1
|
Penoy N, Delma KL, Homkar N, Karim Sakira A, Egrek S, Sacheli R, Sacré PY, Grignard B, Hayette MP, Somé TI, Semdé R, Evrard B, Piel G. Development and optimization of a one step process for the production and sterilization of liposomes using supercritical CO 2. Int J Pharm 2024; 651:123769. [PMID: 38181994 DOI: 10.1016/j.ijpharm.2024.123769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Liposomes are very interesting drug delivery systems for pharmaceutical and therapeutic purposes. However, liposome sterilization as well as their industrial manufacturing remain challenging. Supercritical carbon dioxide is an innovative technology that can potentially overcome these limitations. The aim of this study was to optimize a one-step process for producing and sterilizing liposomes using supercritical CO2. For this purpose, a design of experiment was conducted. The analysis of the experimental design showed that the temperature is the most influential parameter to achieve the sterility assurance level (SAL) required for liposomes (≤10-6). Optimal conditions (80 °C, 240 bar, 30 min) were identified to obtain the fixed critical quality attributes of liposomes. The conditions for preparing and sterilizing empty liposomes of various compositions, as well as liposomes containing the poorly water-soluble drug budesonide, were validated. The results indicate that the liposomes have appropriate physicochemical characteristics for drug delivery, with a size of 200 nm or less and a PdI of 0.35 or less. Additionally, all liposome formulations demonstrated the required SAL and sterility at concentrations of 5 and 45 mM, with high encapsulation efficiency.
Collapse
Affiliation(s)
- Noémie Penoy
- Laboratory of Pharmaceutical Technology and Biopharmacy, Development of Nanomedicine, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Avenue Hippocrate 15, 4000 Liege, Belgium; FRITCO(2)T (Federation of Researchers in Innovative Technologies for CO(2) Transformation), University of Liege, Sart-Tilman B6a, Liege 4000, Belgium
| | - Kouka Luc Delma
- Laboratory of Pharmaceutical Technology and Biopharmacy, Development of Nanomedicine, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Avenue Hippocrate 15, 4000 Liege, Belgium; Laboratory of Drug Development, Doctoral School of Sciences and Health, University Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Nirmayi Homkar
- Laboratory of Pharmaceutical Technology and Biopharmacy, Development of Nanomedicine, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Abdoul Karim Sakira
- Laboratoire de Toxicologie, Environnement et Santé (LATES), Ecole Doctorale des Sciences de La Santé (ED2S), Université Joseph KI-ZERBO, 03 BP 7021 03 Ouagadougou, Burkina Faso
| | - Sabrina Egrek
- Laboratory of Clinical Microbiology, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Rosalie Sacheli
- Laboratory of Clinical Microbiology, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Pierre-Yves Sacré
- Research Support Unit in Chemometrics, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Bruno Grignard
- FRITCO(2)T (Federation of Researchers in Innovative Technologies for CO(2) Transformation), University of Liege, Sart-Tilman B6a, Liege 4000, Belgium
| | - Marie-Pierre Hayette
- Laboratory of Clinical Microbiology, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Touridomon Issa Somé
- Laboratoire de Toxicologie, Environnement et Santé (LATES), Ecole Doctorale des Sciences de La Santé (ED2S), Université Joseph KI-ZERBO, 03 BP 7021 03 Ouagadougou, Burkina Faso
| | - Rasmané Semdé
- Laboratory of Drug Development, Doctoral School of Sciences and Health, University Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, Development of Nanomedicine, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Géraldine Piel
- Laboratory of Pharmaceutical Technology and Biopharmacy, Development of Nanomedicine, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Avenue Hippocrate 15, 4000 Liege, Belgium.
