1
|
Agboraw E, Haese-Hill W, Hentzschel F, Briggs E, Aghabi D, Heawood A, Harding CR, Shiels B, Crouch K, Somma D, Otto TD. paraCell: a novel software tool for the interactive analysis and visualization of standard and dual host-parasite single-cell RNA-seq data. Nucleic Acids Res 2025; 53:gkaf091. [PMID: 39988320 PMCID: PMC11840555 DOI: 10.1093/nar/gkaf091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/21/2025] [Accepted: 02/03/2025] [Indexed: 02/25/2025] Open
Abstract
Advances in sequencing technology have led to a dramatic increase in the number of single-cell transcriptomic datasets. In the field of parasitology, these datasets typically describe the gene expression patterns of a given parasite species at the single-cell level under experimental conditions, in specific hosts or tissues, or at different life cycle stages. However, while this wealth of available data represents a significant resource, analysing these datasets often requires expert computational skills, preventing a considerable proportion of the parasitology community from meaningfully integrating existing single-cell data into their work. Here, we present paraCell, a novel software tool that allows the user to visualize and analyse pre-loaded single-cell data without requiring any programming ability. The source code is free to allow remote installation. On our web server, we demonstrated how to visualize and re-analyse published Plasmodium and Trypanosoma datasets. We have also generated Toxoplasma-mouse and Theileria-cow scRNA-seq datasets to highlight the functionality of paraCell for pathogen-host interaction. The analysis of the data highlights the impact of the host interferon-γ response and gene expression profiles associated with disease susceptibility by these intracellular parasites, respectively.
Collapse
Affiliation(s)
- Edward Agboraw
- School of Infection & Immunity, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - William Haese-Hill
- School of Infection & Immunity, University of Glasgow, G12 8TA Glasgow, United Kingdom
- MVLS SRF, Research Software Engineering, University of Glasgow, G12 8QQ Glasgow, United Kingdom
| | - Franziska Hentzschel
- Centre for Infectious Diseases, Heidelberg University Medical Faculty, 69120 Heidelberg, Germany
| | - Emma Briggs
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, EH4 2JP Edinburgh, United Kingdom
| | - Dana Aghabi
- School of Infection & Immunity, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Anna Heawood
- School of Infection & Immunity, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Clare R Harding
- School of Infection & Immunity, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Brian Shiels
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, G61 1QH Glasgow, United Kingdom
| | - Kathryn Crouch
- School of Infection & Immunity, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Domenico Somma
- School of Infection & Immunity, University of Glasgow, G12 8TA Glasgow, United Kingdom
| | - Thomas D Otto
- School of Infection & Immunity, University of Glasgow, G12 8TA Glasgow, United Kingdom
- LPHI, CNRS, INSERM, Université de Montpellier, 34090 Montpellier, France
| |
Collapse
|
2
|
Terletsky A, Akhmerova LG. Malignant human thyroid neoplasms associated with blood parasitic (haemosporidian) infection. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2023. [DOI: 10.15789/2220-7619-mht-1948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Investigation of archival cytological material obtained by cytologists during fine-needle aspiration biopsy in follicular, papillary, and medullary human thyroid cancers revealed haemosporidian (blood parasitic) infection. Haemosporidian infection was detected as exo- and intraerythrocytic stages of development in thyrocytes schizogony. The exoerythrocytic stage of development is represented as microschizonts in a thyroid needle biopsy specimen. Probably, blood parasitic infection is the common etiology for these pathologies. All biopsy material in medical laboratories was stained with RomanowskyGiemsa stain. To clarify the localization of nuclei (DNA) of thyrocytes and nuclei (DNA) of haemosporidian infection in cytological material following investigation of the entire set of smears, a selective series of original archival smears was stained (restained) with a Feulgen/Schiff reagent. Staining of smears with RomanowskyGiemsa stain is an adsorption method that enables re-use of the same smears for staining with a Feulgen/Schiff reagent where the fuchsin dye, after DNA hydrolysis by hydrochloric acid, is incorporated into DNA and stains it in redviolet (crimsonlilac) color. An intentionally unstained protoplasm of blood parasitic infection was present as a light band around erythrocyte nuclei. In follicular thyroid cancer, Feulgen staining of thyrocytes revealed nuclear DNA and parasitic DNA (haemosporidium nuclei) as point inclusions and