1
|
Electrospun paclitaxel delivery system based on PGCL/PLGA in local therapy combined with brachytherapy. Int J Pharm 2021; 602:120596. [PMID: 33857588 DOI: 10.1016/j.ijpharm.2021.120596] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022]
Abstract
The local administration of different drugs in anticancer therapy continue to attract attention. Thus, the idea of local delivery of cytostatics from nonwoven-structured polyesters seems to be highly desirable. It could reduce systemic drug levels and provide high local concentration of the chemotherapeutics at the tumor site and contribute to enhance the efficiency of the anticancer therapy. Poly(glycolide-ɛ-caprolactone) (PGCL) and poly(D,L-lactide-co-glycolide) (PLGA) synthesized with zirconium-based initiator have been used to prepare electrospun, drug-eluting patches since they possess very good fiber-forming ability. Well-known chemotherapeutic drug-paclitaxel has been loaded into fibrous structure as a model anticancer agent in order to obtain drug delivery systems for local administration. The drug dose in obtained nonwovens might be regulated by the thickness and total area of the implanted patches. Electrospinning of PGCL/PLGA blend allowed to obtain soft and flexible implantable materials. Flexibility has been important factor since it ensures convenient use when covering a tumor or filling a resection cavity. The effectiveness of designed nonwovens presented in the study has been tested in vivo on mouse model of breast cancer. The growth of the tumors was slowed down during in vivo study in comparison with drug-free nonwovens- The volume of the tumor was 40% lower. Drug-loaded electrospun systems implanted locally to the tumor site was further combined with brachytherapy which improved the effectiveness of the therapy in about 18%. Detailed analysis of the nonwovens before and during degradation process has been performed by means of Scanning Electron Microscopy, Differential Scanning Calorimetry, Nuclear Magnetic Resonance, Gel Permeation Chromatography, X-ray Diffraction. The molar mass changes of the nonwoven were quite rapid contrary to changes of comonomer unit content, thermal properties and morphology of the fiber.
Collapse
|
2
|
Xia Y, He Y, Zhang F, Liu Y, Leng J. A Review of Shape Memory Polymers and Composites: Mechanisms, Materials, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000713. [PMID: 32969090 DOI: 10.1002/adma.202000713] [Citation(s) in RCA: 293] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/18/2020] [Indexed: 05/23/2023]
Abstract
Over the past decades, interest in shape memory polymers (SMPs) has persisted, and immense efforts have been dedicated to developing SMPs and their multifunctional composites. As a class of stimuli-responsive polymers, SMPs can return to their initial shape from a programmed temporary shape under external stimuli, such as light, heat, magnetism, and electricity. The introduction of functional materials and nanostructures results in shape memory polymer composites (SMPCs) with large recoverable deformation, enhanced mechanical properties, and controllable remote actuation. Because of these unique features, SMPCs have a broad application prospect in many fields covering aerospace engineering, biomedical devices, flexible electronics, soft robotics, shape memory arrays, and 4D printing. Herein, a comprehensive analysis of the shape recovery mechanisms, multifunctionality, applications, and recent advances in SMPs and SMPCs is presented. Specifically, the combination of functional, reversible, multiple, and controllable shape recovery processes is discussed. Further, established products from such materials are highlighted. Finally, potential directions for the future advancement of SMPs are proposed.
