1
|
Li L, Pang Z, Ma K, Gao Y, Zheng D, Wei Y, Zhang J, Qian S. Effect of Coformer Selection on In Vitro and In Vivo Performance of Adefovir Dipivoxil Cocrystals. Pharm Res 2021; 38:1777-1791. [PMID: 34729701 DOI: 10.1007/s11095-021-03116-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/20/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE This study aimed to improve the in vitro dissolution, permeability and oral bioavailability of adefovir dipivoxil (ADD) by cocrystal technology and clarify the important role of coformer selection on the cocrystal's properties. METHODS ADD was cocrystallized with three small molecules (i.e., paracetamol (PA), saccharin (SAC) and nicotinamide (NIC)), respectively. The obtained ADD-PA cocrystal was characterized by DSC, TGA, PXRD and FTIR. Comparative study on dissolution rates among the three ADD cocrystals were conducted in water and pH 6.8 phosphate buffer. Besides, effects of coformers on intestinal permeability of ADD were evaluated via in vitro Caco-2 cell model and in situ single-pass intestinal perfusion model in rats. Furthermore, in vivo pharmacokinetic study of ADD cocrystals was also compared. RESULTS Dissolution rates of ADD cocrystals were improved with the order of ADD-SAC cocrystal > ADD-PA cocrystal > ADD-NIC cocrystal. The permeability studies on Caco-2 cell model and single-pass intestinal perfusion model indicated that PA could enhance intestinal absorption of ADD by P-gp inhibition, while SAC and NIC did not. Further in vivo pharmacokinetic study showed that ADD-SAC cocrystal exhibited higher Cmax (1.4-fold) and AUC0-t (1.3-fold) of ADD than administration of ADD alone, and Cmax and AUC0-t of ADD-PA cocrystal were significantly enhanced by 2.1-fold and 2.2-fold, respectively, which was attributed to its higher dissolution and improved intestinal permeability. CONCLUSION Coformer selection had an important role on cocrystal's properties, and cocrystallization of ADD with a suitable coformer was an effective approach to enhance both dissolution and bioavailability of ADD.
Collapse
Affiliation(s)
- Luyuan Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Zunting Pang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Kun Ma
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
- Center for Drug Evaluation, National Medical Products Administration, Beijing, 100022, People's Republic of China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Daoyi Zheng
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
2
|
A tacrine-tetrahydroquinoline heterodimer potently inhibits acetylcholinesterase activity and enhances neurotransmission in mice. Eur J Med Chem 2021; 226:113827. [PMID: 34530383 DOI: 10.1016/j.ejmech.2021.113827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 11/23/2022]
Abstract
Cholinergic neurons are ubiquitous and involved in various higher brain functions including learning and memory. Patients with Alzheimer's disease exhibit significant dysfunction and loss of cholinergic neurons. Meanwhile, such cholinergic deficits can be potentially relieved pharmacologically by increasing acetylcholine. Acetylcholinesterase (AChE) inhibitors have been used to improve cholinergic transmission in the brain for two decades and have proven effective for alleviating symptoms in the early stages of Alzheimer's disease. Therefore, the search for AChE inhibitors for drug development is ongoing. The enzymatic pocket of AChE has long been the target of several drug designs over the last two decades. The peripheral and catalytic sites of AChE are simultaneously bound by several dimeric molecules, enabling more-efficient inhibition. Here, we used 6-chlorotacrine and the tetrahydroquinolone moiety of huperzine A to design and synthesize a series of heterodimers that inhibit AChE at nanomolar potency. Specifically, compound 7b inhibits AChE with an IC50 < 1 nM and spares butyrylcholinesterase. Administration of 7b to mouse brain slices restores synaptic activity impaired by pirenzepine, a muscarinic M1-selective antagonist. Moreover, oral administration of 7b to C57BL/6 mice enhances hippocampal long-term potentiation in a dose-dependent manner and is detectable in the brain tissue. All these data supported that 7b is a potential cognitive enhancer and is worth for further exploration.