rings and diffusely distributed in the thyrocyte cytoplasm. The thyrocyte cytoplasm and nuclei were vacuolated, with thyrocyte nuclei being deformed, flattened, and displaced to the cell periphery. The erythrocytes, which were initially stained with eosin (orange color), contained haemosporidian nuclei (DNA). In some cases, endoglobular inclusions in thyrocytes and erythrocytes were of the same size. In papillary thyroid cancer, we were able to localize the nuclear DNA of thyrocytes and the parasitic DNA as point inclusions and diffusely distributed in the thyrocyte cytoplasm. Two or more polymorphic nuclei may eccentrically occur in the hyperplastic cytoplasm. Haemosporidian microschizonts occurred circumnuclearly in thyrocytes and as an exoerythrocytic stage in the blood. The erythrocyte cytoplasm contained redviolet polymorphic haemosporidian nuclei (DNA). In medullary thyroid cancer, the hyperplastic cytoplasm of thyrocytes contained eccentrically located nuclei (DNA) of thyrocytes and small haemosporidian nuclei (DNA), which may occupy the whole thyrocyte. There were thyrocytes with vacuolated cytoplasm and pronounced nuclear polymorphism. The size of hyperplastic nuclei was several times larger than that of normal thyrocyte nuclei. The color of stained cytoplasmic and nuclear vacuoles of thyrocytes was less redviolet compared with that of surrounding tissues, which probably indicates the presence of parasitic DNA in them. The haemosporidian nuclear material in erythrocytes is represented by polymorphic nuclei, which may indicate the simultaneous presence of different pathogen species and/or generations in the blood. Intracellular parasitism of haemosporidian infection in thyrocytes (schizogony) associated with three thyroid cancers leads to pronounced cytoplasmic hyperplasia, cytoplasmic vacuolization, and nuclear vacuolization of the thyrocyte, followed by impaired secretory function. Multinucleated thyrocytes with incomplete cytokinesis appear. The absence of lytic death of the affected thyrocytes indicates that the contagium is able to control apoptosis and influence physiological functions of the cell. There is deformation of the nuclei, which leads to a decrease in their size, their flattening and displacement to the cell periphery, with high risk of DNA mutations and deletions in affected cells, reaching a neoplastic level.
Collapse
|
3
|
Hacılarlıoglu S, Bilgic HB, Bakırcı S, Tait A, Weir W, Shiels B, Karagenc T. Selection of genotypes harbouring mutations in the cytochrome b gene of Theileria annulata is associated with resistance to buparvaquone. PLoS One 2023; 18:e0279925. [PMID: 36598898 DOI: 10.1371/journal.pone.0279925] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/18/2022] [Indexed: 01/05/2023] Open
Abstract
Buparvaquone remains the only effective therapeutic agent for the treatment of tropical theileriosis caused by Theileria annulata. However, an increase in the rate of buparvaquone treatment failures has been observed in recent years, raising the possibility that resistance to this drug is associated with the selection of T. annulata genotypes bearing mutation(s) in the cytochrome b gene (Cyto b). The aim of the present study was: (1) to demonstrate whether there is an association between mutations in the T. annulata Cyto b gene and selection of parasite-infected cells resistant to buparvaquone and (2) to determine the frequency of these mutations in parasites derived from infected cattle in the Aydın region of Türkiye. Susceptibility to buparvaquone was assessed by comparing the proliferative index of schizont-infected cells obtained from cattle with theileriosis before and/or after treatment with various doses of buparvaquone, using the 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) colourimetric assay. The DNA sequence of the parasite Cyto b gene from cell lines identified as resistant or susceptible was determined. A total of six nonsynonymous and six synonymous mutations were identified. Two of the nonsynonymous mutations resulted in the substitutions V135A and P253S which are located at the putative buparvaquone binding regions of cytochrome b. Allele-specific PCR (AS-PCR) analyses detected the V135A and P253S mutations at a frequency of 3.90% and 3.57% respectively in a regional study population and revealed an increase in the frequency of both mutations over the years. The A53P mutation of TaPIN1 of T. annulata, previously suggested as being involved in buparvaquone resistance, was not detected in any of the clonal cell lines examined in the present study. The observed data strongly suggested that the genetic mutations resulting in V135A and P253S detected at the putative binding sites of buparvaquone in cytochrome b play a significant role in conferring, and promoting selection of, T. annulata genotypes resistant to buparvaquone, whereas the role of mutations in TaPIN1 is more equivocal.
