1
|
Chen D, Liu X, Lu X, Tian J. Nanoparticle drug delivery systems for synergistic delivery of tumor therapy. Front Pharmacol 2023; 14:1111991. [PMID: 36874010 PMCID: PMC9978018 DOI: 10.3389/fphar.2023.1111991] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
Nanoparticle drug delivery systems have proved anti-tumor effects; however, they are not widely used in tumor therapy due to insufficient ability to target specific sites, multidrug resistance to anti-tumor drugs, and the high toxicity of the drugs. With the development of RNAi technology, nucleic acids have been delivered to target sites to replace or correct defective genes or knock down specific genes. Also, synergistic therapeutic effects can be achieved for combined drug delivery, which is more effective for overcoming multidrug resistance of cancer cells. These combination therapies achieve better therapeutic effects than delivering nucleic acids or chemotherapeutic drugs alone, so the scope of combined drug delivery has also been expanded to three aspects: drug-drug, drug-gene, and gene-gene. This review summarizes the recent advances of nanocarriers to co-delivery agents, including i) the characterization and preparation of nanocarriers, such as lipid-based nanocarriers, polymer nanocarriers, and inorganic delivery carriers; ii) the advantages and disadvantages of synergistic delivery approaches; iii) the effectual delivery cases that are applied in the synergistic delivery systems; and iv) future perspectives in the design of nanoparticle drug delivery systems to co-deliver therapeutic agents.
Collapse
Affiliation(s)
- Daoyuan Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Xuecun Liu
- Shandong Boan Biotechnology Co., Ltd., Yantai, China
| | - Xiaoyan Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
2
|
Heuberger L, Korpidou M, Eggenberger OM, Kyropoulou M, Palivan CG. Current Perspectives on Synthetic Compartments for Biomedical Applications. Int J Mol Sci 2022; 23:5718. [PMID: 35628527 PMCID: PMC9145047 DOI: 10.3390/ijms23105718] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/04/2022] Open
Abstract
Nano- and micrometer-sized compartments composed of synthetic polymers are designed to mimic spatial and temporal divisions found in nature. Self-assembly of polymers into compartments such as polymersomes, giant unilamellar vesicles (GUVs), layer-by-layer (LbL) capsules, capsosomes, or polyion complex vesicles (PICsomes) allows for the separation of defined environments from the exterior. These compartments can be further engineered through the incorporation of (bio)molecules within the lumen or into the membrane, while the membrane can be decorated with functional moieties to produce catalytic compartments with defined structures and functions. Nanometer-sized compartments are used for imaging, theranostic, and therapeutic applications as a more mechanically stable alternative to liposomes, and through the encapsulation of catalytic molecules, i.e., enzymes, catalytic compartments can localize and act in vivo. On the micrometer scale, such biohybrid systems are used to encapsulate model proteins and form multicompartmentalized structures through the combination of multiple compartments, reaching closer to the creation of artificial organelles and cells. Significant progress in therapeutic applications and modeling strategies has been achieved through both the creation of polymers with tailored properties and functionalizations and novel techniques for their assembly.
Collapse
Affiliation(s)
- Lukas Heuberger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland; (L.H.); (M.K.); (O.M.E.); (M.K.)
| | - Maria Korpidou
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland; (L.H.); (M.K.); (O.M.E.); (M.K.)
| | - Olivia M. Eggenberger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland; (L.H.); (M.K.); (O.M.E.); (M.K.)
| | - Myrto Kyropoulou
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland; (L.H.); (M.K.); (O.M.E.); (M.K.)
- NCCR-Molecular Systems Engineering, Mattenstrasse 24a, BPR 1095, 4058 Basel, Switzerland
| | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland; (L.H.); (M.K.); (O.M.E.); (M.K.)