Collapse
|
3
|
Dehbalaei MG, Foroughifar N, Khajeh-Amiri A, Pasdar H. Ni (II) Immobilized on Fe 3O 4@SiO 2@L-Methionine: A Reusable Nanocatalyst and its Application in the Synthesis of New Tetracyclic Tacrine Derivatives. ORG PREP PROCED INT 2020. [DOI: 10.1080/00304948.2020.1721958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | - Naser Foroughifar
- Department of Chemistry, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | | | - Hoda Pasdar
- Department of Chemistry, Tehran North Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Aksoz BE, Aksoz E. Vital Role of Monoamine Oxidases and Cholinesterases in Central Nervous System Drug Research: A Sharp Dissection of the Pathophysiology. Comb Chem High Throughput Screen 2020; 23:877-886. [PMID: 32077819 DOI: 10.2174/1386207323666200220115154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/30/2019] [Accepted: 01/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Monoamine oxidase and cholinesterase enzymes are very critical enzymes that regulate the level of neurotransmitters such as acetylcholine and monoamines. Monoamine neurotransmitters and acetylcholine play a very important role in many physiological events. An increase or decrease in the amount of these neurotransmitters is observed in a wide range of central nervous system pathologies. Balancing the amount of these neurotransmitters is important in improving the progression of these diseases. Inhibitors of monoamine oxidase and cholinesterase enzymes are important in symptomatic therapy and delaying progression of a group of central nervous system disease manifested with memory loss, cognitive decline and psychiatric disturbances like depression. OBJECTIVE In this article, the relationship between central nervous system diseases and the vital role of the enzymes, monoamine oxidase and cholinesterase, is discussed on the pathophysiologic basis, focusing on drug research. CONCLUSION Monoamine oxidase and cholinesterase enzymes are still a good target for the development of novel drug active substances with optimized pharmacokinetic and pharmacodynamic properties, which can maximize the benefits of current therapy modalities.
Collapse
Affiliation(s)
- Begum E Aksoz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Süleyman Demirel University, Isparta, Turkey
| | - Erkan Aksoz
- Department of Pharmacology, Faculty of Pharmacy, Süleyman Demirel University, Isparta, Turkey
| |
Collapse
|
5
|
Dorababu A. Critical evaluation of current Alzheimer's drug discovery (2018-19) & futuristic Alzheimer drug model approach. Bioorg Chem 2019; 93:103299. [PMID: 31586701 DOI: 10.1016/j.bioorg.2019.103299] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD), a neurodegenerative disease responsible for death of millions of people worldwide is a progressive clinical disorder which causes neurons to degenerate and ultimately die. It is one of the common causes of dementia wherein a person's incapability to independently think, behave and decline in social skills can be quoted as major symptoms. However the early signs include the simple non-clinical symptoms such as forgetting recent events and conversations. Onset of these symptoms leads to worsened conditions wherein the AD patient suffers severe memory impairment and eventually becomes unable to work out everyday tasks. Even though there is no complete cure for AD, rigorous research has been going on to reduce the progress of AD. Currently, a very few clinical drugs are prevailing for AD treatment. So this is the need of hour to design, develop and discovery of novel anti-AD drugs. The main factors for the cause of AD according to scientific research reveals structural changes in brain proteins such as beta amyloid, tau proteins into plaques and tangles respectively. The abnormal proteins distort the neurons. Despite the high potencies of the synthesized molecules; they could not get on the clinical tests up to human usage. In this review article, the recent research carried out with respect to inhibition of AChE, BuChE, NO, BACE1, MAOs, Aβ, H3R, DAPK, CSF1R, 5-HT4R, PDE, σ1R and GSK-3β is compiled and organized. The summary is focused mainly on cholinesterases, Aβ, BACE1 and MAOs classes of potential inhibitors. The review also covers structure activity relationship of most potent compounds of each class of inhibitors alongside redesign and remodeling of the most significant inhibitors in order to expect cutting edge inhibitory properties towards AD. Alongside the molecular docking studies of the some final compounds are discussed.
