1
|
Cheuka PM, Njaria P, Mayoka G, Funjika E. Emerging Drug Targets for Antimalarial Drug Discovery: Validation and Insights into Molecular Mechanisms of Function. J Med Chem 2024; 67:838-863. [PMID: 38198596 DOI: 10.1021/acs.jmedchem.3c01828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Approximately 619,000 malaria deaths were reported in 2021, and resistance to recommended drugs, including artemisinin-combination therapies (ACTs), threatens malaria control. Treatment failure with ACTs has been found to be as high as 93% in northeastern Thailand, and parasite mutations responsible for artemisinin resistance have already been reported in some African countries. Therefore, there is an urgent need to identify alternative treatments with novel targets. In this Perspective, we discuss some promising antimalarial drug targets, including enzymes involved in proteolysis, DNA and RNA metabolism, protein synthesis, and isoprenoid metabolism. Other targets discussed are transporters, Plasmodium falciparum acetyl-coenzyme A synthetase, N-myristoyltransferase, and the cyclic guanosine monophosphate-dependent protein kinase G. We have outlined mechanistic details, where these are understood, underpinning the biological roles and hence druggability of such targets. We believe that having a clear understanding of the underlying chemical interactions is valuable to medicinal chemists in their quest to design appropriate inhibitors.
Collapse
Affiliation(s)
- Peter Mubanga Cheuka
- Department of Chemistry, School of Natural Sciences, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia
| | - Paul Njaria
- Department of Pharmacognosy and Pharmaceutical Chemistry, Kenyatta University, P.O. Box 14548-00400, Nairobi 00100, Kenya
| | - Godfrey Mayoka
- Department of Pharmacology and Pharmacognosy, School of Pharmacy, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi 00100, Kenya
| | - Evelyn Funjika
- Department of Chemistry, School of Natural Sciences, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia
| |
Collapse
|
2
|
Salles BC, Dias DS, Steiner BT, Lage DP, Ramos FF, Ribeiro PA, Santos TT, Lima MP, Costa LE, Chaves AT, Chávez-Fumagalli MA, Fujiwaraa RT, Buenoa LL, Caligiorne RB, de Magalhães-Soares DF, Silveira JA, Machado-de-Ávila RA, Gonçalves DU, Coelho EA. Potential application of small myristoylated protein-3 evaluated as recombinant antigen and a synthetic peptide containing its linear B-cell epitope for the serodiagnosis of canine visceral and human tegumentary leishmaniasis. Immunobiology 2019; 224:163-171. [DOI: 10.1016/j.imbio.2018.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 09/10/2018] [Accepted: 09/19/2018] [Indexed: 12/31/2022]
|
3
|
Wright MH, Paape D, Storck EM, Serwa RA, Smith DF, Tate EW. Global analysis of protein N-myristoylation and exploration of N-myristoyltransferase as a drug target in the neglected human pathogen Leishmania donovani. ACTA ACUST UNITED AC 2015; 22:342-54. [PMID: 25728269 PMCID: PMC4372256 DOI: 10.1016/j.chembiol.2015.01.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/16/2014] [Accepted: 01/13/2015] [Indexed: 10/26/2022]
Abstract
N-Myristoyltransferase (NMT) modulates protein function through the attachment of the lipid myristate to the N terminus of target proteins, and is a promising drug target in eukaryotic parasites such as Leishmania donovani. Only a small number of NMT substrates have been characterized in Leishmania, and a global picture of N-myristoylation is lacking. Here, we use metabolic tagging with an alkyne-functionalized myristic acid mimetic in live parasites followed by downstream click chemistry and analysis to identify lipidated proteins in both the promastigote (extracellular) and amastigote (intracellular) life stages. Quantitative chemical proteomics is used to profile target engagement by NMT inhibitors, and to define the complement of N-myristoylated proteins. Our results provide new insight into the multiple pathways modulated by NMT and the pleiotropic effects of NMT inhibition. This work constitutes the first global experimental analysis of protein lipidation in Leishmania, and reveals the extent of NMT-related biology yet to be explored for this neglected human pathogen.
Collapse
Affiliation(s)
- Megan H Wright
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK.