| |
Collapse
|
2
|
Delma KL, Penoy N, Grignard B, Semdé R, Evrard B, Piel G. Effects of supercritical carbon dioxide under conditions potentially conducive to sterilization on physicochemical characteristics of a liposome formulation containing apigenin. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2021.105418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Casula L, Lai F, Pini E, Valenti D, Sinico C, Cardia MC, Marceddu S, Ailuno G, Fadda AM. Pulmonary Delivery of Curcumin and Beclomethasone Dipropionate in a Multicomponent Nanosuspension for the Treatment of Bronchial Asthma. Pharmaceutics 2021; 13:pharmaceutics13081300. [PMID: 34452261 PMCID: PMC8401312 DOI: 10.3390/pharmaceutics13081300] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
Curcumin has shown a potential extraordinary activity as an add-on ingredient in asthma treatment, due to its immunomodulatory and anti-inflammatory mechanism of action. However, its low water solubility and bioavailability lead to a poor therapeutic effect, which can be overcome by its formulation as nanocrystals. The aim of this study was to prepare a multicomponent formulation for the delivery of curcumin (CUR) and beclomethasone dipropionate (BDP) into the lungs as water-based nanosuspensions (NS). Single component formulations (CUR-NS, BDP-NS) and a multicomponent formulation (CUR+BDP-NS) were prepared through a wet ball media milling technique, using P188 as a non-toxic stabilizer. Characterization was carried out in terms of size, size distribution, zeta potential, nanocrystals morphology, and solid-state properties. Moreover, the inhalation delivery efficiency was studied with Next Generation Impactor (NGI, Apparatus E Ph. Eu). CUR-NS was optimized and showed a long-term stability and improved nanocrystals apparent solubility. The three formulations exhibited a nanocrystal mean diameter in the range of 200-240 nm and a homogenous particle size distribution. Aggregation or sedimentation phenomena were not observed in the multicomponent formulation on 90 days storage at room temperature. Finally, the nebulization tests of the three samples showed optimal aerodynamic parameters and MMAD < 5 µm.
Collapse
Affiliation(s)
- Luca Casula
- Dipartimento di Scienze della Vita e dell’Ambiente, Sezione di Scienze del Farmaco, Università degli Studi di Cagliari, 09124 Cagliari, Italy; (L.C.); (F.L.); (D.V.); (C.S.); (M.C.C.)
| | - Francesco Lai
- Dipartimento di Scienze della Vita e dell’Ambiente, Sezione di Scienze del Farmaco, Università degli Studi di Cagliari, 09124 Cagliari, Italy; (L.C.); (F.L.); (D.V.); (C.S.); (M.C.C.)
| | - Elena Pini
- DISFARM, Sezione di Chimica Generale e Organica “A. Marchesini”, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy;
| | - Donatella Valenti
- Dipartimento di Scienze della Vita e dell’Ambiente, Sezione di Scienze del Farmaco, Università degli Studi di Cagliari, 09124 Cagliari, Italy; (L.C.); (F.L.); (D.V.); (C.S.); (M.C.C.)
| | - Chiara Sinico
- Dipartimento di Scienze della Vita e dell’Ambiente, Sezione di Scienze del Farmaco, Università degli Studi di Cagliari, 09124 Cagliari, Italy; (L.C.); (F.L.); (D.V.); (C.S.); (M.C.C.)
| | - Maria Cristina Cardia
- Dipartimento di Scienze della Vita e dell’Ambiente, Sezione di Scienze del Farmaco, Università degli Studi di Cagliari, 09124 Cagliari, Italy; (L.C.); (F.L.); (D.V.); (C.S.); (M.C.C.)
| | - Salvatore Marceddu
- Istituto di Scienze delle Produzioni Alimentari (ISPA)-CNR, Sez. di Sassari, 07040 Baldinca, Italy;
| | - Giorgia Ailuno
- Department of Pharmacy, University of Genova, 16147 Genova, Italy;
| | - Anna Maria Fadda
- Dipartimento di Scienze della Vita e dell’Ambiente, Sezione di Scienze del Farmaco, Università degli Studi di Cagliari, 09124 Cagliari, Italy; (L.C.); (F.L.); (D.V.); (C.S.); (M.C.C.)
- Correspondence: ; Tel.: +39-070-675-8565
| |
Collapse
|
4
|
Delma KL, Lechanteur A, Evrard B, Semdé R, Piel G. Sterilization methods of liposomes: Drawbacks of conventional methods and perspectives. Int J Pharm 2021; 597:120271. [PMID: 33548365 DOI: 10.1016/j.ijpharm.2021.120271] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/18/2020] [Accepted: 12/29/2020] [Indexed: 01/15/2023]
Abstract
Liposomes are targeted drug delivery systems that are of great pharmaceutical and therapeutic interest. Parenteral route is the main way used for liposome administration. In this case, their sterility is a requirement. However, due to the particular sensitivity of liposomes and their tendency to physicochemical alterations, their sterilization remains a real challenge. Conventional sterilization methods such as heat, ethylene oxide, ultraviolet and gamma irradiations are considered as unsuitable for liposome sterilization and the recommended methods for obtaining sterility of liposomes are filtration and aseptic manufacturing. Unfortunately, these recommended methods are not without limitations. This review outlines the difficulties associated with the use of these different classical methods for obtaining liposome sterility. The effects on liposome physicochemical and biopharmaceutical characteristics as well as efficacy, toxicity and practical problems of these sterilization techniques have been discussed. The search for an alternative method being therefore necessary, the applicability of supercritical carbon dioxide (ScCO2) technology, which is nowadays a promising strategy for the sterilization of sensitive products such as liposomes, is also examined. It appears from this analysis that ScCO2 could effectively be an interesting alternative to achieve sterility of liposomes, but for this, sterilization assays including challenge tests and optimization studies are needed.