Collapse
Affiliation(s)
- Atukuri Dorababu
- Department of Studies in Chemistry, SRMPP Govt. First Grade College, Huvinahadagali 583219, Karnataka, India.
| |
Collapse
|
6
|
Sánchez-Vidaña DI, Chow JKW, Hu SQ, Lau BWM, Han YF. Molecular Targets of Bis (7)-Cognitin and Its Relevance in Neurological Disorders: A Systematic Review. Front Neurosci 2019; 13:445. [PMID: 31143096 PMCID: PMC6521802 DOI: 10.3389/fnins.2019.00445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/18/2019] [Indexed: 01/22/2023] Open
Abstract
Background: The exact mechanisms involved in the pathogenesis of neurodegenerative conditions are not fully known. The design of drugs that act on multiple targets represents a promising approach that should be explored for more effective clinical options for neurodegenerative disorders. B7C is s synthetic drug that has been studied for over 20 years and represents a promising multi-target drug for the treatment of neurodegenerative disorders, such as AD. Aims: The present systematic review, thus, aims at examining existing studies on the effect of B7C on different molecular targets and at discussing the relevance of B7C in neurological disorders. Methods: A list of predefined search terms was used to retrieve relevant articles from the databases of Embase, Pubmed, Scopus, and Web of Science. The selection of articles was done by two independent authors, who were considering articles concerned primarily with the evaluation of the effect of B7C on neurological disorders. Only full-text articles written in English were included; whereas, systematic reviews, meta-analyses, book chapters, conference subtracts, and computational studies were excluded. Results: A total of 2,266 articles were retrieved out of which 41 articles were included in the present systematic review. The effect of B7C on molecular targets, including AChE, BChE, BACE-1, NMDA receptor, GABA receptor, NOS, and Kv4.2 potassium channels was evaluated. Moreover, the studies that were included assessed the effect of B7C on biological processes, such as apoptosis, neuritogenesis, and amyloid beta aggregation. The animal studies examined in the review focused on the effect of B7C on cognition and memory. Conclusions: The beneficial effects observed on different molecular targets and biological processes relevant to neurological conditions confirm that B7C is a promising multi-target drug with the potential to treat neurological disorders.
Collapse
Affiliation(s)
| | - Jason Ka Wing Chow
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Sheng Quan Hu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Benson Wui Man Lau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yi-Fan Han
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
7
|
Saxena M, Dubey R. Target Enzyme in Alzheimer’s Disease: Acetylcholinesterase Inhibitors. Curr Top Med Chem 2019; 19:264-275. [DOI: 10.2174/1568026619666190128125912] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 12/31/2022]
Abstract
Alzheimer’s Disease (AD), affecting a large population worldwide is characterized by the
loss of memory and learning ability in the old population. The enzyme Acetylcholinesterase Enzyme
(AChE) is the key enzyme in the hydrolysis of the neurotransmitter acetylcholine and is also the target
of most of the clinically used drugs for the treatment of AD but these drugs provide only symptomatic
treatment and have the limitation of loss of therapeutic efficacy with time. The development of different
strategies targeting the AChE enzyme along with other targets like Butyl Cholinesterase (BChE),
amyloid-β (Aβ), β-secretase-1 (BACE), metals antioxidant properties and free radical scavenging capacity
has been focused in recent years. Literature search was conducted for the molecules and their
rational design which have shown inhibition for AChE and the other abovementioned targets. Several
hybrid molecules incorporating the main sub-structures derived from diverse chemotypes like acridine,
quinoline, carbamates, and other heterocyclic analogs have shown desired pharmacological activity
with a good profile in a single molecule. It is followed by optimization of the activity through structural
modifications guided by structure-activity relationship studies. It has led to the discovery of novel
molecules 17b, 20, and 23 with desired AChE inhibition along with desirable activity against other
abovementioned targets for further pre-clinical studies.