| | - Daniel Paape
- Centre for Immunology and Infection, Department of Biology, University of York, York YO10 5DD, UK
| | | | - Remigiusz A Serwa
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK
| | - Deborah F Smith
- Centre for Immunology and Infection, Department of Biology, University of York, York YO10 5DD, UK
| | - Edward W Tate
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
4
|
Goldston AM, Sharma AI, Paul KS, Engman DM. Acylation in trypanosomatids: an essential process and potential drug target. Trends Parasitol 2014; 30:350-60. [PMID: 24954795 DOI: 10.1016/j.pt.2014.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/06/2014] [Accepted: 05/06/2014] [Indexed: 12/11/2022]
Abstract
Fatty acylation--the addition of fatty acid moieties such as myristate and palmitate to proteins--is essential for the survival, growth, and infectivity of the trypanosomatids: Trypanosoma brucei, Trypanosoma cruzi, and Leishmania. Myristoylation and palmitoylation are critical for parasite growth, targeting and localization, and the intrinsic function of some proteins. The trypanosomatids possess a single N-myristoyltransferase (NMT) and multiple palmitoyl acyltransferases, and these enzymes and their protein targets are only now being characterized. Global inhibition of either process leads to cell death in trypanosomatids, and genetic ablation of NMT compromises virulence. Moreover, NMT inhibitors effectively cure T. brucei infection in rodents. Thus, protein acylation represents an attractive target for the development of new trypanocidal drugs.
Collapse
Affiliation(s)
- Amanda M Goldston
- Departments of Pathology and Microbiology-Immunology, Northwestern University, Chicago, Illinois, USA
| | - Aabha I Sharma
- Departments of Pathology and Microbiology-Immunology, Northwestern University, Chicago, Illinois, USA
| | - Kimberly S Paul
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | - David M Engman
- Departments of Pathology and Microbiology-Immunology, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
5
|
Nühs A, Schäfer C, Zander D, Trübe L, Tejera Nevado P, Schmidt S, Arevalo J, Adaui V, Maes L, Dujardin JC, Clos J. A novel marker, ARM58, confers antimony resistance to Leishmania spp. Int J Parasitol Drugs Drug Resist 2014; 4:37-47. [PMID: 24596667 PMCID: PMC3940081 DOI: 10.1016/j.ijpddr.2013.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 12/22/2022]
Abstract
Protozoa of the Leishmania genus cause a variety of disease forms that rank at the top of the list of neglected tropical diseases. Anti-leishmanial drugs based on pentavalent antimony have been the mainstay of therapy for over 60 years and resistance against them is increasingly encountered in the field. The biochemical basis for this is poorly understood and likely diverse. No stringent correlation between genetic markers and antimony resistance has so far been shown, prompting us to use a functional cloning approach to identify markers of resistance. Using gene libraries derived from drug-resistant and drug-sensitive Leishmania braziliensis clinical isolates in a functional cloning strategy, we repeatedly selected one gene locus located on chromosome 20 whose amplification confers increased antimony (III) resistance in vitro to an otherwise sensitive L. braziliensis clone. The gene responsible for the effect encodes a previously hypothetical protein that we dubbed LbrARM58. It comprises four repeats of a domain of unknown function, DUF1935, one of them harbouring a potential trans-membrane domain. The gene is so far unique to the Leishmania genus, while a structurally related gene without antimony resistance functionality is also found in Trypanosoma spp. Overexpression of LbrARM58 also confers antimony resistance to promastigotes and intracellular amastigotes of the related species Leishmania infantum, indicating a conserved function in Old World and New World Leishmania species. Our results also show that in spite of their RNAi system, L. braziliensis promastigotes can serve as acceptor cells for episomally propagated cosmid libraries, at least for the initial stages of functional cloning efforts.
Collapse
Affiliation(s)
- Andrea Nühs
- Bernhard Nocht Institute for Tropical Medicine, D20359 Hamburg, Germany
| | - Carola Schäfer
- Bernhard Nocht Institute for Tropical Medicine, D20359 Hamburg, Germany
| | - Dorothea Zander
- Bernhard Nocht Institute for Tropical Medicine, D20359 Hamburg, Germany
| | - Leona Trübe
- Bernhard Nocht Institute for Tropical Medicine, D20359 Hamburg, Germany
| | | | - Sonja Schmidt
- Bernhard Nocht Institute for Tropical Medicine, D20359 Hamburg, Germany
| | - Jorge Arevalo
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Vanessa Adaui
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Louis Maes
- Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Jean-Claude Dujardin
- Instituut voor Tropische Geneeskunde, Antwerp, Belgium
- Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Joachim Clos
- Bernhard Nocht Institute for Tropical Medicine, D20359 Hamburg, Germany
| |
Collapse
|
6
|
Rackham MD, Brannigan JA, Rangachari K, Meister S, Wilkinson AJ, Holder AA, Leatherbarrow RJ, Tate EW. Design and synthesis of high affinity inhibitors of Plasmodium falciparum and Plasmodium vivax N-myristoyltransferases directed by ligand efficiency dependent lipophilicity (LELP). J Med Chem 2014; 57:2773-88. [PMID: 24641010 PMCID: PMC4048319 DOI: 10.1021/jm500066b] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
N-Myristoyltransferase (NMT) is an essential eukaryotic enzyme and an attractive drug target in parasitic infections such as malaria. We have previously reported that 2-(3-(piperidin-4-yloxy)benzo[b]thiophen-2-yl)-5-((1,3,5-trimethyl-1H-pyrazol-4-yl)methyl)-1,3,4-oxadiazole (34c) is a high affinity inhibitor of both Plasmodium falciparum and P. vivax NMT and displays activity in vivo against a rodent malaria model. Here we describe the discovery of 34c through optimization of a previously described series. Development, guided by targeting a ligand efficiency dependent lipophilicity (LELP) score of less than 10, yielded a 100-fold increase in enzyme affinity and a 100-fold drop in lipophilicity with the addition of only two heavy atoms. 34c was found to be equipotent on chloroquine-sensitive and -resistant cell lines and on both blood and liver stage forms of the parasite. These data further validate NMT as an exciting drug target in malaria and support 34c as an attractive tool for further optimization.