- NCCR-Molecular Systems Engineering, Mattenstrasse 24a, BPR 1095, 4058 Basel, Switzerland
| |
Collapse
|
3
|
Zhang L, Pu Y, Li J, Yan J, Gu Z, Gao W, He B. pH responsive coumarin and imidazole grafted polymeric micelles for cancer therapy. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
4
|
Nusblat LM, Tanna S, Roth CM. Gene silencing of HIF-2α disrupts glioblastoma stem cell phenotype. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:199-208. [PMID: 32566921 PMCID: PMC7304423 DOI: 10.20517/cdr.2019.96] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aim: Improved treatment strategies are desperately needed for eradicating cancer stem cells (CSCs), which drive malignancy and recurrence in glioblastoma multiforme. Hypoxic regions within the tumor microenvironment help maintain and promote the proliferation of CSCs. Here, we explored the effects of silencing hypoxia inducible factor-2α (HIF-2α) because of its specificity for CSCs within the hypoxic environment. Methods: Cancer stem cell neurospheres were formed by enriching from both the glioblastoma cell line U87 and from brain tumor stem cells isolated directly from human brain tumors. Silencing of human HIF-2α was performed using both commercial and in-house transfection of a validated short interfering RNA, with all results compared to an established non-silencing control short interfering RNA. Silencing of HIF-2α was established by Western blotting, and phenotypic effects were assayed by cell migration assays, cell viability measurements, and immunofluorescence staining of differentiation markers. Results: Transfection with either our previously reported pH-sensitive, cationic amphiphilic macromolecule-based delivery system or Lipofectamine was similarly effective in silencing HIF-2α. The chemotherapeutic resistance and neurosphere formation were reduced when HIF-2α was silenced. Migratory capacities in the presence of macrophage conditioned media were modulated. HIF-2α silencing was complementary to temozolomide treatment in producing phenotypic rather than cytotoxic effects. Conclusion: HIF-2α silencing under hypoxia inhibited CSC phenotypes while promoting differentiated cell phenotypes and is complementary to existing DNA alkylating treatments in inhibiting glioma CSC activity.
Collapse
Affiliation(s)
- Leora M Nusblat
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Shaili Tanna
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Charles M Roth
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.,Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
5
|
Yoshida S, Duong C, Oestergaard M, Fazio M, Chen C, Peralta R, Guo S, Seth PP, Li Y, Beckett L, Nitin N, Satake N. MXD3 antisense oligonucleotide with superparamagnetic iron oxide nanoparticles: A new targeted approach for neuroblastoma. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 24:102127. [PMID: 31783139 DOI: 10.1016/j.nano.2019.102127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 10/29/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023]
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in children. The outcomes for aggressive forms of NB remain poor. The aim of this study was to develop a new molecular-targeted therapy for NB using an antisense oligonucleotide (ASO) and superparamagnetic iron oxide (SPIO) nanoparticles (NPs), as a delivery vehicle, targeting the transcription regulator MAX dimerization protein 3 (MXD3). We previously discovered that MXD3 was highly expressed in high-risk NB, acting as an anti-apoptotic factor; therefore, it can be a good therapeutic target. In this study, we developed two ASO-NP complexes using electrostatic conjugation to polyethylenimine-coated SPIO NPs and chemical conjugation to amphiphilic polymers on amine-functionalized SPIO NPs. Both ASO-NP complexes demonstrated MXD3 knockdown, which resulted in apoptosis in NB cells. ASO chemically-conjugated NP complexes have the potential to be used in the clinic as they showed great efficacy with minimum NP-associated cytotoxicity.
Collapse
Affiliation(s)
- Sakiko Yoshida
- Department of Pediatrics, University of California, Davis, Sacramento, CA, USA; Department of Pediatrics, Niigata University, Japan
| | - Connie Duong
- Department of Pediatrics, University of California, Davis, Sacramento, CA, USA
| | | | | | - Cathy Chen
- Department of Pediatrics, University of California, Davis, Sacramento, CA, USA
| | | | | | | | - Yueju Li
- Department of Public Health Sciences, University of California, Davis, Sacramento, CA, USA
| | - Laurel Beckett
- Department of Public Health Sciences, University of California, Davis, Sacramento, CA, USA
| | - Nitin Nitin
- Departments of Food Science & Technology and Biological & Agricultural Engineering, University of California, Davis, Davis, CA, USA
| | - Noriko Satake
- Department of Pediatrics, University of California, Davis, Sacramento, CA, USA.