Collapse
Affiliation(s)
- Mridula Saxena
- Amity School of Applied Sciences, Amity University, Lucknow-226010, India
| | - Ragini Dubey
- Amity School of Applied Sciences, Amity University, Lucknow-226010, India
| |
Collapse
|
8
|
Czarnecka K, Girek M, Kręcisz P, Skibiński R, Łątka K, Jończyk J, Bajda M, Kabziński J, Majsterek I, Szymczyk P, Szymański P. Discovery of New Cyclopentaquinoline Analogues as Multifunctional Agents for the Treatment of Alzheimer's Disease. Int J Mol Sci 2019; 20:E498. [PMID: 30678364 PMCID: PMC6386991 DOI: 10.3390/ijms20030498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/10/2019] [Accepted: 01/21/2019] [Indexed: 02/06/2023] Open
Abstract
Here we report the two-step synthesis of 8 new cyclopentaquinoline derivatives as modifications of the tetrahydroacridine structure. Next, the biological assessment of each of them was performed. Based on the obtained results we identified 6-chloro-N-[2-(2,3-dihydro-1H-cyclopenta[b]quinolin-9-ylamino)-hexyl]]-nicotinamide hydrochloride (3e) as the most promising compound with inhibitory potencies against EeAChE and EqBuChE in the low nanomolar level 67 and 153 nM, respectively. Moreover, 3e compound is non-hepatotoxic, able to inhibit amyloid beta aggregation, and shows a mix-type of cholinesterase's inhibition. The mixed type of inhibition of the compound was confirmed by molecular modeling. Then, yeast three-hybrid (Y3H) technology was used to confirm the known ligand-receptor interactions. New derivatives do not show antioxidant activity (confirmed by the use of two different tests). A pKa assay method was developed to identify the basic physicochemical properties of 3e compound. A LogP assay confirmed that 3e compound fulfills Lipinsky's rule of five.
Collapse
Affiliation(s)
- Kamila Czarnecka
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90d-151 Lodz, Poland.
| | - Małgorzata Girek
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90d-151 Lodz, Poland.
| | - Paweł Kręcisz
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90d-151 Lodz, Poland.
| | - Robert Skibiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland.
| | - Kamil Łątka
- Department of Physicochemical Drug Analysis, Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland.
| | - Jakub Jończyk
- Department of Physicochemical Drug Analysis, Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland.
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland.
| | - Jacek Kabziński
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Pl. Hallera 1, 90-647 Lodz, Poland.
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Pl. Hallera 1, 90-647 Lodz, Poland.
| | - Piotr Szymczyk
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland.
| | - Paweł Szymański
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90d-151 Lodz, Poland.
| |
Collapse
|
9
|
Abstract
Neurodegenerative diseases such as Alzheimer’s, Huntington’s and Parkinson’s diseases have multifaceted nature because of the different factors contributing to their progression. The complex nature of neurodegenerative diseases has developed a pressing need to design multitarget-directed ligands to address the complementary pathways involved in these diseases. The major enzyme targets for development of therapeutics for Alzheimer’s disease are cholinesterase and β-secretase enzymes. In this review, we discuss recent advances in profiling single target inhibitors based on these enzymes to multitarget-directed ligands as potential therapeutics for this devastating disease. In addition, therapeutics based on iron chelation strategy are discussed as well.