Collapse
Affiliation(s)
- Yuliang Xia
- Center for Composite Materials and Structures, Harbin Institute of Technology (HIT), Harbin, 150080, P. R. China
| | - Yang He
- Center for Composite Materials and Structures, Harbin Institute of Technology (HIT), Harbin, 150080, P. R. China
| | - Fenghua Zhang
- Center for Composite Materials and Structures, Harbin Institute of Technology (HIT), Harbin, 150080, P. R. China
| | - Yanju Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
| | - Jinsong Leng
- Center for Composite Materials and Structures, Harbin Institute of Technology (HIT), Harbin, 150080, P. R. China
| |
Collapse
|
3
|
Shape Memory Biomaterials and Their Clinical Applications. Biomed Mater 2021. [DOI: 10.1007/978-3-030-49206-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
4
|
Effect of segment structures on the hydrolytic degradation behaviors of totally degradable poly(L‐lactic acid)‐based copolymers. J Appl Polym Sci 2019. [DOI: 10.1002/app.47887] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Recent Progress in Shape Memory Polymers for Biomedical Applications. CHINESE JOURNAL OF POLYMER SCIENCE 2018. [DOI: 10.1007/s10118-018-2118-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Lepowsky E, Tasoglu S. 3D printing for drug manufacturing: A perspective on the future of pharmaceuticals. Int J Bioprint 2017; 4:119. [PMID: 33102905 PMCID: PMC7582011 DOI: 10.18063/ijb.v4i1.119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 09/18/2017] [Indexed: 01/16/2023] Open
Abstract
Since a three-dimensional (3D) printed drug was first approved by the Food and Drug Administration in 2015, there has been a growing interest in 3D printing for drug manufacturing. There are multiple 3D printing methods - including selective laser sintering, binder deposition, stereolithography, inkjet printing, extrusion-based printing, and fused deposition modeling - which are compatible with printing drug products, in addition to both polymer filaments and hydrogels as materials for drug carriers. We see the adaptability of 3D printing as a revolutionary force in the pharmaceutical industry. Release characteristics of drugs may be controlled by complex 3D printed geometries and architectures. Precise and unique doses can be engineered and fabricated via 3D printing according to individual prescriptions. On-demand printing of drug products can be implemented for drugs with limited shelf life or for patient-specific medications, offering an alternative to traditional compounding pharmacies. For these reasons, 3D printing for drug manufacturing is the future of pharmaceuticals, making personalized medicine possible while also transforming pharmacies.
Collapse
Affiliation(s)
- Eric Lepowsky
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, USA
| | - Savas Tasoglu
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT, USA
- Institute for Collaboration on Health, Intervention, and Policy, University of Connecticut, Storrs, CT, USA
- The Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
7
|
Walczak J, Chrzanowski M, Krucińska I. Research on a Nonwoven Fabric Made from Multi-Block Biodegradable Copolymer Based on l-Lactide, Glycolide, and Trimethylene Carbonate with Shape Memory. Molecules 2017; 22:E1325. [PMID: 28796171 PMCID: PMC6152114 DOI: 10.3390/molecules22081325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/01/2017] [Accepted: 08/08/2017] [Indexed: 11/17/2022] Open
Abstract
The presented paper concerns scientific research on processing a poly(lactide-co-glycolide-co-trimethylene carbonate) copolymer (PLLAGLTMC) with thermally induced shape memory and a transition temperature around human body temperature. The material in the literature called terpolymer was used to produce smart, nonwoven fabric with the melt blowing technique. Bioresorbable and biocompatible terpolymers with shape memory have been investigated for its medical applications, such as cardiovascular stents. There are several research studies on shape memory in polymers, but this phenomenon has not been widely studied in textile products made from shape memory polymers (SMPs). The current research aims to explore the characteristics of the PLLAGLTMC nonwoven fabric in detail and the mechanism of its shape memory behavior. In this study, the nonwoven fabric was subjected to thermo-mechanical, morphological, and shape memory analysis. The thermo-mechanical and structural properties were investigated by means of differential scanning calorimetry, dynamic mechanical analysis, scanning electron microscopic examination, and mercury porosimetry measurements. Eventually, the gathered results confirmed that the nonwoven fabric possessed characteristics that classified it as a smart material with potential applications in medicine.
