1
|
Baindara P, Agrawal S, Franco OL. Host-directed therapies for malaria and tuberculosis: common infection strategies and repurposed drugs. Expert Rev Anti Infect Ther 2022; 20:849-869. [DOI: 10.1080/14787210.2022.2044794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Piyush Baindara
- Department of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Missouri, Columbia, MO, USA
| | - Sonali Agrawal
- Immunology Division, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - O. L. Franco
- Proteomics Analysis and Biochemical Center, Catholic University of Brasilia, Brasilia, Brazil; S-Inova Biotech, Catholic University Dom Bosco, Campo Grande, MS, Brazil
| |
Collapse
|
2
|
Lautenschläger J, Wagner-Valladolid S, Stephens AD, Fernández-Villegas A, Hockings C, Mishra A, Manton JD, Fantham MJ, Lu M, Rees EJ, Kaminski CF, Kaminski Schierle GS. Intramitochondrial proteostasis is directly coupled to α-synuclein and amyloid β1-42 pathologies. J Biol Chem 2020; 295:10138-10152. [PMID: 32385113 PMCID: PMC7383368 DOI: 10.1074/jbc.ra119.011650] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 04/30/2020] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial dysfunction has long been implicated in the neurodegenerative disorder Parkinson's disease (PD); however, it is unclear how mitochondrial impairment and α-synuclein pathology are coupled. Using specific mitochondrial inhibitors, EM analysis, and biochemical assays, we report here that intramitochondrial protein homeostasis plays a major role in α-synuclein aggregation. We found that interference with intramitochondrial proteases, such as HtrA2 and Lon protease, and mitochondrial protein import significantly aggravates α-synuclein seeding. In contrast, direct inhibition of mitochondrial complex I, an increase in intracellular calcium concentration, or formation of reactive oxygen species, all of which have been associated with mitochondrial stress, did not affect α-synuclein pathology. We further demonstrate that similar mechanisms are involved in amyloid-β 1-42 (Aβ42) aggregation. Our results suggest that, in addition to other protein quality control pathways, such as the ubiquitin-proteasome system, mitochondria per se can influence protein homeostasis of cytosolic aggregation-prone proteins. We propose that approaches that seek to maintain mitochondrial fitness, rather than target downstream mitochondrial dysfunction, may aid in the search for therapeutic strategies to manage PD and related neuropathologies.
Collapse
Affiliation(s)
- Janin Lautenschläger
- Molecular Neuroscience Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge, United Kingdom ;
| | - Sara Wagner-Valladolid
- Molecular Neuroscience Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge, United Kingdom
| | - Amberley D Stephens
- Molecular Neuroscience Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge, United Kingdom
| | - Ana Fernández-Villegas
- Molecular Neuroscience Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge, United Kingdom
| | - Colin Hockings
- Molecular Neuroscience Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge, United Kingdom
| | - Ajay Mishra
- Molecular Neuroscience Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge, United Kingdom
| | - James D Manton
- Quantitative Imaging Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge, United Kingdom
| | - Marcus J Fantham
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge, United Kingdom
| | - Meng Lu
- Molecular Neuroscience Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge, United Kingdom
| | - Eric J Rees
- Quantitative Imaging Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge, United Kingdom
| | - Clemens F Kaminski
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge, United Kingdom
| | - Gabriele S Kaminski Schierle
- Molecular Neuroscience Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge, United Kingdom ;
| |
Collapse
|
3
|