| |
Collapse
|
6
|
Du X, Zhang T, Ma G, Gu X, Wang G, Li J. Glucose-responsive mesoporous silica nanoparticles to generation of hydrogen peroxide for synergistic cancer starvation and chemistry therapy. Int J Nanomedicine 2019; 14:2233-2251. [PMID: 31118604 PMCID: PMC6498395 DOI: 10.2147/ijn.s195900] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 03/04/2019] [Indexed: 12/31/2022] Open
Abstract
Background: The combination of novel starving therapy with chemotherapy is one of the most promising strategies to achieve an effective antitumor activity. Methods: Herein, we developed a multifunctional mesoporous silica nanoparticle (MSNs-GOx/PLL/HA) coated with poly (L-lysine) (PLL) and hyaluronic acid (HA) for co-delivery of glucose oxidase (GOx) and anticancer drug paclitaxel (PTX) for cancer treatment for the first time. Compared to single chemotherapy, introduction of GOx would not only selectively trigger the consumption of intracellular glucose, leading to the interruption of energy supply, but also elevat the endogenous H2O2 level, inducing stronger therapeutic effects. Results: The novel drug delivery system possessed desirable particle diameter of 40 nm and exhibited a pH-sensitive drug release behavior. An in vitro cellular uptake study indicated that MSNs-GOx/PLL/HA nanoparticles effectively enhanced the cellular uptake of drug in an apparently CD44 receptor-dependent manner, and delivered more cargo into cytoplasm via endolysosomal escape effect in presence of PLL. The nanoplatform has also demonstrated amplified synergistic therapeutic effects for remarkable tumor inhibition in a xenograft animal tumor model. Conclusion: Consequently, the developed synergistic starving-like/chemotherapy may provide a potential platform for next generation cancer therapy.
Collapse
Affiliation(s)
- Xiao Du
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, , People's Republic of China
| | - Tian Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, , People's Republic of China
| | - Guanglan Ma
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, , People's Republic of China
| | - Xiaochen Gu
- College of Pharmacy, University of Manitoba, Winnipeg, MB, Canada
| | - Guangji Wang
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Juan Li
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, , People's Republic of China
| |
Collapse
|
7
|
Yorulmaz Avsar S, Kyropoulou M, Di Leone S, Schoenenberger CA, Meier WP, Palivan CG. Biomolecules Turn Self-Assembling Amphiphilic Block Co-polymer Platforms Into Biomimetic Interfaces. Front Chem 2019; 6:645. [PMID: 30671429 PMCID: PMC6331732 DOI: 10.3389/fchem.2018.00645] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/11/2018] [Indexed: 12/29/2022] Open
Abstract
Biological membranes constitute an interface between cells and their surroundings and form distinct compartments within the cell. They also host a variety of biomolecules that carry out vital functions including selective transport, signal transduction and cell-cell communication. Due to the vast complexity and versatility of the different membranes, there is a critical need for simplified and specific model membrane platforms to explore the behaviors of individual biomolecules while preserving their intrinsic function. Information obtained from model membrane platforms should make invaluable contributions to current and emerging technologies in biotechnology, nanotechnology and medicine. Amphiphilic block co-polymers are ideal building blocks to create model membrane platforms with enhanced stability and robustness. They form various supramolecular assemblies, ranging from three-dimensional structures (e.g., micelles, nanoparticles, or vesicles) in aqueous solution to planar polymer membranes on solid supports (e.g., polymer cushioned/tethered membranes,) and membrane-like polymer brushes. Furthermore, polymer micelles and polymersomes can also be immobilized on solid supports to take advantage of a wide range of surface sensitive analytical tools. In this review article, we focus on self-assembled amphiphilic block copolymer platforms that are hosting biomolecules. We present different strategies for harnessing polymer platforms with biomolecules either by integrating proteins or peptides into assemblies or by attaching proteins or DNA to their surface. We will discuss how to obtain synthetic structures on solid supports and their characterization using different surface sensitive analytical tools. Finally, we highlight present and future perspectives of polymer micelles and polymersomes for biomedical applications and those of solid-supported polymer membranes for biosensing.
Collapse
|
8
|
Ferrari R, Sponchioni M, Morbidelli M, Moscatelli D. Polymer nanoparticles for the intravenous delivery of anticancer drugs: the checkpoints on the road from the synthesis to clinical translation. NANOSCALE 2018; 10:22701-22719. [PMID: 30512025 DOI: 10.1039/c8nr05933k] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In this review article we discuss some of the key aspects concerning the development of a polymer-based nanoparticle formulation for intravenous drug delivery. Since numerous preparations fail before and during clinical trials, our aim is to emphasize the main issues that a nanocarrier has to face once injected into the body. These include biocompatibility and toxicity, drug loading and release, nanoparticle storage and stability, biodistribution, selectivity towards the target organs or tissues, internalization in cells and biodegradability. They represent the main checkpoints to define a polymer-based formulation as safe and effective. Indeed, this review is intended to provide guidelines to be followed in the early development of a new nanotherapeutic to hopefully increase the success rate of polymer-based formulations entering clinical trials. The corresponding requirements and characteristics are discussed in the context of some relevant case studies taken from the literature and mainly related to the delivery of lipophilic anticancer therapeutics.