Collapse
Affiliation(s)
- Mostafa M Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Department of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Moustafa T Gabr
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Department of Chemistry, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
10
|
Liu X, Zhang J, Xia M, Liu J, Jiang S. Effect of donepezil on Hcy level in serum of Alzheimer's disease patients and correlation analysis of Hcy and dyssomnia. Exp Ther Med 2018; 17:1395-1399. [PMID: 30680019 PMCID: PMC6327650 DOI: 10.3892/etm.2018.7071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/20/2018] [Indexed: 12/16/2022] Open
Abstract
Effect of donepezil on the homocysteine (Hcy) level in serum of Alzheimer's disease (AD) patients and correlation between Hcy and dyssomnia was investigated. A retrospective analysis of 124 AD patients in Zhengzhou University People's Hospital between January 2015 and October 2017 was performed, including 64 cases in the observation group and 60 cases in the control group. The control group was treated with folic acid, vitamin B12 and memantine hydrochloride tablet, and the observation group combined with donepezil on this basis, and both groups were treated for 4 months. The Hcy level before and after treatment was detected in the groups using ELISA method, dyssomnia score of patients was performed before and after treatment in the observation group according to Pittsburgh Sleep Quality Index (PSQI), and correlation analysis between the Hcy level before and after treatment and dyssomnia was performed in AD patients in the study group using Pearson's correlation analysis. The differences were statistically significant in the Hcy level before and after treatment in both groups (P<0.001). The Hcy level after treatment in the observation group was significantly lower than that in the control group (P<0.001). The dyssomnia score before treatment was higher that after treatment in the observation group (P<0.001). There was a positive correlation between the Hcy level before treatment and dyssomnia score (r=0.658, P<0.001). There was also a positive correlation between the Hcy level after treatment and dyssomnia score (r=0.670, P<0.001). Donepezil can effectively improve the sleep function of patients and reduce the Hcy level in serum in the treatment of AD patients. The application of donepezil was of great significance in the clinical treatment of AD patients.
Collapse
Affiliation(s)
- Xinxin Liu
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, Henan 450003, P.R. China.,Department of Neurology, The First Affiliated Hospital of Henan University, Kaifeng, Henan 47500, P.R. China
| | - Jiewen Zhang
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Mingrong Xia
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Junran Liu
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Shan Jiang
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
11
|
Wang Q, Peng S, Hu Y, Wong CH, Kwan KM, Chan HYE, Zuo Z. Efficient brain uptake and distribution of an expanded CAG RNA inhibitor DB213 via intranasal administration. Eur J Pharm Sci 2018; 127:240-251. [PMID: 30391403 DOI: 10.1016/j.ejps.2018.10.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/18/2022]
Abstract
DB213 is an expanded CAG RNA inhibitor targeting polyglutamine diseases. This current study aims to investigate biopharmaceutic characteristics of DB213 as well as its brain uptake and distribution in C57 wild type mice, R6/2 Huntington's disease mice and Sprague-Dawley (SD) rats via intranasal administration. The biopharmaceutic characteristics of DB213 were investigated in vitro using Calu-3/MDCK/HEK293 cell lines and brain slices for its membrane transport, equilibrium dialysis for its plasma protein/brain tissue bindings and liver/brain microsomes incubation for its enzyme kinetics profiles. In vivo study of DB213 brain distribution was conducted in rats via intravenous and intranasal routes at 50 mg/kg followed by its brain uptake evaluation in mice at 25 mg/kg via intranasal route. In vitro membrane transport studies found that DB213 not only had a limited passive diffusion with a Papp (a→b) value of 1.75 × 10-6 cm/s in Calu-3 cell monolayer model but also was substrate of MRP2, MRP3, and amino acid transporter. Furthermore, DB213 demonstrated higher binding towards brain homogenate (80%) than plasma (10%) with limited metabolism in liver and brain. After intranasal administration of DB213, both olfactory bulb and trigeminal nerve served as its entry points to reach brain as demonstrated in rats while efficient brain uptake was observed in mice. In summary, limited nasal epithelium permeability and MRP2/MRP3 mediated efflux transport of DB213 could be overcome by its influx transport via amino acid transporter and minimal liver and brain metabolism, which further contribute to its rapid brain uptake and distribution in mice and rats.
