1
|
Elshahawy IS, Mohammed ES, Mawas AS, Shibat El Hamd DMW, Ali E, Alghamdi AM, Alzaylaee H, Elmahallawy EK. First microscopic, pathological, epidemiological, and molecular investigation of Leucocytozoon (Apicomplexa: Haemosporida) parasites in Egyptian pigeons. Front Vet Sci 2024; 11:1434627. [PMID: 39170633 PMCID: PMC11335660 DOI: 10.3389/fvets.2024.1434627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction Leucocytozoon is an intracellular blood parasite that affects various bird species globally and is transmitted by blackfly vectors. This parasite is responsible for leucocytozoonosis, a disease that results in significant economic losses due to reduced meat and egg production. There is limited knowledge about the epidemiological pattern of leucocytozoonosis and its causative species in Egypt, particularly in pigeons. Methods The current study involved the collection of 203 blood samples from domestic pigeons from various household breeders and local markets across Qena Province, Upper Egypt. Samples were initially examined for potential Leucocytozoon infection using blood smears, followed by an evaluation of associated risk factors. Molecular identification of the parasite in selected samples (n = 11), which had initially tested positive via blood smears, was further refined through nested PCR and sequence analysis of the mitochondrial cytochrome b gene to ascertain the Leucocytozoon species present. Additionally, histopathological examination of the liver, spleen, and pancreas was conducted on animals that tested positive by blood smears. Results Interestingly, 26 out of 203 samples (12.08%) had confirmed Leucocytozoon infections based on microscopic analysis. Additionally, all 11 samples that initially tested positive via blood smears were confirmed positive through nested PCR analysis, and their sequencing revealed the presence of Leucocytozoon sabrazesi, marking the first report of this parasite in Egypt. The study into potential risk factors unveiled the prevalence of Leucocytozoon spp. seems host gender-dependent, with males exhibiting a significantly higher infection rate (33.33%). Additionally, adult birds demonstrated a significantly higher infection prevalence than squabs, suggesting an age-dependent trend in prevalence. Seasonality played a significant role, with the highest occurrence observed during summer (37.25%). Histopathological examination revealed the presence of numerous megaloschizonts accompanied by lymphocytic infiltration and multiple focal areas of ischemic necrosis. Conclusion To our knowledge, this is the first study to shed light on the epidemiological characteristics and molecular characterization of leucocytozoonosis in pigeons in Egypt. Further research endeavors are warranted to curb the resurgence of Leucocytozoon parasites in other avian species across Egypt, thereby refining the epidemiological understanding of the disease for more effective control and prevention measures.
Collapse
Affiliation(s)
- Ismail Saad Elshahawy
- Department of Parasitology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Eman Sayed Mohammed
- Department of Parasitology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Amany Sayed Mawas
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Dina M. W. Shibat El Hamd
- Department of Poultry Diseases, Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Qena, Egypt
| | - Esraa Ali
- Department of Parasitology, Animal Health Research Institute, (AHRI), Agricultural Research Center (ARC), Qena, Egypt
| | - Abeer M. Alghamdi
- Department of Biology, Faculty of Science, Al-Baha University, Al-Baha, Saudi Arabia
| | - Hind Alzaylaee
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ehab Kotb Elmahallawy
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Universidad de Córdoba, Córdoba, Spain
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
2
|
Ferraguti M, Magallanes S, Mora-Rubio C, Bravo-Barriga D, Marzal A, Hernandez-Caballero I, Aguilera-Sepúlveda P, Llorente F, Pérez-Ramírez E, Guerrero-Carvajal F, Jiménez-Clavero MÁ, Frontera E, Ortiz JA, de Lope F. Implications of migratory and exotic birds and the mosquito community on West Nile virus transmission. Infect Dis (Lond) 2024; 56:206-219. [PMID: 38160682 DOI: 10.1080/23744235.2023.2288614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Vector-borne diseases like West Nile virus (WNV) pose a global health challenge, with rising incidence and distribution. Culex mosquitoes are crucial WNV vectors. Avian species composition and bird community diversity, along with vector communities, influence WNV transmission patterns. However, limited knowledge exists on their impact in southwestern Spain, an area with active WNV circulation in wild birds, mosquitoes, and humans. METHODS To address this, we conducted a comprehensive study investigating the contributions of migratory and exotic bird species to WNV transmission and the influence of mosquito community composition. RESULTS Analysing 1194 serum samples from 44 avian species, we detected WNV antibodies in 32 samples from 11 species, four for the first time in Europe. Migratory birds had higher WNV exposure likelihood than native and exotic species, and higher phylogenetic diversity in bird communities correlated with lower exposure rates. Moreover, in 5859 female mosquitoes belonging to 12 species, we identified WNV competent vectors like Cx. pipiens s.l. and the Univittatus subgroup. Birds with WNV antibodies were positively associated with competent vector abundance, but negatively with overall mosquito species richness. CONCLUSIONS These findings highlight the complex interactions between bird species, their phylogenetics, and mosquito vectors in WNV transmission. Understanding these dynamics will help to implement effective disease control strategies in southwestern Spain.
Collapse
Affiliation(s)
- Martina Ferraguti
- Estación Biológica de Doñana (EBD), CSIC, Departamento de Biología de la Conservación y Cambio Global, Seville, Spain
- Universidad de Extremadura, Facultad de Biología, Departamento de Anatomía, Biología Celular y Zoología, Badajoz, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Sergio Magallanes
- Estación Biológica de Doñana (EBD), CSIC, Departamento de Biología de la Conservación y Cambio Global, Seville, Spain
- Universidad de Extremadura, Facultad de Biología, Departamento de Anatomía, Biología Celular y Zoología, Badajoz, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Carlos Mora-Rubio
- Universidad de Extremadura, Facultad de Biología, Departamento de Anatomía, Biología Celular y Zoología, Badajoz, Spain
| | - Daniel Bravo-Barriga
- Universidad de Córdoba, Departamento de Sanidad Animal, Grupo de Investigación en Zoonosis y Sanidad Animal (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Córdoba, Spain
- Universidad de Extremadura, Facultad de Veterinaria, Departamento de Sanidad Animal, Parasitología, Cáceres, Spain
| | - Alfonso Marzal
- Universidad de Extremadura, Facultad de Biología, Departamento de Anatomía, Biología Celular y Zoología, Badajoz, Spain
- Universidad Nacional de San Martín, Grupo de Investigaciones en Fauna Silvestre, Tarapoto, Perú
| | - Irene Hernandez-Caballero
- Universidad de Extremadura, Facultad de Biología, Departamento de Anatomía, Biología Celular y Zoología, Badajoz, Spain
| | | | - Francisco Llorente
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
| | - Elisa Pérez-Ramírez
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
| | | | - Miguel Ángel Jiménez-Clavero
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
| | - Eva Frontera
- Universidad Nacional de San Martín, Grupo de Investigaciones en Fauna Silvestre, Tarapoto, Perú
| | | | - Florentino de Lope
- Universidad de Extremadura, Facultad de Biología, Departamento de Anatomía, Biología Celular y Zoología, Badajoz, Spain
| |
Collapse
|