Collapse
Affiliation(s)
- Selin Hacılarlıoglu
- Faculty of Veterinary Medicine, Department of Parasitology, Aydın Adnan Menderes University, Isıklı, Aydın, Türkiye
| | - Huseyin Bilgin Bilgic
- Faculty of Veterinary Medicine, Department of Parasitology, Aydın Adnan Menderes University, Isıklı, Aydın, Türkiye
| | - Serkan Bakırcı
- Faculty of Veterinary Medicine, Department of Parasitology, Aydın Adnan Menderes University, Isıklı, Aydın, Türkiye
| | - Andrew Tait
- School of Biodiversity, One Health and Veterinary Medicine, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - William Weir
- School of Biodiversity, One Health and Veterinary Medicine, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Brian Shiels
- School of Biodiversity, One Health and Veterinary Medicine, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Tulin Karagenc
- Faculty of Veterinary Medicine, Department of Parasitology, Aydın Adnan Menderes University, Isıklı, Aydın, Türkiye
| |
Collapse
|
4
|
Single-nucleotide polymorphisms in CLEC7A, CD209 and TLR4 gene and their association with susceptibility to paratuberculosis in Indian cattle. J Genet 2020. [DOI: 10.1007/s12041-019-1172-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
Rashid M, Guan G, Luo J, Zhao S, Wang X, Rashid MI, Hassan MA, Mukhtar MU, Liu J, Yin H. Establishment and Expression of Cytokines in a Theileria annulata-Infected Bovine B Cell Line. Genes (Basel) 2019; 10:genes10050329. [PMID: 31052316 PMCID: PMC6562936 DOI: 10.3390/genes10050329] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023] Open
Abstract
This study aimed to establish a pure single-cell Theileria annulata-infected B cell line for the assessment of cytokine production in transformed and lipopolysaccharide (LPS)-stimulated cells. Several studies have aimed to identify cell surface markers in T. annulata-transformed cells; however, no information on cytokine production in these cells is available. To investigate the potential of the transformed cells to produce cytokines and their potential responses to antigen-stimulation, we purified mature B cells (CD21) from the whole blood of cattle experimentally infected with the T. annulata Kashi strain by magnetic separation. The purity and specificity of the established cell line was assessed by the identification of specific cell surface markers (CD21, IgM, and WC4) by flow cytometry analysis. The transcript levels of the cytokines IL1A, IL1B, IL2, IL4, IL6, IL8, IL10, IL16, LTA, TGFB1, TNFA, IFNA, and IFNB in transformed, buparvaquone (BW720c)-treated cells, and antigen-stimulated cells were analyzed by quantitative polymerase chain reaction (qPCR) using cDNA from these cells. A T. annulata-infected bovine B cell line was successfully established with a purity of ~98.8% (CD21). IL4 and IL12A were significantly (p < 0.01) upregulated in the transformed cells. In BW720c-treated transformed cells, IL12B, TGFB1, and IFNB were significantly (p < 0.01) upregulated. Notably, no significant (p > 0.05) upregulation of cytokines was observed in LPS-stimulated transformed cells. Moreover, IL1A, IL1B, IL8, and IL16 were significantly (p < 0.01) upregulated in LPS-stimulated B cells. Our data signify the potential use of this cell line for cytokine production, observance of immunoglobulins, and production of an attenuated vaccine against tropical theileriosis.
Collapse
Affiliation(s)
- Muhammad Rashid
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, Gansu, China.
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, Gansu, China.
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, Gansu, China.
| | - Shuaiyang Zhao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, Gansu, China.
| | - Xiaoxing Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, Gansu, China.
| | - Muhammad Imran Rashid
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore 54200, Pakistan.
| | - Muhammad Adeel Hassan
- Department of Parasitology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan.
| | - Muhammad Uzair Mukhtar
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, Gansu, China.
| | - Junlong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, Gansu, China.
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, Gansu, China.
