1
|
Huang XH, Huang CY. Fructose shields human colorectal cancer cells from hypoxia-induced necroptosis. NPJ Sci Food 2024; 8:71. [PMID: 39353947 PMCID: PMC11445490 DOI: 10.1038/s41538-024-00318-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024] Open
Abstract
Recent studies have shown that high dietary fructose intake enhances intestinal tumor growth in mice. Our previous work indicated that glucose enables hypoxic colorectal cancer (CRC) cells to resist receptor-interacting protein (RIP)-dependent necroptosis. Despite having the same chemical formula, glucose and fructose are absorbed through different transporters yet both can enter the glycolytic metabolic pathway. The excessive intake of dietary fructose, leading to its overflow into the colon, allows colonic cells to absorb fructose apically. This study explores the mechanisms behind apical fructose-mediated death resistance in CRC cells under hypoxic stress. Utilizing three CRC cell lines (Caco-2, HT29, and T84) under normoxic and hypoxic conditions with varying fructose concentrations, we assessed lactate dehydrogenase (LDH) activity, RIP1/3 complex formation (a necroptosis marker), and cell integrity. We investigated the role of fructose in glycolytic-mediated death resistance using glycolytic inhibitors iodoacetate (IA, a glycolytic inhibitor to glyceraldehyde 3-phosphate dehydrogenase), and UK5099 (UK, an inhibitor to mitochondrial pyruvate carrier). Our findings reveal that apical fructose prevents the hypoxia-induced RIP-dependent necroptosis in Caco-2 and HT29 cells. Fructose exposure under hypoxia also preserved epithelial integrity. IA, but not UK, blocked fructose-mediated glycolytic metabolite production and necrosis, indicating that anaerobic glycolytic metabolites facilitate death resistance. Notably, fructose treatment upregulated pyruvate kinase (PK)-M1 mRNA in hypoxic Caco-2 and HT29 cells, while PKM2 upregulation was exclusive to HT29 cells. In conclusion, apical fructose utilization through glycolysis effectively inhibits hypoxia-induced RIP-dependent necroptosis in CRC cells, shedding light on potential metabolic adaptation mechanisms in the tumor microenvironment and suggesting novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Xiang-Han Huang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ching-Ying Huang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
2
|
Dong S, Yang F, Zhang Y, Teng Y, Tang W, Liu J, Fan H. Effect of X-ray irradiation on renal excretion of bestatin through down-regulating organic anion transporters via the vitamin D receptor in rats. Chem Biol Interact 2024; 399:111123. [PMID: 38964638 DOI: 10.1016/j.cbi.2024.111123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 06/14/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
Pharmacokinetic changes induced by radiation following radiotherapy ("RT-PK" phenomenon) are of great significance to the effectiveness and safety of chemotherapeutic agents in clinical settings. The aims of this study were to clarify the organic anion transporters (Oats) involved in the "RT-PK" phenomenon of bestatin in rats following X-ray irradiation and to elucidate its potential mechanism via vitamin D signalling. Pharmacokinetic studies, uptake assays using rat kidney slices and primary proximal tubule cells, and molecular biological studies were performed. Significantly increased plasma concentrations and systemic exposure to bestatin were observed at 24 and 48 h following abdominal X-ray irradiation, regardless of oral or intravenous administration of the drugs in rats. Reduced renal clearance and cumulative urinary excretion of bestatin were observed at 24 and 48 h post-irradiation in rats following intravenous administration. The uptake of the probe substrates p-aminohippuric acid and oestrone 3-sulfate sodium in vitro and the expression of Oat1 and Oat3 in vivo were reduced in the corresponding models following irradiation. Moreover, the upregulation of the vitamin D receptor (Vdr) in mRNA and protein levels negatively correlated with the expressions and functions of Oat1 and Oat3 following irradiation. Additionally, elevated plasma urea nitrogen levels and histopathological changes were observed in rats after exposure to irradiation. The "RT-PK" phenomenon of bestatin occurs in rats after exposure to irradiation, possibly resulting in the regulation of the expressions and activities of renal Oats via activation of the Vdr signalling pathway.