Collapse
Affiliation(s)
- R Ferrari
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland.
| | - M Sponchioni
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland. and Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy
| | - M Morbidelli
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland.
| | - D Moscatelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy
| |
Collapse
|
9
|
Demazeau M, Quesnot N, Ripoche N, Rauch C, Jeftić J, Morel F, Gauffre F, Benvegnu T, Loyer P. Efficient transfection of Xenobiotic Responsive Element-biosensor plasmid using diether lipid and phosphatidylcholine liposomes in differentiated HepaRG cells. Int J Pharm 2017; 524:268-278. [PMID: 28365389 DOI: 10.1016/j.ijpharm.2017.03.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 10/19/2022]
Abstract
In this study, we evaluated cationic liposomes prepared from diether-NH2 and egg phosphatidylcholine (EPC) for in vitro gene delivery. The impact of the lipid composition, i.e. the EPC and Diether-NH2 molar ratio, on in vitro transfection efficiency and cytotoxicity was investigated using the human HEK293T and hepatoma HepaRG cells known to be permissive and poorly permissive cells for liposome-mediated gene transfer, respectively. Here, we report that EPC/Diether-NH2-based liposomes enabled a very efficient transfection with low cytotoxicity compared to commercial transfection reagents in both HEK293T and proliferating progenitor HepaRG cells. Taking advantage of these non-toxic EPC/Diether-NH2-based liposomes, we developed a method to efficiently transfect differentiated hepatocyte-like HepaRG cells and a biosensor plasmid containing a Xenobiotic Responsive Element and a minimal promoter driving the transcription of the luciferase reporter gene. We demonstrated that the luciferase activity was induced by a canonical inducer of cytochrome P450 genes, the benzo[a]pyrene, and two environmental contaminants, the fluoranthene, a polycyclic aromatic hydrocarbon, and the endosulfan, an organochlorine insecticide, known to induce toxicity and genotoxicity in differentiated HepaRG cells. In conclusion, we established a new efficient lipofection-mediated gene transfer in hepatocyte-like HepaRG cells opening new perspectives in drug evaluation relying on xenobiotic inducible biosensor plasmids.
Collapse
Affiliation(s)
- Maxime Demazeau
- Ecole Nationale Supérieure de Chimie de Rennes, Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS, Plateforme SynNanoVect, Biogenouest, 11 allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France
| | - Nicolas Quesnot
- INSERM, INRA, Univ Rennes 1, Univ Bretagne Loire, Nutrition Metabolisms and Cancer (NuMeCan), Plateforme SynNanoVect, Biogenouest, Rennes, France
| | - Nicolas Ripoche
- Ecole Nationale Supérieure de Chimie de Rennes, Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS, Plateforme SynNanoVect, Biogenouest, 11 allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France
| | - Claudine Rauch
- INSERM, INRA, Univ Rennes 1, Univ Bretagne Loire, Nutrition Metabolisms and Cancer (NuMeCan), Plateforme SynNanoVect, Biogenouest, Rennes, France
| | - Jelena Jeftić
- Ecole Nationale Supérieure de Chimie de Rennes, Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS, Plateforme SynNanoVect, Biogenouest, 11 allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France
| | - Fabrice Morel
- INSERM, INRA, Univ Rennes 1, Univ Bretagne Loire, Nutrition Metabolisms and Cancer (NuMeCan), Plateforme SynNanoVect, Biogenouest, Rennes, France
| | - Fabienne Gauffre
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS, Université de Rennes 1, Campus de Beaulieu, 263 Avenue du Général Leclerc, F-35042 Rennes Cedex, France.
| | - Thierry Benvegnu
- Ecole Nationale Supérieure de Chimie de Rennes, Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS, Plateforme SynNanoVect, Biogenouest, 11 allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France.
| | - Pascal Loyer
- INSERM, INRA, Univ Rennes 1, Univ Bretagne Loire, Nutrition Metabolisms and Cancer (NuMeCan), Plateforme SynNanoVect, Biogenouest, Rennes, France.