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
6
|
Enane FO, Saunthararajah Y, Korc M. Differentiation therapy and the mechanisms that terminate cancer cell proliferation without harming normal cells. Cell Death Dis 2018; 9:912. [PMID: 30190481 PMCID: PMC6127320 DOI: 10.1038/s41419-018-0919-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/24/2022]
Abstract
Chemotherapeutic drugs have a common intent to activate apoptosis in tumor cells. However, master regulators of apoptosis (e.g., p53, p16/CDKN2A) are frequently genetically inactivated in cancers, resulting in multidrug resistance. An alternative, p53-independent method for terminating malignant proliferation is to engage terminal-differentiation. Normally, the exponential proliferation of lineage-committed progenitors, coordinated by the master transcription factor (TF) MYC, is self-limited by forward-differentiation to terminal lineage-fates. In cancers, however, this exponential proliferation is disengaged from terminal-differentiation. The mechanisms underlying this decoupling are mostly unknown. We performed a systematic review of published literature (January 2007-June 2018) to identify gene pathways linked to differentiation-failure in three treatment-recalcitrant cancers: hepatocellular carcinoma (HCC), ovarian cancer (OVC), and pancreatic ductal adenocarcinoma (PDAC). We analyzed key gene alterations in various apoptosis, proliferation and differentiation pathways to determine whether it is possible to predict treatment outcomes and suggest novel therapies. Poorly differentiated tumors were linked to poorer survival across histologies. Our analyses suggested loss-of-function events to master TF drivers of lineage-fates and their cofactors as being linked to differentiation-failure: genomic data in TCGA and ICGC databases demonstrated frequent haploinsufficiency of lineage master TFs (e.g., GATA4/6) in poorly differentiated tumors; the coactivators that these TFs use to activate genes (e.g. ARID1A, PBRM1) were also frequently inactivated by genetic mutation and/or deletion. By contrast, corepressor components (e.g., DNMT1, EED, UHRF1, and BAZ1A/B), that oppose coactivators to repress or turn off genes, were frequently amplified instead, and the level of amplification was highest in poorly differentiated lesions. This selection by neoplastic evolution towards unbalanced activity of transcriptional corepressors suggests these enzymes as candidate targets for inhibition aiming to re-engage forward-differentiation. This notion is supported by both pre-clinical and clinical trial literature.
Collapse
Affiliation(s)
- Francis O Enane
- Department of Medicine, Indiana University School of Medicine Indianapolis, Indianapolis, IN, 46202, USA.
| | - Yogen Saunthararajah
- Department of Hematology and Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Translational Hematology and Oncology Research, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Murray Korc
- Department of Medicine, Indiana University School of Medicine Indianapolis, Indianapolis, IN, 46202, USA.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- The Pancreatic Cancer Signature Center at Indiana University Purdue University Indianapolis and Indiana University Simon Cancer, Indianapolis, IN, 46202, USA.
| |
Collapse
|
7
|
Panigrahi M, Kumar A, Bhushan B, Ghosh S, Saravanan BC, Sulabh S, Parida S, Gaur GK. No change in mRNA expression of immune-related genes in peripheral blood mononuclear cells challenged with Theileria annulata in Murrah buffalo (Bubalus bubalis). Ticks Tick Borne Dis 2016; 7:754-758. [DOI: 10.1016/j.ttbdis.2016.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 03/06/2016] [Accepted: 03/09/2016] [Indexed: 12/17/2022]
|
8
|
Jensen K, Gallagher IJ, Kaliszewska A, Zhang C, Abejide O, Gallagher MP, Werling D, Glass EJ. Live and inactivated Salmonella enterica serovar Typhimurium stimulate similar but distinct transcriptome profiles in bovine macrophages and dendritic cells. Vet Res 2016; 47:46. [PMID: 27000047 PMCID: PMC4802613 DOI: 10.1186/s13567-016-0328-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/17/2016] [Indexed: 01/10/2023] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a major cause of gastroenteritis in cattle and humans. Dendritic cells (DC) and macrophages (Mø) are major players in early immunity to Salmonella, and their response could influence the course of infection. Therefore, the global transcriptional response of bovine monocyte-derived DC and Mø to stimulation with live and inactivated S. Typhimurium was compared. Both cell types mount a major response 2 h post infection, with a core common response conserved across cell-type and stimuli. However, three of the most affected pathways; inflammatory response, regulation of transcription and regulation of programmed cell death, exhibited cell-type and stimuli-specific differences. The expression of a subset of genes associated with these pathways was investigated further. The inflammatory response was greater in Mø than DC, in the number of genes and the enhanced expression of common genes, e.g., interleukin (IL) 1B and IL6, while the opposite pattern was observed with interferon gamma. Furthermore, a large proportion of the investigated genes exhibited stimuli-specific differential expression, e.g., Mediterranean fever. Two-thirds of the investigated transcription factors were significantly differentially expressed in response to live and inactivated Salmonella. Therefore the transcriptional responses of bovine DC and Mø during early S. Typhimurium infection are similar but distinct, potentially due to the overall function of these cell-types. The differences in response of the host cell will influence down-stream events, thus impacting on the subsequent immune response generated during the course of the infection.