González-Bacerio J, Maluf SEC, Méndez Y, Pascual I, Florent I, Melo PMS, Budu A, Ferreira JC, Moreno E, Carmona AK, Rivera DG, Alonso Del Rivero M, Gazarini ML. KBE009: An antimalarial bestatin-like inhibitor of the Plasmodium falciparum M1 aminopeptidase discovered in an Ugi multicomponent reaction-derived peptidomimetic library. Bioorg Med Chem 2017; 25:4628-4636. [PMID: 28728898 DOI: 10.1016/j.bmc.2017.06.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/23/2017] [Accepted: 06/27/2017] [Indexed: 10/19/2022]
Abstract
Malaria is a global human parasitic disease mainly caused by the protozoon Plasmodium falciparum. Increased parasite resistance to current drugs determines the relevance of finding new treatments against new targets. A novel target is the M1 alanyl-aminopeptidase from P. falciparum (PfA-M1), which is essential for parasite development in human erythrocytes and is inhibited by the pseudo-peptide bestatin. In this work, we used a combinatorial multicomponent approach to produce a library of peptidomimetics and screened it for the inhibition of recombinant PfA-M1 (rPfA-M1) and the in vitro growth of P. falciparum erythrocytic stages (3D7 and FcB1 strains). Dose-response studies with selected compounds allowed identifying the bestatin-based peptidomimetic KBE009 as a submicromolar rPfA-M1 inhibitor (Ki=0.4μM) and an in vitro antimalarial compound as potent as bestatin (IC50=18μM; without promoting erythrocyte lysis). At therapeutic-relevant concentrations, KBE009 is selective for rPfA-M1 over porcine APN (a model of these enzymes from mammals), and is not cytotoxic against HUVEC cells. Docking simulations indicate that this compound binds PfA-M1 without Zn2+ coordination, establishing mainly hydrophobic interactions and showing a remarkable shape complementarity with the active site of the enzyme. Moreover, KBE009 inhibits the M1-type aminopeptidase activity (Ala-7-amido-4-methylcoumarin substrate) in isolated live parasites with a potency similar to that of the antimalarial activity (IC50=82μM), strongly suggesting that the antimalarial effect is directly related to the inhibition of the endogenous PfA-M1. These results support the value of this multicomponent strategy to identify PfA-M1 inhibitors, and make KBE009 a promising hit for drug development against malaria.
Collapse
Affiliation(s)
- Jorge González-Bacerio
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, Calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba.
| | - Sarah El Chamy Maluf
- Departamento de Biofísica, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669, 7 andar, 04039-032, Vila Mariana, São Paulo, Brazil.
| | - Yanira Méndez
- Centro de Estudio de Productos Naturales, Facultad de Química, Universidad de La Habana, Zapata y G, 10400 La Habana, Cuba.
| | - Isel Pascual
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, Calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba.
| | - Isabelle Florent
- Unité Molécules de Communication et Adaptation des Microorganismes, (MCAM, UMR 7245), Sorbonne Universités, Muséum National Histoire Naturelle, CNRS, CP 52, 57 Rue Cuvier, 75005 Paris, France.
| | - Pollyana M S Melo
- Departamento de Biofísica, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669, 7 andar, 04039-032, Vila Mariana, São Paulo, Brazil.
| | - Alexandre Budu
- Departamento de Biofísica, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669, 7 andar, 04039-032, Vila Mariana, São Paulo, Brazil.
| | - Juliana C Ferreira
- Departamento de Biofísica, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669, 7 andar, 04039-032, Vila Mariana, São Paulo, Brazil.
| | - Ernesto Moreno
- Centro de Inmunología Molecular, Calle 15 esq. 216, Siboney, Playa, La Habana, Cuba; Universidad de Medellín, Carrera 87 #30-65, Medellín, Colombia.
| | - Adriana K Carmona
- Departamento de Biofísica, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669, 7 andar, 04039-032, Vila Mariana, São Paulo, Brazil.
| | - Daniel G Rivera
- Centro de Estudio de Productos Naturales, Facultad de Química, Universidad de La Habana, Zapata y G, 10400 La Habana, Cuba.
| | - Maday Alonso Del Rivero
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, Calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba.
| | - Marcos L Gazarini
- Departamento de Biociências, Universidade Federal de São Paulo, R. Silva Jardim, 136, 11015-020, Vila Mathias, Santos, São Paulo, Brazil.