Collapse
Affiliation(s)
- Joanna Walczak
- Department of Material and Commodity Sciences and Textile Metrology, Lodz University of Technology, Lodz 90-924, Poland.
| | - Michał Chrzanowski
- Department of Material and Commodity Sciences and Textile Metrology, Lodz University of Technology, Lodz 90-924, Poland.
| | - Izabella Krucińska
- Department of Material and Commodity Sciences and Textile Metrology, Lodz University of Technology, Lodz 90-924, Poland.
| |
Collapse
|
8
|
Balk M, Behl M, Wischke C, Zotzmann J, Lendlein A. Recent advances in degradable lactide-based shape-memory polymers. Adv Drug Deliv Rev 2016; 107:136-152. [PMID: 27262926 DOI: 10.1016/j.addr.2016.05.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/04/2016] [Accepted: 05/11/2016] [Indexed: 11/24/2022]
Abstract
Biodegradable polymers are versatile polymeric materials that have a high potential in biomedical applications avoiding subsequent surgeries to remove, for example, an implanted device. In the past decade, significant advances have been achieved with poly(lactide acid) (PLA)-based materials, as they can be equipped with an additional functionality, that is, a shape-memory effect (SME). Shape-memory polymers (SMPs) can switch their shape in a predefined manner upon application of a specific external stimulus. Accordingly, SMPs have a high potential for applications ranging from electronic engineering, textiles, aerospace, and energy to biomedical and drug delivery fields based on the perspectives of new capabilities arising with such materials in biomedicine. This study summarizes the progress in SMPs with a particular focus on PLA, illustrates the design of suitable homo- and copolymer structures as well as the link between the (co)polymer structure and switching functionality, and describes recent advantages in the implementation of novel switching phenomena into SMP technology.
Collapse
|
9
|
Hardy JG, Palma M, Wind SJ, Biggs MJ. Responsive Biomaterials: Advances in Materials Based on Shape-Memory Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5717-5724. [PMID: 27120512 DOI: 10.1002/adma.201505417] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/26/2016] [Indexed: 06/05/2023]
Abstract
Shape-memory polymers (SMPs) are morphologically responsive materials with potential for a variety of biomedical applications, particularly as devices for minimally invasive surgery and the delivery of therapeutics and cells for tissue engineering. A brief introduction to SMPs is followed by a discussion of the current progress toward the development of SMP-based biomaterials for clinically relevant biomedical applications.
Collapse
Affiliation(s)
- John G Hardy
- Department of Chemistry, Lancaster University, Lancaster, Lancashire, LA1 4YB, UK
- Materials Science Institute, Lancaster University, Lancaster, Lancashire, LA1 4YB, UK
| | - Matteo Palma
- The School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Shalom J Wind
- Applied Physics and Applied Math, Columbia University, 1020 CEPSR, Mail Code: 8903, New York, NY, 10027, USA
| | - Manus J Biggs
- Centre for Research in Medical Devices, National University of Ireland Galway, Biosciences Research Building, Newcastle Road, Dangan, Ireland
| |
Collapse
|
10
|
Chan BQY, Low ZWK, Heng SJW, Chan SY, Owh C, Loh XJ. Recent Advances in Shape Memory Soft Materials for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2016; 8:10070-10087. [PMID: 27018814 DOI: 10.1021/acsami.6b01295] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Shape memory polymers (SMPs) are smart and adaptive materials able to recover their shape through an external stimulus. This functionality, combined with the good biocompatibility of polymers, has garnered much interest for biomedical applications. In this review, we discuss the design considerations critical to the successful integration of SMPs for use in vivo. We also highlight recent work on three classes of SMPs: shape memory polymers and blends, shape memory polymer composites, and shape memory hydrogels. These developments open the possibility of incorporating SMPs into device design, which can lead to vast technological improvements in the biomedical field.