Collapse
Affiliation(s)
- Kirsty Jensen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK.
| | - Iain J Gallagher
- Health and Exercise Research Group, University of Stirling, Cottrell Building, Stirling, FK9 4LA, UK
| | - Anna Kaliszewska
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| | - Chen Zhang
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| | - Oluyinka Abejide
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK.,Scotland's Rural College, Easter Bush, Edinburgh, EH25 9RG, UK
| | - Maurice P Gallagher
- Institute of Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | - Dirk Werling
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, Hatfield, AL9 7TA, UK
| | - Elizabeth J Glass
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| |
Collapse
|
9
|
Theileria-transformed bovine leukocytes have cancer hallmarks. Trends Parasitol 2015; 31:306-14. [DOI: 10.1016/j.pt.2015.04.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/30/2015] [Accepted: 04/01/2015] [Indexed: 12/19/2022]
|
10
|
Junlong L, Li Y, Liu A, Guan G, Xie J, Yin H, Luo J. Development of a multiplex PCR assay for detection and discrimination of Theileria annulata and Theileria sergenti in cattle. Parasitol Res 2015; 114:2715-21. [PMID: 25895064 DOI: 10.1007/s00436-015-4478-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/08/2015] [Indexed: 01/29/2023]
Abstract
Aim to construct a simple and efficient diagnostic assay for Theileria annulata and Theileria sergenti, a multiplex polymerase chain reaction (PCR) method was developed in this study. Following the alignment of the related sequences, two primer sets were designed specific targeting on T. annulata cytochrome b (COB) gene and T. sergenti internal transcribed spacer (ITS) sequences. It was found that the designed primers could react in one PCR system and generating amplifications of 818 and 393 base pair for T. sergenti and T. annulata, respectively. The standard genomic DNA of both species Theileria was serial tenfold diluted for testing the sensitivity, while specificity test confirmed both primer sets have no cross-reaction with other Theileria and Babesia species. In addition, 378 field samples were used for evaluation of the utility of the multiplex PCR assay for detection of the pathogens infection. The detection results were compared with the other two published PCR methods which targeting on T. annulata COB gene and T. sergenti major piroplasm surface protein (MPSP) gene, respectively. The developed multiplex PCR assay has similar efficient detection with COB and MPSP PCR, which indicates this multiplex PCR may be a valuable assay for the epidemiological studies for T. annulata and T. sergenti.
Collapse
Affiliation(s)
- Liu Junlong
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's of Republic China,
| | | | | | | | | | | | | |
Collapse
|
11
|
Dewangan P, Panigrahi M, Kumar A, Saravanan BC, Ghosh S, Asaf VNM, Parida S, Gaur GK, Sharma D, Bhushan B. The mRNA expression of immune-related genes in crossbred and Tharparkar cattle in response to in vitro infection with Theileria annulata. Mol Biol Rep 2015; 42:1247-55. [PMID: 25697418 DOI: 10.1007/s11033-015-3865-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 02/16/2015] [Indexed: 01/17/2023]
Abstract
Tropical theileriosis is a major protozoan disease of cattle and is associated with high rates of morbidity and mortality. Indigenous cattle (Bos indicus) are less affected by this disease than exotic and crossbred cattle. Genetic basis of resistance to tropical theileriosis in indigenous cattle is not well studied. Recent reports suggest that number of immune response genes expressed differentially in exotic and indigenous breeds play an important role in breed specific resistance to tropical theileriosis. Such studies comparing expression of these genes in crossbred cattle and indigenous cattle are lacking. The present study compares the mRNA expression of immune-related genes in response to Theileria annulata infection in indigenous and crossbred cattle. Peripheral blood mononuclear cells (PBMCs) were isolated from blood samples of indigenous (Tharparkar) and crossbred (HF/BS/Jersey × Hariana) cattle and challenged with prepared ground-up tick supernatant carrying Theileria annulata sporozoites in vitro. qPCR was employed to measure relative mRNA expression of toll-like receptor 10 (TLR10), signal-regulatory protein alpha (SIRPA), MHC class II DQα (BoLA-DQA), musculoaponeurotic fibrosarcoma (MAF) and prion protein (PRNP) genes in infected and control PBMCs from crossbred and indigenous cattle. On the basis of comparative fold change analysis, significant up-regulation in SIRPA, PRNP and MHC DQα genes and significant down-regulation in TLR10, cMAF and MAFB genes in crossbreds as compared to indigenous cattle was observed. Results of the present study suggest that breed specific differential expression of the genes under study may contribute to the breed specific resistance to Theileria annulata infection in indigenous cattle compared to crossbred cattle.