Collapse
Affiliation(s)
- Kouka Luc Delma
- Laboratory of Pharmaceutical Technology and Biopharmacy, Nanomedicine Developments, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium; Laboratory of Drug Development, Doctoral School of Sciences and Health, University Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, Nanomedicine Developments, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, Nanomedicine Developments, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium
| | - Rasmané Semdé
- Laboratory of Drug Development, Doctoral School of Sciences and Health, University Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Géraldine Piel
- Laboratory of Pharmaceutical Technology and Biopharmacy, Nanomedicine Developments, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium.
| |
Collapse
|
5
|
Ribeiro N, Soares GC, Santos-Rosales V, Concheiro A, Alvarez-Lorenzo C, García-González CA, Oliveira AL. A new era for sterilization based on supercritical CO 2 technology. J Biomed Mater Res B Appl Biomater 2019; 108:399-428. [PMID: 31132221 DOI: 10.1002/jbm.b.34398] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/05/2019] [Accepted: 04/17/2019] [Indexed: 11/06/2022]
Abstract
The increasing complexity in morphology and composition of modern biomedical materials (e.g., soft and hard biological tissues, synthetic and natural-based scaffolds, technical textiles) and the high sensitivity to the processing environment requires the development of innovative but benign technologies for processing and treatment. This scenario is particularly applicable where current conventional techniques (steam/dry heat, ethylene oxide, and gamma irradiation) may not be able to preserve the functionality and integrity of the treated material. Sterilization using supercritical carbon dioxide emerges as a green and sustainable technology able to reach the sterility levels required by regulation without altering the original properties of even highly sensitive materials. In this review article, an updated survey of experimental protocols based on supercritical sterilization and of the efficacy results sorted by microbial strains and treated materials was carried out. The application of the supercritical sterilization process in materials used for biomedical, pharmaceutical, and food applications is assessed. The opportunity of supercritical sterilization of not only replace the above mentioned conventional techniques, but also of reach unmet needs for sterilization in highly sensitive materials (e.g., single-use medical devices, the next-generation biomaterials, and medical devices and graft tissues) is herein unveiled.
Collapse
Affiliation(s)
- Nilza Ribeiro
- CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Gonçalo C Soares
- CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Víctor Santos-Rosales
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carlos A García-González
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana L Oliveira
- CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| |
Collapse
|
6
|
Soares GC, Learmonth DA, Vallejo MC, Davila SP, González P, Sousa RA, Oliveira AL. Supercritical CO 2 technology: The next standard sterilization technique? MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:520-540. [PMID: 30889727 DOI: 10.1016/j.msec.2019.01.121] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/26/2018] [Accepted: 01/25/2019] [Indexed: 02/03/2023]
Abstract
Sterilization of implantable medical devices is of most importance to avoid surgery related complications such as infection and rejection. Advances in biotechnology fields, such as tissue engineering, have led to the development of more sophisticated and complex biomedical devices that are often composed of natural biomaterials. This complexity poses a challenge to current sterilization techniques which frequently damage materials upon sterilization. The need for an effective alternative has driven research on supercritical carbon dioxide (scCO2) technology. This technology is characterized by using low temperatures and for being inert and non-toxic. The herein presented paper reviews the most relevant studies over the last 15 years which cover the use of scCO2 for sterilization and in which effective terminal sterilization is reported. The major topics discussed here are: microorganisms effectively sterilized by scCO2, inactivation mechanisms, operating parameters, materials sterilized by scCO2 and major requirements for validation of such technique according to medical devices' standards.
Collapse
Affiliation(s)
- Gonçalo C Soares
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - David A Learmonth
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, Guimarães, Portugal
| | - Mariana C Vallejo
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, Guimarães, Portugal
| | - Sara Perez Davila
- New Materials Group, Applied Physics Department, IIS-GS, University of Vigo, Vigo, Spain
| | - Pío González
- New Materials Group, Applied Physics Department, IIS-GS, University of Vigo, Vigo, Spain
| | - Rui A Sousa
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, Guimarães, Portugal
| | - Ana L Oliveira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal.