Collapse
Affiliation(s)
- Mark D Rackham
- Department of Chemistry, Imperial College London , London SW7 2AZ, U.K
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Tate EW, Bell AS, Rackham MD, Wright MH. N-Myristoyltransferase as a potential drug target in malaria and leishmaniasis. Parasitology 2014; 141:37-49. [PMID: 23611109 DOI: 10.1017/s0031182013000450] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Infections caused by protozoan parasites are among the most widespread and intractable transmissible diseases affecting the developing world, with malaria and leishmaniasis being the most costly in terms of morbidity and mortality. Although new drugs are urgently required against both diseases in the face of ever-rising resistance to frontline therapies, very few candidates passing through development pipelines possess a known and novel mode of action. Set in the context of drugs currently in use and under development, we present the evidence for N-myristoyltransferase (NMT), an enzyme that N-terminally lipidates a wide range of specific target proteins through post-translational modification, as a potential drug target in malaria and the leishmaniases. We discuss the limitations of current knowledge regarding the downstream targets of this enzyme in protozoa, and our recent progress towards potent cell-active NMT inhibitors against the most clinically-relevant species of parasite. Finally, we outline the next steps required in terms of both tools to understand N-myristoylation in protozoan parasites, and the generation of potential development candidates based on the output of our recently-reported high-throughput screens.
Collapse
Affiliation(s)
- Edward W Tate
- Department of Chemistry, Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| | - Andrew S Bell
- Department of Chemistry, Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| | - Mark D Rackham
- Department of Chemistry, Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| | - Megan H Wright
- Department of Chemistry, Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
8
|
Heng J, Saunders EC, Gooley PR, McConville MJ, Naderer T, Tull D. Membrane targeting of the small myristoylated protein 2 (SMP-2) in Leishmania major. Mol Biochem Parasitol 2013; 190:1-5. [PMID: 23727225 DOI: 10.1016/j.molbiopara.2013.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 05/06/2013] [Accepted: 05/21/2013] [Indexed: 01/01/2023]
Abstract
Leishmania parasites express three highly conserved small myristoylated proteins (SMPs) that are targeted to distinct membranes. SMP-1 is exclusively found in the flagellum, depending on myristoylation and palmitoylation. In contrast, monoacylated SMP-2 and SMP-4 are localized to the flagellar pocket and plasma membrane, respectively. Here, we demonstrate that unlike SMP-4, SMP-2 resides in detergent resistant membranes, but can be readily solubilized in the presence of high concentrations of salt. We provide evidence that in detergent resistant membranes, SMP-2 forms high molecular weight complexes in vivo. Association with detergent resistant membranes was abrogated in the presence of a C-terminal tag suggesting acylation independent targeting signals. In addition, the N-terminal region of SMP-2 contains sufficient information for membrane targeting, as a GFP-chimera localizes to the flagellar pocket. Thus while the core sequences of the SMPs are highly conserved, individual members have evolved different mechanisms for their diverse membrane localization.
Collapse
Affiliation(s)
- Joanne Heng
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
9
|
Goldston AM, Powell RR, Temesvari LA. Sink or swim: lipid rafts in parasite pathogenesis. Trends Parasitol 2012; 28:417-26. [PMID: 22906512 DOI: 10.1016/j.pt.2012.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 12/26/2022]
Abstract
Lipid rafts, sterol- and sphingolipid-rich membrane microdomains, have been extensively studied in mammalian cells. Recently, lipid rafts have been shown to control virulence in a variety of parasites including Entamoeba histolytica, Giardia intestinalis, Leishmania spp., Plasmodium spp., Toxoplasma gondii, and Trypanosoma spp. Parasite rafts regulate adhesion to host and invasion, and parasite adhesion molecules often localize to rafts. Parasite rafts also control vesicle trafficking, motility, and cell signaling. Parasites disrupt host cell rafts; the dysregulation of host membrane function facilitates the establishment of infection and evasion of the host immune system. Discerning the mechanism by which lipid rafts regulate parasite pathogenesis is essential to our understanding of virulence. Such insight may guide the development of new drugs for disease management.
Collapse
Affiliation(s)
- Amanda M Goldston
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | | | | |
Collapse
|