Collapse
Affiliation(s)
- Prashant Dewangan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Comparison of small interfering RNA (siRNA) delivery into bovine monocyte-derived macrophages by transfection and electroporation. Vet Immunol Immunopathol 2014; 158:224-32. [PMID: 24598124 PMCID: PMC3988888 DOI: 10.1016/j.vetimm.2014.02.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 01/20/2014] [Accepted: 02/03/2014] [Indexed: 11/25/2022]
Abstract
The manipulation of the RNA interference pathway using small interfering RNA (siRNA) has become the most frequently used gene silencing method. However, siRNA delivery into primary cells, especially primary macrophages, is often considered challenging. Here we report the investigation of the suitability of two methodologies: transient transfection and electroporation, to deliver siRNA targeted against the putative immunomodulatory gene Mediterranean fever (MEFV) into primary bovine monocyte-derived macrophages (bMDM). Eleven commercial transfection reagents were investigated with variable results with respect to siRNA uptake, target gene knock-down, cell toxicity and type I interferon (IFN) response induction. Three transfection reagents: Lipofectamine 2000, Lipofectamine RNAiMAX and DharmaFECT 3, were found to consistently give the best results. However, all the transfection reagents tested induced an IFN response in the absence of siRNA, which could be minimized by reducing the transfection reagent incubation period. In addition, optimized siRNA delivery into bMDM by electroporation achieved comparable levels of target gene knock-down as transient transfection, without a detectable IFN response, but with higher levels of cell toxicity. The optimized transient transfection and electroporation methodologies may provide a starting point for optimizing siRNA delivery into macrophages derived from other species or other cells considered difficult to investigate with siRNA.
Collapse
|
13
|
Kinnaird JH, Weir W, Durrani Z, Pillai SS, Baird M, Shiels BR. A Bovine Lymphosarcoma Cell Line Infected with Theileria annulata Exhibits an Irreversible Reconfiguration of Host Cell Gene Expression. PLoS One 2013; 8:e66833. [PMID: 23840536 PMCID: PMC3694138 DOI: 10.1371/journal.pone.0066833] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/13/2013] [Indexed: 01/20/2023] Open
Abstract
Theileria annulata, an intracellular parasite of bovine lymphoid cells, induces substantial phenotypic alterations to its host cell including continuous proliferation, cytoskeletal changes and resistance to apoptosis. While parasite induced modulation of host cell signal transduction pathways and NFκB activation are established, there remains considerable speculation on the complexities of the parasite directed control mechanisms that govern these radical changes to the host cell. Our objectives in this study were to provide a comprehensive analysis of the global changes to host cell gene expression with emphasis on those that result from direct intervention by the parasite. By using comparative microarray analysis of an uninfected bovine cell line and its Theileria infected counterpart, in conjunction with use of the specific parasitacidal agent, buparvaquone, we have identified a large number of host cell gene expression changes that result from parasite infection. Our results indicate that the viable parasite can irreversibly modify the transformed phenotype of a bovine cell line. Fifty percent of genes with altered expression failed to show a reversible response to parasite death, a possible contributing factor to initiation of host cell apoptosis. The genes that did show an early predicted response to loss of parasite viability highlighted a sub-group of genes that are likely to be under direct control by parasite infection. Network and pathway analysis demonstrated that this sub-group is significantly enriched for genes involved in regulation of chromatin modification and gene expression. The results provide evidence that the Theileria parasite has the regulatory capacity to generate widespread change to host cell gene expression in a complex and largely irreversible manner.