Collapse
Affiliation(s)
- Shiqi Dong
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 238, Baidi Road, Tianjin, 300192, China
| | - Fanlong Yang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 238, Baidi Road, Tianjin, 300192, China
| | - Yufeng Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yunhua Teng
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 238, Baidi Road, Tianjin, 300192, China
| | - Weisheng Tang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 238, Baidi Road, Tianjin, 300192, China
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 238, Baidi Road, Tianjin, 300192, China
| | - Huirong Fan
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 238, Baidi Road, Tianjin, 300192, China.
| |
Collapse
|
3
|
Jia Y, Du X, Wang Y, Song Q, He L. Sex differences in luteinizing hormone aggravates Aβ deposition in APP/PS1 and Aβ 1-42-induced mouse models of Alzheimer's disease. Eur J Pharmacol 2024; 970:176485. [PMID: 38492878 DOI: 10.1016/j.ejphar.2024.176485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Alzheimer's disease (AD) exhibits a higher incidence rate among older women, and dysregulation of the hypothalamic-pituitary-gonadal (HPG) axis during aging is associated with cognitive impairments and the development of dementia. luteinizing hormone (LH) has an important role in CNS function, such as mediating neuronal pregnenolone production, and modulating neuronal plasticity and cognition. The sex differences in LH and its impact on Aβ deposition in AD individuals remain unclear, with no reported specific mechanisms. Here, we show through data mining that LH-related pathways are significantly enriched in female AD patients. Additionally, LH levels are elevated in female AD patients and exhibit a negative correlation with cognitive levels but a positive correlation with AD pathology levels, and females exhibit a greater extent of AD pathology, such as Aβ deposition. In vivo, we observed that the exogenous injection of LH exacerbated behavioral impairments induced by Aβ1-42 in mice. LH injection resulted in worsened neuronal damage and increased Aβ deposition. In SH-SY5Y cells, co-administration of LH with Aβ further exacerbated Aβ-induced neuronal damage. Furthermore, LH can dose-dependently decrease the levels of NEP and LHR proteins while increasing the expression of GFAP and IBA1 in vivo and in vitro. Taken together, these results indicate that LH can exacerbate cognitive impairment and neuronal damage in mice by increasing Aβ deposition. The potential mechanism may involve the reduction of NEP and LHR expression, along with the exacerbation of Aβ-induced inflammation.
Collapse
Affiliation(s)
- Yongming Jia
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xinzhe Du
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yanan Wang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qinghua Song
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ling He
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
4
|
Tokutake Y, Taciak M, Sato K, Toyomizu M, Kikusato M. Effect of dipeptide on intestinal peptide transporter 1 gene expression: An evaluation using primary cultured chicken intestinal epithelial cells. Anim Sci J 2021; 92:e13604. [PMID: 34309968 PMCID: PMC9285489 DOI: 10.1111/asj.13604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 12/21/2022]
Abstract
Peptide transporter 1 (PepT1) is a transporter responsible for absorbing dipeptide and tripeptide in enterocytes and is upregulated by dipeptide in mammals. It has not been certain whether intestinal PepT1 expression is responsive to dipeptides in chickens because of the lack of in vitro study using the cultured enterocytes. This study established a primary culture model of chicken intestinal epithelial cells (IECs) in two‐dimensional monolayer culture using collagen gel by which the response of chicken PepT1 gene expression to dipeptide stimuli was evaluated. The cultured chicken IECs showed the epithelial‐like morphology attached in a patch‐manner and exhibited positive expression of cytokeratin and epithelial cadherin, specific marker proteins of epithelial cells. Moreover, the chicken IECs exhibited the gene expression of intestinal cell type‐specific marker, villin1, mucin 2, and chromogranin A, suggesting that the cultured IECs were composed of enterocytes as well as goblet and enteroendocrine cells. PepT1 gene expression was significantly upregulated by synthetic dipeptide, glycyl‐l‐glutamine, in the cultured IECs. From the results, we herein suggested that dipeptide is a factor upregulating PepT1 gene expression in chicken IECs.