Collapse
Affiliation(s)
- Qianwen Wang
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Shaohong Peng
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Yue Hu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Chun-Ho Wong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Kin Ming Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - H Y Edwin Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Zhong Zuo
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
| |
Collapse
|
12
|
Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem Rev 2018; 119:1221-1322. [DOI: 10.1021/acs.chemrev.8b00138] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masha G. Savelieff
- SciGency Science Communications, Ann Arbor, Michigan 48104, United States
| | - Geewoo Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Misun Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
13
|
Qian S, He L, Wang Q, Wong YC, Mak M, Ho CY, Han Y, Zuo Z. Intranasal delivery of a novel acetylcholinesterase inhibitor HLS-3 for treatment of Alzheimer's disease. Life Sci 2018; 207:428-435. [DOI: 10.1016/j.lfs.2018.06.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 11/25/2022]
|
14
|
Kristofikova Z, Ricny J, Soukup O, Korabecny J, Nepovimova E, Kuca K, Ripova D. Inhibitors of Acetylcholinesterase Derived from 7-Methoxytacrine and Their Effects on the Choline Transporter CHT1. Dement Geriatr Cogn Disord 2018; 43:45-58. [PMID: 27988521 DOI: 10.1159/000453256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Reversible acetylcholinesterase inhibitors are used in Alzheimer disease therapy. However, tacrine and its derivatives have severe side effects. Derivatives of the tacrine analogue 7-methoxytacrine (MEOTA) are less toxic. METHODS We evaluated new derivatives of 7-MEOTA (2 homodimers linked by 2 C4-C5 chains and 5 N-alkylated C4-C8 side chain derivatives) in vitro, using the rat hippocampal choline transporter CHT1. RESULTS Some derivatives were effective inhibitors of rat acetylcholinesterase and comparable with 7-MEOTA. All derivatives were able to inhibit CHT1, probably via quaternary ammonium, and this interaction could be involved in the enhancement of their detrimental side effects and/or in the attenuation of their promising effects. Under conditions of disrupted lipid rafts, the unfavorable effects of some derivatives were weakened. Only tacrine was probably able to stereospecifically interact with the naturally occurring amyloid-β isoform and to simultaneously stimulate CHT1. Some derivatives, when coincubated with amyloid β, did not influence CHT1. All derivatives also increased the fluidity of the cortical membranes. CONCLUSION The N-alkylated derivative of 7-MEOTA bearing from C4 side chains appears to be the most promising compound and should be evaluated in future in vivo research.
Collapse
Affiliation(s)
- Zdenka Kristofikova
- Alzheimer Disease Center, National Institute of Mental Health, Klecany, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
15
|
Czarnecka K, Girek M, Maciejewska K, Skibiński R, Jończyk J, Bajda M, Kabziński J, Sołowiej P, Majsterek I, Szymański P. New cyclopentaquinoline hybrids with multifunctional capacities for the treatment of Alzheimer's disease. J Enzyme Inhib Med Chem 2017; 33:158-170. [PMID: 29210299 PMCID: PMC6080388 DOI: 10.1080/14756366.2017.1406485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common progressive form of brain neurodegeneration and the most prevailing cause of dementia. Unfortunately, the aetiology of AD is not completely studied but different factors are associated with the development of AD such as among others low level of acetylcholine, aggregation of β-amyloid (Aβ), hyperphosphorylated tau protein, oxidative stress, and inflammation. The study encompass organic syntheses of 2,3-dihydro-1H-cyclopenta[b]quinoline with 5,6-dichloronicotinic acid and suitable linkers derivatives as multifunctional agents for AD treatment. Afterwards self-induced amyloid beta aggregation, inhibition studies of acetylcholinesterase and butyrylcholinesterase and molecular docking studies were performed. The results showed that 3b compound exhibited the best acetylcholinesterase inhibitory activity, with IC50 value of 0.052 µM which is lower compared to references. Besides, all synthesised compounds showed good butyrylcholinesterase inhibitory activity with IC50 values from 0.071 to 0.797 µM. Compound 3b exhibited strong Aβ1–42 aggregation inhibitory effect with 25.7% at 5 µM to 92.8% at 100 µM as well as good anti-inflammatory effect. Thus, new compounds could create new perspectives for further development as a multi-target-directed agent for AD treatment.