| |
Collapse
|
4
|
Lima WR, Tessarin-Almeida G, Rozanski A, Parreira KS, Moraes MS, Martins DC, Hashimoto RF, Galante PAF, Garcia CRS. Signaling transcript profile of the asexual intraerythrocytic development cycle of Plasmodium falciparum induced by melatonin and cAMP. Genes Cancer 2016; 7:323-339. [PMID: 28050233 PMCID: PMC5115173 DOI: 10.18632/genesandcancer.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
According to the World Health Organization (WHO), Plasmodium falciparum is the deadliest parasite among all species. This parasite possesses the ability to sense molecules, including melatonin (MEL) and cAMP, and modulate its cell cycle accordingly. MEL synchronizes the development of this malaria parasite by activating several cascades, including the generation of the second messenger cAMP. Therefore, we performed RNA sequencing (RNA-Seq) analysis in P. falciparum erythrocytic stages (ring, trophozoite and schizont) treated with MEL and cAMP. To investigate the expression profile of P. falciparum genes regulated by MEL and cAMP, we performed RNA-Seq analysis in three P. falciparum strains (control, 3D7; protein kinase 7 knockout, PfPK7-; and PfPK7 complement, PfPK7C). In the 3D7 strain, 38 genes were differentially expressed upon MEL treatment; however, none of the genes in the trophozoite (T) stage PfPK7- knockout parasites were differentially expressed upon MEL treatment for 5 hours compared to untreated controls, suggesting that PfPK7 may be involved in the signaling leading to differential gene expression. Moreover, we found that MEL modified the mRNA expression of genes encoding membrane proteins, zinc ion-binding proteins and nucleic acid-binding proteins, which might influence numerous functions in the parasite. The RNA-Seq data following treatment with cAMP show that this molecule modulates different genes throughout the intraerythrocytic cycle, namely, 75, 101 and 141 genes, respectively, in the ring (R), T and schizont (S) stages. Our results highlight P. falciparum's perception of the external milieu through the signaling molecules MEL and cAMP, which are able to drive to changes in gene expression in the parasite.
Collapse
Affiliation(s)
- Wânia Rezende Lima
- Departamento de Fisiologia, Instituto de Biociências, Universidade de Sao Paulo, Sao Paulo, Brazil.,Instituto de Ciências Exatas e Naturais (ICEN)- Medicina, Universidade Federal do Mato Grosso - Campus Rondonópolis, Brazil
| | | | - Andrei Rozanski
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, Sao Paulo, Brazil
| | - Kleber S Parreira
- Departamento de Imunologia e Parasitologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Brazil
| | - Miriam S Moraes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - David C Martins
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Paulo, Brazil
| | - Ronaldo F Hashimoto
- Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, Sao Paulo, Brazil
| | - Célia R S Garcia
- Departamento de Fisiologia, Instituto de Biociências, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
5
|
Cruz LN, Wu Y, Ulrich H, Craig AG, Garcia CRS. Tumor necrosis factor reduces Plasmodium falciparum growth and activates calcium signaling in human malaria parasites. Biochim Biophys Acta Gen Subj 2016; 1860:1489-97. [PMID: 27080559 PMCID: PMC4876768 DOI: 10.1016/j.bbagen.2016.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/08/2016] [Accepted: 04/04/2016] [Indexed: 12/29/2022]
Abstract
Background Plasmodium has a complex biology including the ability to interact with host signals modulating their function through cellular machinery. Tumor necrosis factor (TNF) elicits diverse cellular responses including effects in malarial pathology and increased infected erythrocyte cytoadherence. As TNF levels are raised during Plasmodium falciparum infection we have investigated whether it has an effect on the parasite asexual stage. Methods Flow cytometry, spectrofluorimetric determinations, confocal microscopy and PCR real time quantifications were employed for characterizing TNF induced effects and membrane integrity verified by wheat germ agglutinin staining. Results TNF is able to decrease intracellular parasitemia, involving calcium as a second messenger of the pathway. Parasites incubated for 48 h with TNF showed reduced erythrocyte invasion. Thus, TNF induced rises in intracellular calcium concentration, which were blocked by prior addition of the purinergic receptor agonists KN62 and A438079, or interfering with intra- or extracellular calcium release by thapsigargin or EGTA (ethylene glycol tetraacetic acid). Importantly, expression of PfPCNA1 which encodes the Plasmodium falciparum Proliferating-Cell Nuclear Antigen 1, decreased after P. falciparum treatment of TNF (tumor necrosis factor) or 6-Bnz cAMP (N6-benzoyladenosine-3′,5′-cyclic monophosphate sodium salt). Conclusions This is potentially interesting data showing the relevance of calcium in downregulating a gene involved in cellular proliferation, triggered by TNF. General significance The data show that Plasmodium may subvert the immunological system and use TNF for the control of its proliferation within the vertebrate host. TNF is able to decrease parasitemia in P. falciparum‐infected RBCs. TNF induced rises in intracellular calcium concentration, which were blocked by the purinergic receptor agonists KN62 and A438079. Interfering with intra‐ or extracellular calcium release by thapsigargin or EGTA also block TNF‐induce calcium release in P. falciparum. Expression of the P. falciparum Proliferating‐Cell Nuclear Antigen 1 (PfPCNA1) decreased after P. falciparum treatment with TNF or 6‐Bnz cAMP. The data show that Plasmodium may subvert the immunological system and use TNF for the control of its proliferation within the vertebrate host.