Collapse
Affiliation(s)
- Benjamin Qi Yu Chan
- Institute of Materials Research and Engineering (IMRE) , 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore , 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Zhi Wei Kenny Low
- Institute of Materials Research and Engineering (IMRE) , 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore , 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Sylvester Jun Wen Heng
- Institute of Materials Research and Engineering (IMRE) , 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore , 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Siew Yin Chan
- Institute of Materials Research and Engineering (IMRE) , 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
- School of Science, Monash University Malaysia , Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
| | - Cally Owh
- Institute of Materials Research and Engineering (IMRE) , 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE) , 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore , 9 Engineering Drive 1, Singapore 117576, Singapore
- Singapore Eye Research Institute , 11 Third Hospital Avenue, Singapore 168751, Singapore
| |
Collapse
|
11
|
Dailing EA, Nair DP, Setterberg WK, Kyburz KA, Yang C, D’Ovidio T, Anseth KS, Stansbury JW. Combined, Independent Small Molecule Release and Shape Memory via Nanogel-Coated Thiourethane Polymer Networks. Polym Chem 2016; 7:816-825. [PMID: 27066114 PMCID: PMC4822555 DOI: 10.1039/c5py01464f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Drug releasing shape memory polymers (SMPs) were prepared from poly(thiourethane) networks that were coated with drug loaded nanogels through a UV initiated, surface mediated crosslinking reaction. Multifunctional thiol and isocyanate monomers were crosslinked through a step-growth mechanism to produce polymers with a homogeneous network structure that exhibited a sharp glass transition with 97% strain recovery and 96% shape fixity. Incorporating a small stoichiometric excess of thiol groups left pendant functionality for a surface coating reaction. Nanogels with diameter of approximately 10 nm bearing allyl and methacrylate groups were prepared separately via solution free radical polymerization. Coatings with thickness of 10-30 μm were formed via dip-coating and subsequent UV-initiated thiol-ene crosslinking between the SMP surface and the nanogel, and through inter-nanogel methacrylate homopolymerization. No significant change in mechanical properties or shape memory behavior was observed after the coating process, indicating that functional coatings can be integrated into an SMP without altering its original performance. Drug bioactivity was confirmed via in vitro culturing of human mesenchymal stem cells with SMPs coated with dexamethasone-loaded nanogels. This article offers a new strategy to independently tune multiple functions on a single polymeric device, and has broad application toward implantable, minimally invasive medical devices such as vascular stents and ocular shunts, where local drug release can greatly prolong device function.
Collapse
Affiliation(s)
- Eric A. Dailing
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309
| | - Devatha P. Nair
- Department of Ophthalmology, School of Medicine, Anschutz Medical Campus, Aurora, Colorado, 80045
| | - Whitney K. Setterberg
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309
| | - Kyle A. Kyburz
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309
| | - Chun Yang
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309
| | - Tyler D’Ovidio
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309
- Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado, 80309
| | - Jeffrey W. Stansbury
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309
- Department of Craniofacial Biology, School of Dental Medicine, Anschutz Medical Campus, Aurora, Colorado, 80045
| |
Collapse
|
12
|
Hasan SM, Nash LD, Maitland DJ. Porous shape memory polymers: Design and applications. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/polb.23982] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sayyeda M. Hasan
- Department of Biomedical Engineering; Texas A&M University; 5045 Emerging Technologies Building, 3120 TAMU, College Station Texas 778433120
| | - Landon D. Nash
- Department of Biomedical Engineering; Texas A&M University; 5045 Emerging Technologies Building, 3120 TAMU, College Station Texas 778433120
| | - Duncan J. Maitland
- Department of Biomedical Engineering; Texas A&M University; 5045 Emerging Technologies Building, 3120 TAMU, College Station Texas 778433120
| |
Collapse
|
13
|
Hu T, Yang J, Cui K, Rao Q, Yin T, Tan L, Zhang Y, Li Z, Wang G. Controlled Slow-Release Drug-Eluting Stents for the Prevention of Coronary Restenosis: Recent Progress and Future Prospects. ACS APPLIED MATERIALS & INTERFACES 2015; 7:11695-11712. [PMID: 26011753 DOI: 10.1021/acsami.5b01993] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Drug-eluting stents (DES) have become more widely used by cardiologists than bare metal stents (BMS) because of their better ability to control restenosis. However, recognized negative events, particularly including delayed or incomplete endothelialization and late stent thrombosis, have caused concerns over the long-term safety of DES. Although stent-based drug delivery can facilitate a drug's release directly to the restenosis site, a burst of drug release can seriously affect the pharmacological action and is a major factor accounting for adverse effects. Therefore, the drug release rate has become an important criterion in evaluating DES. The factors affecting the drug release rate include the drug carrier, drug, coating methods, drug storage, elution direction, coating thickness, pore size in the coating, release conditions (release medium, pH value, temperature), and hemodynamics after the stent implantation. A better understanding of how these factors influence drug release is particularly important for the reasonable use of efficient control strategies for drug release. This review summarizes the factors influencing the drug release from DES and presents strategies for enhancing the control of the drug's release, including the stent design, the application of absorbable stents, the development of new polymers, and the application of nanocarriers and improvements in the coating technology. Therefore, this paper provides a reference for the preparation of novel controlled slow-release DES.