Collapse
Affiliation(s)
- Yukako Tokutake
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Marcin Taciak
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - Kan Sato
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Masaaki Toyomizu
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Motoi Kikusato
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
5
|
Wang Y, Wang J, Yang L, Qiu L, Hua Y, Wu S, Zeng S, Yu L, Zheng X. Epigenetic regulation of intestinal peptide transporter PEPT1 as a potential strategy for colorectal cancer sensitization. Cell Death Dis 2021; 12:532. [PMID: 34031358 PMCID: PMC8144210 DOI: 10.1038/s41419-021-03814-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022]
Abstract
Human intestinal peptide transporter PEPT1 is commonly repressed in human colorectal cancer (CRC), yet its relationship with sensitivity to the common CRC treatment ubenimex has not previously been elucidated. In this study, we confirmed PEPT1 suppression in CRC using real-time quantitative polymerase chain reaction and western blotting and then investigated the underlying epigenetic pathways involved using bisulfite sequencing, chromatin immunoprecipitation, siRNA knockdown, and reporter gene assays. We found that PEPT1 transcriptional repression was due to both DNMT1-mediated DNA methylation of the proximal promoter region and HDAC1-mediated histone deacetylation, which blocked P300-mediated H3K18/27Ac at the PEPT1 distal promoter. Finally, the effects of the epigenetic activation of PEPT1 on the CRC response to ubenimex were evaluated using sequential combination therapy of decitabine and ubenimex both in vitro and in xenografts. In conclusion, epigenetic silencing of PEPT1 due to increased DNMT1 and HDAC1 expression plays a vital role in the poor response of CRC to ubenimex.
Collapse
Affiliation(s)
- Yanhong Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Jiaqi Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Lingrong Yang
- Department of Pharmacy, Hangzhou Cancer Hospital, 310002, Hangzhou, China
| | - Liqing Qiu
- Department of Pharmacy, Hangzhou Cancer Hospital, 310002, Hangzhou, China
| | - Yuhui Hua
- Department of Pharmacy, Hangzhou Cancer Hospital, 310002, Hangzhou, China
| | - Shixiu Wu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 518116, Shenzhen, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
| | - Xiaoli Zheng
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 518116, Shenzhen, China.
| |
Collapse
|
6
|
Duarte AC, Rosado T, Costa AR, Santos J, Gallardo E, Quintela T, Ishikawa H, Schwerk C, Schroten H, Gonçalves I, Santos CRA. The bitter taste receptor TAS2R14 regulates resveratrol transport across the human blood-cerebrospinal fluid barrier. Biochem Pharmacol 2020; 177:113953. [PMID: 32272108 DOI: 10.1016/j.bcp.2020.113953] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023]
Abstract
The regulation of transport mechanisms at brain barriers must be thoroughly understood, so that novel strategies for improving drug delivery to the brain can be designed. The blood-cerebrospinal fluid barrier (BCSFB) established by the choroid plexus (CP) epithelial cells has been poorly studied in this regard despite its relevance for the protection of the central nervous system (CNS). This study assessed the role of bitter taste receptors (TAS2Rs), TAS2R14 and TAS2R39, in the transport of resveratrol across CP epithelial cells using an in vitro model of the human BCSFB. Both receptors are expressed in human CP cells and known to bind resveratrol. First, Ca2+ imaging assays demonstrated that resveratrol specifically activates the TAS2R14 receptor, but not TAS2R39, in these human CP epithelial cells. Then, we proceeded with permeation studies that showed resveratrol can cross the human BCSFB, from the blood to the CSF side and that TAS2R14 knockdown decreased the transport of resveratrol across these cells. Conversely, inhibition of efflux transporters ABCC1, ABCC4 or ABCG2 also restrained the transport of resveratrol across these cells. Interestingly, resveratrol upregulated the expression of ABCG2 located at the apical membrane of the cells via TAS2R14, whereas ABCC1 and ABCC4 at the basolateral membrane of the cells were not affected. Altogether, our study demonstrates that the BCSFB is a gateway for resveratrol entrance into the CNS and that the receptor TAS2R14 regulates its transport by regulating the action of efflux transporters at CP epithelial cells.
Collapse
Affiliation(s)
- Ana C Duarte
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Tiago Rosado
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal; Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
| | - Ana R Costa
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - José Santos
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Eugénia Gallardo
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal; Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Christian Schwerk
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Horst Schroten
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Isabel Gonçalves
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Cecília R A Santos
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal.