Collapse
Affiliation(s)
- Laura N Cruz
- Department of Physiology, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, travessa 14, n321, CEP 05508-900 São Paulo, SP, Brazil
| | - Yang Wu
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Henning Ulrich
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Alister G Craig
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Célia R S Garcia
- Department of Physiology, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, travessa 14, n321, CEP 05508-900 São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Garg S, Agarwal S, Kumar S, Yazdani SS, Chitnis CE, Singh S. Calcium-dependent permeabilization of erythrocytes by a perforin-like protein during egress of malaria parasites. Nat Commun 2013; 4:1736. [PMID: 23591903 DOI: 10.1038/ncomms2725] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 03/08/2013] [Indexed: 11/09/2022] Open
Abstract
Clinical malaria is associated with proliferation of blood-stage parasites. During the blood stage, Plasmodium parasites invade host red blood cells, multiply, egress and reinvade uninfected red blood cells to continue the life cycle. Here we demonstrate that calcium-dependent permeabilization of host red blood cells is critical for egress of Plasmodium falciparum merozoites. Although perforin-like proteins have been predicted to mediate membrane perforation during egress, the expression, activity and mechanism of action of these proteins have not been demonstrated. Here, we show that two perforin-like proteins, perforin-like protein 1 and perforin-like protein 2, are expressed in the blood stage. Perforin-like protein 1 localizes to the red blood cell membrane and parasitophorous vacuolar membrane in mature schizonts following its Ca(2+)-dependent discharge from micronemes. Furthermore, perforin-like protein 1 shows Ca(2+)-dependent permeabilization and membranolytic activities suggesting that it may be one of the effector proteins that mediate Ca(2+)-dependent membrane perforation during egress.
Collapse
Affiliation(s)
- Swati Garg
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | | | | | | | | | | |
Collapse
|
7
|
The walking dead: Is hydroethidine a suitable viability dye for intra-erythrocytic Plasmodium falciparum? Parasitol Int 2012; 61:731-4. [DOI: 10.1016/j.parint.2012.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/04/2012] [Accepted: 07/09/2012] [Indexed: 11/22/2022]
|
8
|
Determination of protein subcellular localization in apicomplexan parasites. Trends Parasitol 2012; 28:546-54. [PMID: 22995720 DOI: 10.1016/j.pt.2012.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/22/2012] [Accepted: 08/24/2012] [Indexed: 11/20/2022]
Abstract
Parasites from the phylum Apicomplexa include causative agents of serious diseases including malaria (Plasmodium spp.) and toxoplasmosis (Toxoplasma gondii). Apicomplexan parasites infect thousands of types of animal cells and send their proteins to an array of compartments within their own cell, as well as exporting proteins into and beyond their host cell. Ascertaining destinations to which individual proteins are delivered allows researchers to better understand parasite biology and to identify potential targets for therapeutic interventions. Our toolkit for establishing subcellular locations of apicomplexan proteins is becoming more extensive and specialized, and here we review developments in this technology.