Collapse
Affiliation(s)
- Kamila Czarnecka
- a Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy , Medical University of Lodz , Lodz , Poland
| | - Małgorzata Girek
- a Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy , Medical University of Lodz , Lodz , Poland
| | - Karolina Maciejewska
- a Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy , Medical University of Lodz , Lodz , Poland
| | - Robert Skibiński
- b Department of Medicinal Chemistry, Faculty of Pharmacy , Medical University of Lublin , Lublin , Poland
| | - Jakub Jończyk
- c Department of Physicochemical Drug Analysis, Chair of Pharmaceutical Chemistry, Faculty of Pharmacy , Jagiellonian University Medical College , Krakow , Poland
| | - Marek Bajda
- c Department of Physicochemical Drug Analysis, Chair of Pharmaceutical Chemistry, Faculty of Pharmacy , Jagiellonian University Medical College , Krakow , Poland
| | - Jacek Kabziński
- d Department of Clinical Chemistry and Biochemistry , Medical University of Lodz , Lodz , Poland
| | - Przemysław Sołowiej
- d Department of Clinical Chemistry and Biochemistry , Medical University of Lodz , Lodz , Poland
| | - Ireneusz Majsterek
- d Department of Clinical Chemistry and Biochemistry , Medical University of Lodz , Lodz , Poland
| | - Paweł Szymański
- a Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy , Medical University of Lodz , Lodz , Poland
| |
Collapse
|
16
|
Wang J, Wang C, Wu Z, Li X, Xu S, Liu J, Lan Q, Zhu Z, Xu J. Design, synthesis, biological evaluation, and docking study of 4-isochromanone hybrids bearing N
-benzyl pyridinium moiety as dual binding site acetylcholinesterase inhibitors (part II). Chem Biol Drug Des 2017; 91:756-762. [DOI: 10.1111/cbdd.13136] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/17/2017] [Accepted: 10/14/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Jia Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry; China Pharmaceutical University; Nanjing China
| | - Chaolei Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry; China Pharmaceutical University; Nanjing China
| | - Zheng Wu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry; China Pharmaceutical University; Nanjing China
| | - Xinnan Li
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry; China Pharmaceutical University; Nanjing China
| | - Shengtao Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry; China Pharmaceutical University; Nanjing China
| | - Jie Liu
- Department of Organic Chemistry; China Pharmaceutical University; Nanjing China
| | - Qinying Lan
- Life Science and Technique Base; Department of Life Science; Nanjing Agricultural University; Nanjing China
| | - Zheying Zhu
- Division of Molecular Therapeutics and Formulation; School of Pharmacy; The University of Nottingham, University Park Campus; Nottingham UK
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry; China Pharmaceutical University; Nanjing China
| |
Collapse
|
17
|
Ismaili L, Refouvelet B, Benchekroun M, Brogi S, Brindisi M, Gemma S, Campiani G, Filipic S, Agbaba D, Esteban G, Unzeta M, Nikolic K, Butini S, Marco-Contelles J. Multitarget compounds bearing tacrine- and donepezil-like structural and functional motifs for the potential treatment of Alzheimer's disease. Prog Neurobiol 2017; 151:4-34. [DOI: 10.1016/j.pneurobio.2015.12.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 11/11/2015] [Accepted: 12/11/2015] [Indexed: 01/16/2023]
|
18
|
Recent progress in repositioning Alzheimer's disease drugs based on a multitarget strategy. Future Med Chem 2016; 8:2113-2142. [PMID: 27774814 DOI: 10.4155/fmc-2016-0103] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Alzheimer's disease (AD) is a serious progressive neurological disorder, characterized by impaired cognition and profound irreversible memory loss. The multifactorial nature of AD and the absence of a cure so far have stimulated medicinal chemists worldwide to follow multitarget drug-design strategies based on repositioning approved drugs. This review describes a summary of recently published works focused on tailoring new derivatives of US FDA-approved acetylcholinesterase inhibitors, in addition to huperzine (a drug approved in China), either by hybridization with other pharmacophore elements (to hit more AD targets), or by combination of two FDA-approved drugs. Besides the capacity for improving the cholinergic activity, these polyfunctional derivatives are also able to tackle other important neuroprotective properties, such as anti-β-amyloid aggregation, scavenging of radical oxygen species, modulation of redox-active metals or inhibition of monoamine oxidase, thereby resulting in potentially novel and more effective therapeutics for the treatment of AD.