| |
Collapse
|
7
|
Omar AM, Tengku Norsalwani T, Asmah M, Badrulhisham Z, Easa AM, Omar FM, Hossain MS, Zuknik M, Nik Norulaini N. Implementation of the supercritical carbon dioxide technology in oil palm fresh fruits bunch sterilization: A review. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.03.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Zalepugin DY, Tilkunova NA, Chernyshova IV, Vlasov MI. Sterilization in supercritical media. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2017. [DOI: 10.1134/s199079311608008x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Lanzalaco S, Campora S, Brucato V, Carfì Pavia F, Di Leonardo ER, Ghersi G, Scialdone O, Galia A. Sterilization of macroscopic poly(l-lactic acid) porous scaffolds with dense carbon dioxide: Investigation of the spatial penetration of the treatment and of its effect on the properties of the matrix. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2016.01.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Zheng H, Zhang J, Du B, Wei Q, Zheng L. Effect of treatment pressure on structures and properties of PMIA fiber in supercritical carbon dioxide fluid. J Appl Polym Sci 2014. [DOI: 10.1002/app.41756] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Huanda Zheng
- Key Laboratory of Eco-Textile of Ministry of Education; Jiangnan University; Wuxi 214122 Jiangsu China
- College of Textiles; North Carolina State University; Raleigh 27695 North Carolina
| | - Juan Zhang
- Liaoning Provincial Key Laboratory of Textile Cleaning; Dalian Polytechnic University; Dalian 116034 Liaoning China
| | - Bing Du
- Key Laboratory of Eco-Textile of Ministry of Education; Jiangnan University; Wuxi 214122 Jiangsu China
| | - Qufu Wei
- Key Laboratory of Eco-Textile of Ministry of Education; Jiangnan University; Wuxi 214122 Jiangsu China
| | - Laijiu Zheng
- Key Laboratory of Eco-Textile of Ministry of Education; Jiangnan University; Wuxi 214122 Jiangsu China
- Liaoning Provincial Key Laboratory of Textile Cleaning; Dalian Polytechnic University; Dalian 116034 Liaoning China
| |
Collapse
|
11
|
Buttini F, Miozzi M, Balducci AG, Royall PG, Brambilla G, Colombo P, Bettini R, Forbes B. Differences in physical chemistry and dissolution rate of solid particle aerosols from solution pressurised inhalers. Int J Pharm 2014; 465:42-51. [PMID: 24491530 DOI: 10.1016/j.ijpharm.2014.01.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 11/29/2022]
Abstract
Solution composition alters the dynamics of beclomethasone diproprionate (BDP) particle formation from droplets emitted by pressurised metered dose inhalers (pMDIs). The hypothesis that differences in inhaler solutions result in different solid particle physical chemistry was tested using a suite of complementary calorimetric techniques. The atomisation of BDP-ethanol solutions from commercial HFA-pMDI produced aerodynamically-equivalent solid particle aerosols. However, differences in particle physico-chemistry (morphology and solvate/clathrate formation) were detected by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and supported by hot stage microscopy (HSM). Increasing the ethanol content of the formulation from 8 to 12% (w/w), which retards the evaporation of propellant and slows the increase in droplet surface viscosity, enhanced the likelihood of particles drying with a smooth surface. The dissolution rate of BDP from the 12% (w/w) ethanol formulation-derived particles (63% dissolved over 120 min) was reduced compared to the 8% (w/w) ethanol formulation-derived particles (86% dissolved over 120 min). The addition of 0.01% (w/w) formoterol fumarate or 1.3% (w/w) glycerol to the inhaler solution modified the particles and reduced the BDP dissolution rate further to 34% and 16% dissolved in 120 min, respectively. These data provide evidence that therapeutic aerosols from apparently similar inhaler products, including those with similar aerodynamic performance, may behave non-equivalently after deposition in the lungs.
Collapse
Affiliation(s)
- Francesca Buttini
- Department of Pharmacy, University of Parma, Viale delle Scienze 27/a, 43124 Parma, Italy.
| | - Michele Miozzi
- Department of Pharmacy, University of Parma, Viale delle Scienze 27/a, 43124 Parma, Italy
| | - Anna Giulia Balducci
- Interdepartmental Center, Biopharmanet-TEC, University of Parma, Viale delle Scienze 27/a, 43124 Parma, Italy
| | - Paul G Royall
- King's College London, Institute of Pharmaceutical Science, London SE1 9NH, UK
| | | | - Paolo Colombo
- Department of Pharmacy, University of Parma, Viale delle Scienze 27/a, 43124 Parma, Italy
| | - Ruggero Bettini
- Department of Pharmacy, University of Parma, Viale delle Scienze 27/a, 43124 Parma, Italy
| | - Ben Forbes
- King's College London, Institute of Pharmaceutical Science, London SE1 9NH, UK
| |
Collapse
|