1001, Beltsville, MD 20705-2350, USA.
| | - D K Howe
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
| | - M Furr
- Marion du Pont Scott Equine Medical Center, Virginia Maryland Regional College of Veterinary Medicine, 17690 Old Waterford Road, Leesburg, VA 20176, USA
| | - W J Saville
- Department of Veterinary Preventive Medicine, The Ohio State University, 1920 Coffey Road, Columbus, OH 43210, USA
| | - A E Marsh
- Department of Veterinary Preventive Medicine, The Ohio State University, 1920 Coffey Road, Columbus, OH 43210, USA
| | - S M Reed
- Rood and Riddle Equine Hospital, Lexington, KY 40511, USA
| | - M E Grigg
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institutes of Health, National Institutes of Allergy, and Infectious Diseases, 4 Center Drive, Room B1-06, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
The role of the NTPDase enzyme family in parasites: what do we know, and where to from here? Parasitology 2012; 139:963-80. [DOI: 10.1017/s003118201200025x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SUMMARYNucleoside triphosphate diphosphohydrolases (NTPDases, GDA1_CD39 protein superfamily) play a diverse range of roles in a number of eukaryotic organisms. In humans NTPDases function in regulating the inflammatory and immune responses, control of vascular haemostasis and purine salvage. In yeast NTPDases are thought to function primarily in the Golgi, crucially involved in nucleotide sugar transport into the Golgi apparatus and subsequent protein glycosylation. Although rare in bacteria, in Legionella pneumophila secreted NTPDases function as virulence factors. In the last 2 decades it has become clear that a large number of parasites encode putative NTPDases, and the functions of a number of these have been investigated. In this review, the available evidence for NTPDases in parasites and the role of these NTPDases is summarized and discussed. Furthermore, the processes by which NTPDases could function in pathogenesis, purine salvage, thromboregulation, inflammation and glycoconjugate formation are considered, and the data supporting such putative roles reviewed. Potential future research directions to further clarify the role and importance of NTPDases in parasites are proposed. An attempt is also made to clarify the nomenclature used in the parasite field for the GDA1_CD39 protein superfamily, and a uniform system suggested.
Collapse
|
6
|
The heptanucleotide motif GAGACGC is a key component of a cis-acting promoter element that is critical for SnSAG1 expression in Sarcocystis neurona. Mol Biochem Parasitol 2009; 166:85-8. [PMID: 19428678 DOI: 10.1016/j.molbiopara.2009.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 02/09/2009] [Accepted: 02/12/2009] [Indexed: 11/23/2022]
Abstract
The apicomplexan parasite Sarcocystis neurona undergoes a complex process of intracellular development, during which many genes are temporally regulated. The described study was undertaken to begin identifying the basic promoter elements that control gene expression in S. neurona. Sequence analysis of the 5'-flanking region of five S. neurona genes revealed a conserved heptanucleotide motif GAGACGC that is similar to the WGAGACG motif described upstream of multiple genes in Toxoplasma gondii. The promoter region for the major surface antigen gene SnSAG1, which contains three heptanucleotide motifs within 135 bases of the transcription start site, was dissected by functional analysis using a dual luciferase reporter assay. These analyses revealed that a minimal promoter fragment containing all three motifs was sufficient to drive reporter molecule expression, with the presence and orientation of the 5'-most heptanucleotide motif being absolutely critical for promoter function. Further studies should help to identify additional sequence elements important for promoter function and for controlling gene expression during intracellular development by this apicomplexan pathogen.
Collapse
|
7
|
Possible effects of microbial ecto-nucleoside triphosphate diphosphohydrolases on host-pathogen interactions. Microbiol Mol Biol Rev 2009; 72:765-81, Table of Contents. [PMID: 19052327 DOI: 10.1128/mmbr.00013-08] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In humans, purinergic signaling plays an important role in the modulation of immune responses through specific receptors that recognize nucleoside tri- and diphosphates as signaling molecules. Ecto-nucleoside triphosphate diphosphohydrolases (ecto-NTPDases) have important roles in the regulation of purinergic signaling by controlling levels of extracellular nucleotides. This process is key to pathophysiological protective responses such as hemostasis and inflammation. Ecto-NTPDases are found in all higher eukaryotes, and recently it has become apparent that a number of important parasitic pathogens of humans express surface-located NTPDases that have been linked to virulence. For those parasites that are purine auxotrophs, these enzymes may play an important role in purine scavenging, although they may also influence the host response to infection. Although ecto-NTPDases are rare in bacteria, expression of a secreted NTPDase in Legionella pneumophila was recently described. This ecto-enzyme enhances intracellular growth of the bacterium and potentially affects virulence. This discovery represents an important advance in the understanding of the contribution of other microbial NTPDases to host-pathogen interactions. Here we review other progress made to date in the characterization of ecto-NTPDases from microbial pathogens, how they differ from mammalian enzymes, and their association with organism viability and virulence. In addition, we postulate how ecto-NTPDases may contribute to the host-pathogen interaction by reviewing the effect of selected microbial pathogens on purinergic signaling. Finally, we raise the possibility of targeting ecto-NTPDases in the development of novel anti-infective agents based on potential structural and clear enzymatic differences from the mammalian ecto-NTPDases.