| |
Collapse
|
7
|
Salem HF, Kharshoum RM, Abou-Taleb HA, Naguib DM. Nanosized Transferosome-Based Intranasal In Situ Gel for Brain Targeting of Resveratrol: Formulation, Optimization, In Vitro Evaluation, and In Vivo Pharmacokinetic Study. AAPS PharmSciTech 2019; 20:181. [PMID: 31049748 DOI: 10.1208/s12249-019-1353-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/26/2019] [Indexed: 12/30/2022] Open
Abstract
Resveratrol (RES) is a potent antioxidant used for the management of several central nervous system diseases. RES bioavailability is less than 1 owing to its low solubility and extensive intestinal and hepatic metabolism. The aim of the study was to enhance RES bioavailability through developing intranasal transferosomal mucoadhesive gel. Reverse evaporation-vortexing sonication method was employed to prepare RES-loaded transferosomes. Transferosomes were developed via 34 definitive screening design, using soya lecithin, permeation enhancers, and surfactants. The optimized formula displayed spherical shape with vesicle size of 83.79 ± 2.54 nm and entrapment efficiency (EE%) of 72.58 ± 4.51%. Mucoadhesive gels were prepared and evaluated, then optimized RES transferosomes were incorporated into the selected gel and characterized using FTIR spectroscopy, in vitro release, and ex vivo permeation study. Histopathological examination of nasal mucosa and in vivo pharmacokinetic study were conducted. In vitro drug release from transferosomal gel was 65.87 ± 2.12% and ex vivo permeation was 75.95 ± 3.19%. Histopathological study confirmed the safety of the optimized formula. The Cmax of RES in the optimized RES trans-gel was 2.15 times higher than the oral RES suspension and AUC(0-∞) increased by 22.5 times. The optimized RES trans-gel developed intranasal safety and bioavailability enhancement through passing hepatic and intestinal metabolism.
Collapse
|
8
|
Resveratrol enhances the protective effects of JBP485 against indomethacin-induced rat intestinal damage in vivo and vitro through up-regulating oligopeptide transporter 1 (Pept1). Biomed Pharmacother 2019; 111:251-261. [DOI: 10.1016/j.biopha.2018.12.084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 12/27/2022] Open
|
9
|
Giorgetti S, Greco C, Tortora P, Aprile FA. Targeting Amyloid Aggregation: An Overview of Strategies and Mechanisms. Int J Mol Sci 2018; 19:E2677. [PMID: 30205618 PMCID: PMC6164555 DOI: 10.3390/ijms19092677] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/02/2018] [Accepted: 09/05/2018] [Indexed: 12/26/2022] Open
Abstract
Amyloids result from the aggregation of a set of diverse proteins, due to either specific mutations or promoting intra- or extra-cellular conditions. Structurally, they are rich in intermolecular β-sheets and are the causative agents of several diseases, both neurodegenerative and systemic. It is believed that the most toxic species are small aggregates, referred to as oligomers, rather than the final fibrillar assemblies. Their mechanisms of toxicity are mostly mediated by aberrant interactions with the cell membranes, with resulting derangement of membrane-related functions. Much effort is being exerted in the search for natural antiamyloid agents, and/or in the development of synthetic molecules. Actually, it is well documented that the prevention of amyloid aggregation results in several cytoprotective effects. Here, we portray the state of the art in the field. Several natural compounds are effective antiamyloid agents, notably tetracyclines and polyphenols. They are generally non-specific, as documented by their partially overlapping mechanisms and the capability to interfere with the aggregation of several unrelated proteins. Among rationally designed molecules, we mention the prominent examples of β-breakers peptides, whole antibodies and fragments thereof, and the special case of drugs with contrasting transthyretin aggregation. In this framework, we stress the pivotal role of the computational approaches. When combined with biophysical methods, in several cases they have helped clarify in detail the protein/drug modes of interaction, which makes it plausible that more effective drugs will be developed in the future.
Collapse
Affiliation(s)
- Sofia Giorgetti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Via Taramelli 3b, 27100 Pavia, Italy.
| | - Claudio Greco
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy.
| | - Paolo Tortora
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.
- Milan Center for Neuroscience (Neuro-MI), 20126 Milano, Italy.
| | - Francesco Antonio Aprile
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
| |
Collapse
|
10
|
Klinger S, Breves G. Resveratrol Inhibits Porcine Intestinal Glucose and Alanine Transport: Potential Roles of Na⁺/K⁺-ATPase Activity, Protein Kinase A, AMP-Activated Protein Kinase and the Association of Selected Nutrient Transport Proteins with Detergent Resistant Membranes. Nutrients 2018; 10:nu10030302. [PMID: 29510506 PMCID: PMC5872720 DOI: 10.3390/nu10030302] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/24/2018] [Accepted: 03/01/2018] [Indexed: 12/22/2022] Open
Abstract
Background: Beneficial effects of Resveratrol (RSV) have been demonstrated, including effects on transporters and channels. However, little is known about how RSV influences intestinal transport. The aim of this study was to further characterize the effects of RSV on intestinal transport and the respective mechanisms. Methods: Porcine jejunum and ileum were incubated with RSV (300 µM, 30 min) in Ussing chambers (functional studies) and tissue bathes (detection of protein expression, phosphorylation, association with detergent resistant membranes (DRMs)). Results: RSV reduced alanine and glucose-induced short circuit currents (ΔIsc) and influenced forskolin-induced ΔIsc. The phosphorylation of sodium–glucose-linked transporter 1 (SGLT1), AMP-activated protein kinase (AMPK), protein kinase A substrates (PKA-S) and liver kinase B1 (LKB1) increased but a causative relation to the inhibitory effects could not directly be established. The DRM association of SGLT1, peptide transporter 1 (PEPT1) and (phosphorylated) Na+/H+-exchanger 3 (NHE3) did not change. Conclusion: RSV influences the intestinal transport of glucose, alanine and chloride and is likely to affect other transport processes. As the effects of protein kinase activation vary between the intestinal localizations, it would appear that increasing cyclic adenosine monophosphate (cAMP) levels are part of the mechanism. Nonetheless, the physiological responses depend on cell type-specific structures.