Collapse
|
19
|
Sola I, Viayna E, Gómez T, Galdeano C, Cassina M, Camps P, Romeo M, Diomede L, Salmona M, Franco P, Schaeffer M, Colantuono D, Robin D, Brunner D, Taub N, Hutter-Paier B, Muñoz-Torrero D. Multigram synthesis and in vivo efficacy studies of a novel multitarget anti-Alzheimer's compound. Molecules 2015; 20:4492-515. [PMID: 25764491 PMCID: PMC6272704 DOI: 10.3390/molecules20034492] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 02/25/2015] [Accepted: 03/03/2015] [Indexed: 01/07/2023] Open
Abstract
We describe the multigram synthesis and in vivo efficacy studies of a donepezil‒huprine hybrid that has been found to display a promising in vitro multitarget profile of interest for the treatment of Alzheimer's disease (AD). Its synthesis features as the key step a novel multigram preparative chromatographic resolution of intermediate racemic huprine Y by chiral HPLC. Administration of this compound to transgenic CL4176 and CL2006 Caenorhabditis elegans strains expressing human Aβ42, here used as simplified animal models of AD, led to a significant protection from the toxicity induced by Aβ42. However, this protective effect was not accompanied, in CL2006 worms, by a reduction of amyloid deposits. Oral administration for 3 months to transgenic APPSL mice, a well-established animal model of AD, improved short-term memory, but did not alter brain levels of Aβ peptides nor cortical and hippocampal amyloid plaque load. Despite the clear protective and cognitive effects of AVCRI104P4, the lack of Aβ lowering effect in vivo might be related to its lower in vitro potency toward Aβ aggregation and formation as compared with its higher anticholinesterase activities. Further lead optimization in this series should thus focus on improving the anti-amyloid/anticholinesterase activity ratio.
Collapse
Affiliation(s)
- Irene Sola
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, Barcelona E-08028, Spain.
| | - Elisabet Viayna
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, Barcelona E-08028, Spain.
| | - Tània Gómez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, Barcelona E-08028, Spain.
| | - Carles Galdeano
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, Barcelona E-08028, Spain.
| | - Matteo Cassina
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, Barcelona E-08028, Spain.
| | - Pelayo Camps
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, Barcelona E-08028, Spain.
| | - Margherita Romeo
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, Milan 20156, Italy.
| | - Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, Milan 20156, Italy.
| | - Mario Salmona
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, Milan 20156, Italy.
| | - Pilar Franco
- Chiral Technologies Europe, Parc d'Innovation, Bd. Gonthier d'Andernach, Illkirch F-67400, France.
| | - Mireille Schaeffer
- Chiral Technologies Europe, Parc d'Innovation, Bd. Gonthier d'Andernach, Illkirch F-67400, France.
| | - Diego Colantuono
- Chiral Technologies Europe, Parc d'Innovation, Bd. Gonthier d'Andernach, Illkirch F-67400, France.
| | - David Robin
- Chiral Technologies Europe, Parc d'Innovation, Bd. Gonthier d'Andernach, Illkirch F-67400, France.
| | - Daniela Brunner
- Neuropharmacology Department of QPS Austria-Gmbh, Parkring 12, Grambach 8074, Austria.
| | - Nicole Taub
- Neuropharmacology Department of QPS Austria-Gmbh, Parkring 12, Grambach 8074, Austria.
| | - Birgit Hutter-Paier
- Neuropharmacology Department of QPS Austria-Gmbh, Parkring 12, Grambach 8074, Austria.
| | - Diego Muñoz-Torrero
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, Barcelona E-08028, Spain.
| |
Collapse
|