Collapse
|
9
|
Cruz LN, Wu Y, Craig AG, Garcia CRS. Signal transduction in Plasmodium-Red Blood Cells interactions and in cytoadherence. AN ACAD BRAS CIENC 2012; 84:555-72. [PMID: 22634746 DOI: 10.1590/s0001-37652012005000036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 03/09/2012] [Indexed: 12/19/2022] Open
Abstract
Malaria is responsible for more than 1.5 million deaths each year, especially among children (Snow et al. 2005). Despite of the severity of malaria situation and great effort to the development of new drug targets (Yuan et al. 2011) there is still a relative low investment toward antimalarial drugs. Briefly there are targets classes of antimalarial drugs currently being tested including: kinases, proteases, ion channel of GPCR, nuclear receptor, among others (Gamo et al. 2010). Here we review malaria signal transduction pathways in Red Blood Cells (RBC) as well as infected RBCs and endothelial cells interactions, namely cytoadherence. The last process is thought to play an important role in the pathogenesis of severe malaria. The molecules displayed on the surface of both infected erythrocytes (IE) and vascular endothelial cells (EC) exert themselves as important mediators in cytoadherence, in that they not only induce structural and metabolic changes on both sides, but also trigger multiple signal transduction processes, leading to alteration of gene expression, with the balance between positive and negative regulation determining endothelial pathology during a malaria infection.
Collapse
Affiliation(s)
- Laura N Cruz
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Brasil
| | | | | | | |
Collapse
|
10
|
Generation of second messengers in Plasmodium. Microbes Infect 2012; 14:787-95. [PMID: 22584103 DOI: 10.1016/j.micinf.2012.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 04/17/2012] [Accepted: 04/18/2012] [Indexed: 02/05/2023]
Abstract
Signalling in malaria parasites is a field of growing interest as its components may prove to be valuable drug targets, especially when one considers the burden of a disease that is responsible for up to 500 million infections annually. The scope of this review is to discuss external stimuli in the parasite life cycle and the upstream machinery responsible for translating them into intracellular responses, focussing particularly on the calcium signalling pathway.
Collapse
|
11
|
Cruz LN, Juliano MA, Budu A, Juliano L, Holder AA, Blackman MJ, Garcia CR. Extracellular ATP triggers proteolysis and cytosolic Ca²⁺ rise in Plasmodium berghei and Plasmodium yoelii malaria parasites. Malar J 2012; 11:69. [PMID: 22420332 PMCID: PMC3358241 DOI: 10.1186/1475-2875-11-69] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 03/15/2012] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Plasmodium has a complex cell biology and it is essential to dissect the cell-signalling pathways underlying its survival within the host. METHODS Using the fluorescence resonance energy transfer (FRET) peptide substrate Abz-AIKFFARQ-EDDnp and Fluo4/AM, the effects of extracellular ATP on triggering proteolysis and Ca²⁺ signalling in Plasmodium berghei and Plasmodium yoelii malaria parasites were investigated. RESULTS The protease activity was blocked in the presence of the purinergic receptor blockers suramin (50 μM) and PPADS (50 μM) or the extracellular and intracellular calcium chelators EGTA (5 mM) and BAPTA/AM (25, 100, 200 and 500 μM), respectively for P. yoelii and P. berghei. Addition of ATP (50, 70, 200 and 250 μM) to isolated parasites previously loaded with Fluo4/AM in a Ca²⁺-containing medium led to an increase in cytosolic calcium. This rise was blocked by pre-incubating the parasites with either purinergic antagonists PPADS (50 μM), TNP-ATP (50 μM) or the purinergic blockers KN-62 (10 μM) and Ip5I (10 μM). Incubating P. berghei infected cells with KN-62 (200 μM) resulted in a changed profile of merozoite surface protein 1 (MSP1) processing as revealed by western blot assays. Moreover incubating P. berghei for 17 h with KN-62 (10 μM) led to an increase in rings forms (82% ± 4, n = 11) and a decrease in trophozoite forms (18% ± 4, n = 11). CONCLUSIONS The data clearly show that purinergic signalling modulates P. berghei protease(s) activity and that MSP1 is one target in this pathway.
Collapse
Affiliation(s)
- Laura Nogueira Cruz
- Department of Physiology, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Butantan, 05508-900 São Paulo, SP Brazil
| | | | | | | | | | | | | |
Collapse
|