Collapse
Affiliation(s)
- Tingzhang Hu
- †Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Jiali Yang
- †Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Kun Cui
- ‡Center of Cardiology, Chongqing Zhongshan Hospital, Chongqing 400013, China
| | - Qiong Rao
- †Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Tieying Yin
- †Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Lili Tan
- †Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yuan Zhang
- ‡Center of Cardiology, Chongqing Zhongshan Hospital, Chongqing 400013, China
| | - Zhenggong Li
- ‡Center of Cardiology, Chongqing Zhongshan Hospital, Chongqing 400013, China
| | - Guixue Wang
- †Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing 400030, China
| |
Collapse
|
14
|
Jaworska J, Jelonek K, Sobota M, Kasperczyk J, Dobrzynski P, Musial-Kulik M, Smola-Dmochowska A, Janeczek H, Jarzabek B. Shape-memory bioresorbable terpolymer composite with antirestenotic drug. J Appl Polym Sci 2015. [DOI: 10.1002/app.41902] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Joanna Jaworska
- Centre of Polymer and Carbon Materials; Polish Academy of Sciences; M. Curie Sklodowskiej 34 Zabrze Poland
| | - Katarzyna Jelonek
- Centre of Polymer and Carbon Materials; Polish Academy of Sciences; M. Curie Sklodowskiej 34 Zabrze Poland
| | - Michal Sobota
- Centre of Polymer and Carbon Materials; Polish Academy of Sciences; M. Curie Sklodowskiej 34 Zabrze Poland
| | - Janusz Kasperczyk
- Centre of Polymer and Carbon Materials; Polish Academy of Sciences; M. Curie Sklodowskiej 34 Zabrze Poland
- Department of Biopharmacy, School of Pharmacy; Medical University of Silesia; Narcyzow 1 Sosnowiec Poland
| | - Piotr Dobrzynski
- Centre of Polymer and Carbon Materials; Polish Academy of Sciences; M. Curie Sklodowskiej 34 Zabrze Poland
- Jan Dlugosz University in Czestochowa, Institute of Chemistry; Environmental Protection and Biotechnology; Armii Krajowej 13 Czestochowa Poland
| | - Monika Musial-Kulik
- Centre of Polymer and Carbon Materials; Polish Academy of Sciences; M. Curie Sklodowskiej 34 Zabrze Poland
| | - Anna Smola-Dmochowska
- Centre of Polymer and Carbon Materials; Polish Academy of Sciences; M. Curie Sklodowskiej 34 Zabrze Poland
| | - Henryk Janeczek
- Centre of Polymer and Carbon Materials; Polish Academy of Sciences; M. Curie Sklodowskiej 34 Zabrze Poland
| | - Bozena Jarzabek
- Centre of Polymer and Carbon Materials; Polish Academy of Sciences; M. Curie Sklodowskiej 34 Zabrze Poland
| |
Collapse
|