Collapse
Affiliation(s)
- Stefanie Klinger
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany.
| | - Gerhard Breves
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany.
| |
Collapse
|
11
|
李 丽, 杨 泳, 刘 星, 张 川, 叶 青, 后 文, 赵 艳, 肖 高, 李 鑫, 李 艳, 刘 睿. [Pathogenic role of leukotriene B4 in pulmonary microvascular endothelial cell hyper- permeability induced by one lung ventilation in rabbits]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:1523-1528. [PMID: 29180335 PMCID: PMC6779633 DOI: 10.3969/j.issn.1673-4254.2017.11.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To elucidate the pathogenic role of leukotriene B4 (LTB4) in increased pulmonary microvascular endothelial cell permeability induced by one lung ventilation (OLV) in rabbits. METHODS Forty-eight healthy Japanese white rabbits were randomly divided into control group (group C), saline pretreatment group (group S), bestatin (a leukotriene A4 hydrolase (LTA4H) inhibitor) plus saline pretreatment group (group B), OLV group (group O), saline pretreatment plus OLV group (group SO) and bestatin plus saline pretreatment with OLV group (group BO). ELISA was used to detect LTB4 content in the lung tissues, and LTA4H and phospholipase Cεl (PLCEl) expressions were examined by Western blotting and quantitative PCR. The wet/dry weight (W/D) ratio of the lung, lung permeability index and the expressions of myosin light chain kinase (MLCK) protein and mRNA in the lung tissues were determined to evaluate the permeability of the pulmonary microvascular endothelial cells (PMVECs). The severities of lung injury were evaluated by lung histomorphological scores. RESULTS No significant differences were found among groups C, S and B except that LTA4H expressions was significantly lower in group B than in groups C and S (P<0.05). OLV significantly increased the expressions of LTA4H (P<0.05) and resulted in LTB4 overproduction in the lungs (P<0.05) accompanied by significantly enhanced PLCE1 expression and PMVEC permeability (P<0.05). Pretreatment with bestatin, significantly reduced the expression of LTA4H and LTB4 production (P<0.05) and down-regulated the expression of PLCE1 in the lungs of the rabbits receiving OLV (P<0.05). CONCLUSION Bestatin plays a protective role in OLV-induced rabbit lung injury by downregulating LTA4H to reduce the production of LTB4 in the lungs. LTB4 can increase PMVEC permeability by up-regulating PLCE1 expression in rabbits with OLV-induced lung injury.