| |
Collapse
|
10
|
Belmadi N, Midoux P, Loyer P, Passirani C, Pichon C, Le Gall T, Jaffres PA, Lehn P, Montier T. Synthetic vectors for gene delivery: An overview of their evolution depending on routes of administration. Biotechnol J 2015; 10:1370-89. [DOI: 10.1002/biot.201400841] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/26/2015] [Accepted: 04/07/2015] [Indexed: 01/14/2023]
|
11
|
Modra K, Dai S, Zhang H, Shi B, Bi J. Polycation-mediated gene delivery: Challenges and considerations for the process of plasmid DNA transfection. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400043] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Karl Modra
- School of Chemical Engineering; The University of Adelaide; Adelaide South Australia Australia
| | - Sheng Dai
- School of Chemical Engineering; The University of Adelaide; Adelaide South Australia Australia
| | - Hu Zhang
- School of Chemical Engineering; The University of Adelaide; Adelaide South Australia Australia
| | - Bingyang Shi
- School of Chemical Engineering; The University of Adelaide; Adelaide South Australia Australia
| | - Jingxiu Bi
- School of Chemical Engineering; The University of Adelaide; Adelaide South Australia Australia
| |
Collapse
|
12
|
Wang F, Bexiga MG, Anguissola S, Boya P, Simpson JC, Salvati A, Dawson KA. Time resolved study of cell death mechanisms induced by amine-modified polystyrene nanoparticles. NANOSCALE 2013; 5:10868-76. [PMID: 24108393 DOI: 10.1039/c3nr03249c] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Positively charged polymers and nanoparticles (NPs) can be toxic to cells in various systems. Using human astrocytoma cells, we have previously shown that 50 nm amine-modified polystyrene NPs damage mitochondria and induce cell death by apoptosis. Here we provide comprehensive details of the cellular events occurring after exposure to the NPs in a time-resolved manner. We demonstrate that the accumulation of NPs in lysosomes plays a central role in the observed cell death, leading to swelling of the lysosomes and release of cathepsins into the cytosol, which ultimately propagates the damage to the mitochondria with subsequent activation of apoptosis. This is accompanied and sustained by other events, such as increasing ROS levels and autophagy. Using various inhibitors, we also show the interplay between apoptosis and autophagy as a response to NP accumulation in lysosomes.
Collapse
Affiliation(s)
- Fengjuan Wang
- Centre for BioNano Interactions and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | | | | | | | |
Collapse
|
13
|
Bioreducible polypeptide containing cell-penetrating sequence for efficient gene delivery. Pharm Res 2013; 30:1968-78. [PMID: 23604924 DOI: 10.1007/s11095-013-1040-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 03/27/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE To design excellent polypeptide-based gene vectors and determine the gene delivery efficiency. METHODS Polypeptides (designated as xPolyK6, xPolyK6-R81 and xPolyK6-R82), comprising the DNA condensing and buffering peptide HK6H as well as cell penetrating peptide (CPP) R8 were obtained by the oxidative polymerization of CHK6HC and CR8C at different molar ratios in 4 mL phosphate-buffered saline (PBS) containing 30% (v/v) DMSO at room temperature for 96 h. The cytotoxicity of vectors was studied by MTT assay. Moreover, particle size, zeta potential and morphology along with the in vitro transfection efficiency and cellular uptake of vector/plasmid DNA (pDNA) complexes were characterized at various w/w ratios to determine their potential in gene therapy. RESULTS All the vectors presented excellent ability of binding and condensing pDNA, additionally with low cytotoxicity. Simultaneously, transfection efficiency of the vectors appeared apparent dependence on the vector composition. The distinct correlation between the content of CR8C with the transfection efficiency demonstrated the effective improvement in transfection efficacy by the oxidative polymerization. Particularly, xPolyK6-R82 possessed the highest transfection efficiency at a w/w ratio of 50. Furthermore, xPolyK6-R82 also presented the best cellular uptake capability demonstrated by confocal microscopy and flow cytometry. CONCLUSIONS Bioreducible polypeptides incorporating with proper amount of CPP are promising as effective non-viral gene vectors in gene therapy.
Collapse
|
14
|
Buckingham L. A Look to the Future. Pharmacogenomics 2013. [DOI: 10.1016/b978-0-12-391918-2.00014-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
15
|
Bertin A. Polyelectrolyte Complexes of DNA and Polycations as Gene Delivery Vectors. ADVANCES IN POLYMER SCIENCE 2013. [DOI: 10.1007/12_2013_218] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|