Collapse
|
8
|
Zhang D, Howe DK. Investigation of SnSPR1, a novel and abundant surface protein of Sarcocystis neurona merozoites. Vet Parasitol 2008; 152:210-9. [PMID: 18291589 DOI: 10.1016/j.vetpar.2007.12.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 12/21/2007] [Accepted: 12/26/2007] [Indexed: 11/26/2022]
Abstract
An expressed sequence tag (EST) sequencing project has produced over 15,000 partial cDNA sequences from the equine pathogen Sarcocystis neurona. While many of the sequences are clear homologues of previously characterized genes, a significant number of the S. neurona ESTs do not exhibit similarity to anything in the extensive sequence databases that have been generated. In an effort to characterize parasite proteins that are novel to S. neurona, a seemingly unique gene was selected for further investigation based on its abundant representation in the collection of ESTs and the predicted presence of a signal peptide and glycolipid anchor addition on the encoded protein. The gene was expressed in E. coli, and monospecific polyclonal antiserum against the recombinant protein was produced by immunization of a rabbit. Characterization of the native protein in S. neurona merozoites and schizonts revealed that it is a low molecular weight surface protein that is expressed throughout intracellular development of the parasite. The protein was designated Surface Protein 1 (SPR1) to reflect its display on the outer surface of merozoites and to distinguish it from the ubiquitous SAG/SRS surface antigens of the heteroxenous Coccidia. Interestingly, infection assays in the presence of the polyclonal antiserum suggested that SnSPR1 plays some role in attachment and/or invasion of host cells by S. neurona merozoites. The work described herein represents a general template for selecting and characterizing the various unidentified gene sequences that are plentiful in the EST databases for S. neurona and other apicomplexans. Furthermore, this study illustrates the value of investigating these novel sequences since it can offer new candidates for diagnostic or vaccine development while also providing greater insight into the biology of these parasites.
Collapse
Affiliation(s)
- Deqing Zhang
- Department of Veterinary Sciences, University of Kentucky, Gluck Equine Research Center, Lexington, KY 40546-0099, USA
| | | |
Collapse
|
9
|
Elsheikha HM, Mansfield LS. Molecular typing of Sarcocystis neurona: current status and future trends. Vet Parasitol 2007; 149:43-55. [PMID: 17706872 DOI: 10.1016/j.vetpar.2007.06.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 06/20/2007] [Accepted: 06/22/2007] [Indexed: 11/26/2022]
Abstract
Sarcocystis neurona is an important protozoal pathogen because it causes the serious neurological disease equine protozoal myeloencephalitis (EPM). The capacity of this organism to cause a wide spectrum of neurological signs in horses and the broad geographic distribution of observed cases in the Americas drive the need for sensitive, reliable and rapid typing methods to characterize strains. Various molecular methods have been developed and used to diagnose EPM due to S. neurona, to identify S. neurona isolates and to determine the heterogeneity and evolutionary relatedness within this species and related Sarcocystis spp. These methods included sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), immuno-fluorescent assay (IFA), slide agglutination test (SAT), SnSAG-specific ELISA, random amplified polymorphic DNA (RAPD), PCR-based restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP) fingerprinting, and sequence analysis of surface protein genes, ribosomal genes, microsatellite alleles and other molecular markers. Here, the utility of these molecular methods is reviewed and evaluated with respect to the need for molecular approaches that utilize well-characterized polymorphic, simple, independent, and stable genetic markers. These tools have the potential to add to knowledge of the genetic population structure of S. neurona and to provide new insights into the pathogenesis of EPM and S. neurona epidemiology. In particular, these methods provide new tools to address the hypothesis that particular genetic variants are associated with adverse clinical outcomes (severe pathotypes). The ultimate goal is to utilize them in future studies to improve treatment and prevention strategies.
Collapse
Affiliation(s)
- Hany M Elsheikha
- Division of Veterinary Medicine, The School of Veterinary Medicine and Science, The University of Nottingham, College Road, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom
| | | |
Collapse
|