Collapse
Affiliation(s)
- Jane H. Kinnaird
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - William Weir
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Zeeshan Durrani
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sreerekha S. Pillai
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Margaret Baird
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Brian R. Shiels
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Glass EJ, Crutchley S, Jensen K. Living with the enemy or uninvited guests: functional genomics approaches to investigating host resistance or tolerance traits to a protozoan parasite, Theileria annulata, in cattle. Vet Immunol Immunopathol 2012; 148:178-89. [PMID: 22482839 PMCID: PMC7112524 DOI: 10.1016/j.vetimm.2012.03.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 09/25/2011] [Accepted: 03/06/2012] [Indexed: 12/20/2022]
Abstract
Many breeds of cattle with long histories of living in areas of endemic disease have evolved mechanisms that enable them to co-exist with specific pathogens. Understanding the genes that control tolerance and resistance could provide new strategies to improve the health and welfare of livestock. Around one sixth of the world cattle population is estimated to be at risk from one of the most debilitating tick-borne diseases of cattle, caused by the protozoan parasite, Theileria annulata. The parasite mainly infects cells of the myeloid lineage which are also the main producers of inflammatory cytokines. If an infectious or inflammatory insult is sufficiently great, inflammatory cytokines produced by macrophages enter the circulation and induce an acute phase proteins (APP) response. The Bos taurus Holstein breed produces higher and more prolonged levels of inflammatory cytokine induced APP than the Bos indicus Sahiwal breed in response to experimental infection with T. annulata. The Sahiwal exhibits significantly less pathology and survives infection, unlike the Holstein breed. Therefore, we hypothesised that the causal genes were likely to be expressed in macrophages and control the production of inflammatory cytokines. A functional genomics approach revealed that the transcriptome profile of the B. taurus macrophages was more associated with an inflammatory programme than the B. indicus macrophages. In particular the most differentially expressed gene was a member of the signal regulatory protein (SIRP) family. These are mainly expressed on myeloid cell surfaces and control inflammatory responses. Other differentially expressed genes included bovine major histocompatibility complex (MHC) (BoLA) class II genes, particularly BoLA DQ, and transforming growth factor (TGF)B2. We are now exploring whether sequence and functional differences in the bovine SIRP family may underlie the resistance or tolerance to T. annulata between the breeds. Potentially, our research may also have more general implications for the control of inflammatory processes against other pathogens. Genes controlling the balance between pathology and protection may determine how livestock can survive in the face of infectious onslaught. Next generation sequencing and RNAi methodologies for livestock species will bring new opportunities to link diversity at the genome level to functional differences in health traits in livestock species.
Collapse
Affiliation(s)
- Elizabeth J Glass
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK.
| | | | | |
Collapse
|
15
|
Niller HH, Banati F, Ay E, Minarovits J. Microbe-Induced Epigenetic Alterations. PATHO-EPIGENETICS OF DISEASE 2012:419-455. [DOI: 10.1007/978-1-4614-3345-3_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
16
|
Baumgartner M. Enforcing host cell polarity: an apicomplexan parasite strategy towards dissemination. Curr Opin Microbiol 2011; 14:436-44. [PMID: 21795099 DOI: 10.1016/j.mib.2011.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 07/01/2011] [Indexed: 10/25/2022]
Abstract
The propagation of apicomplexan parasites through transmitting vectors is dependent on effective dissemination of parasites inside the mammalian host. Intracellular Toxoplasma and Theileria parasites face the challenge that their spread inside the host depends in part on the motile capacities of their host cells. In response, these parasites influence the efficiency of dissemination by altering adhesive and/or motile properties of their host cells. Theileria parasites do so by targeting signalling pathways that control host cell actin dynamics. The resulting enforced polar host cell morphology facilitates motility and invasiveness, by establishing focal adhesion and invasion structures at the leading edge of the infected cell. This parasite strategy highlights mechanisms of motility regulation that are also likely relevant for immune or cancer cell motility.
Collapse
Affiliation(s)
- Martin Baumgartner
- University of Bern, Vetsuisse Faculty, Molecular Pathobiology, Länggassstrasse 122, CH-3012 Bern, Switzerland.
| |
Collapse
|
17
|
Baumgartner M. Theileria annulata promotes Src kinase-dependent host cell polarization by manipulating actin dynamics in podosomes and lamellipodia. Cell Microbiol 2010; 13:538-53. [DOI: 10.1111/j.1462-5822.2010.01553.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|