Collapse
Affiliation(s)
- 丽莎 李
- 云南省第一人民医院麻醉科,云南 昆明 6500322Department of Anesthesiology, The First People's Hospital of Yunnan Province, Kunming 650032, China
| | - 泳 杨
- 昆明医科大学医学机能实验中心,云南 昆明 650500Experimental Center of Medical Function, Kunming Medical University, Kunming 650500, China
| | - 星玲 刘
- 云南省第一人民医院麻醉科,云南 昆明 6500322Department of Anesthesiology, The First People's Hospital of Yunnan Province, Kunming 650032, China
| | - 川荛 张
- 昆明医科大学医学机能实验中心,云南 昆明 650500Experimental Center of Medical Function, Kunming Medical University, Kunming 650500, China
| | - 青妍 叶
- 昆明医科大学医学机能实验中心,云南 昆明 650500Experimental Center of Medical Function, Kunming Medical University, Kunming 650500, China
| | - 文俊 后
- 昆明医科大学医学机能实验中心,云南 昆明 650500Experimental Center of Medical Function, Kunming Medical University, Kunming 650500, China
| | - 艳花 赵
- 云南省第一人民医院麻醉科,云南 昆明 6500322Department of Anesthesiology, The First People's Hospital of Yunnan Province, Kunming 650032, China
| | - 高鹏 肖
- 云南省第一人民医院麻醉科,云南 昆明 6500322Department of Anesthesiology, The First People's Hospital of Yunnan Province, Kunming 650032, China
| | - 鑫楠 李
- 云南省第一人民医院麻醉科,云南 昆明 6500322Department of Anesthesiology, The First People's Hospital of Yunnan Province, Kunming 650032, China
| | - 艳华 李
- 云南省第一人民医院麻醉科,云南 昆明 6500322Department of Anesthesiology, The First People's Hospital of Yunnan Province, Kunming 650032, China
| | - 睿 刘
- 云南省第一人民医院麻醉科,云南 昆明 6500322Department of Anesthesiology, The First People's Hospital of Yunnan Province, Kunming 650032, China
| |
Collapse
|
12
|
Huo X, Liu K. Renal organic anion transporters in drug-drug interactions and diseases. Eur J Pharm Sci 2017; 112:8-19. [PMID: 29109021 DOI: 10.1016/j.ejps.2017.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 10/10/2017] [Accepted: 11/01/2017] [Indexed: 12/17/2022]
Abstract
The kidney plays a vital role in maintaining systemic homeostasis. Active tubular secretion and reabsorption, which are mainly mediated by transporters, is an efficient mechanism for retaining glucose, amino acids, and other nutrients and for the clearance of endogenous waste products and xenobiotics. These substances are recognized by uptake transporters located in the basolateral and apical membranes of renal proximal tubule cells and are extracted from plasma and urine. Organic anion transporters (OATs) belong to the solute carrier (SLC) 22 superfamily and facilitate organic anions across the plasma membranes of renal proximal tubule cells. OATs are responsible for the transmembrane transport of anionic and zwitterionic organic molecules, including endogenous substances and many drugs. The alteration in OAT expression and function caused by diseases, drug-drug interactions (DDIs) or other issues can thus change the renal disposition of substrates, induce the accumulation of toxic metabolites, and lead to unexpected clinically outcome. This review summarizes the recent information regarding the expression, regulation, and substrate spectrum of OATs and discusses the roles of OATs in diseases and DDIs. These findings will enables us to have a better understanding of the related disease therapy and the potential risk of DDIs mediated by OATs.
Collapse
Affiliation(s)
- Xiaokui Huo
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Key Laboratory of Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian 116044, China; College (Institute) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Key Laboratory of Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian 116044, China; College (Institute) of Integrative Medicine, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
13
|
Phytotherapeutics: The Emerging Role of Intestinal and Hepatocellular Transporters in Drug Interactions with Botanical Supplements. Molecules 2017; 22:molecules22101699. [PMID: 29065448 PMCID: PMC6151444 DOI: 10.3390/molecules22101699] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 09/30/2017] [Accepted: 10/02/2017] [Indexed: 01/17/2023] Open
Abstract
In herbalism, botanical supplements are commonly believed to be safe remedies, however, botanical supplements and dietary ingredients interact with transport and metabolic processes, affecting drug disposition. Although a large number of studies have described that botanical supplements interfere with drug metabolism, the mode of their interaction with drug transport processes is not well described. Such interactions may result in serious undesired effects and changed drug efficacy, therefore, some studies on interaction between botanical supplement ingredients and drug transporters such as P-gp and OATPs are described here, suggesting that the interaction between botanical supplements and the drug transporters is clinically significant.
Collapse
|
14
|
Jia Y, Wang N, Liu X. Resveratrol and Amyloid-Beta: Mechanistic Insights. Nutrients 2017; 9:nu9101122. [PMID: 29036903 PMCID: PMC5691738 DOI: 10.3390/nu9101122] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 09/25/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022] Open
Abstract
The amyloid-beta (Aβ) hypothesis that dyshomeostasis between Aβ production and clearance is a very early, key molecular factor in the etiology of Alzheimer’s disease (AD) has been proposed and examined in the AD research field. Scientists have focused on seeking natural products or drugs to influence the dynamic equilibrium of Aβ, targeting production and clearance of Aβ. There is emerging evidence that resveratrol (Res), a naturally occurring polyphenol mainly found in grapes and red wine, acts on AD in numerous in vivo and in vitro models. Res decreases the amyloidogenic cleavage of the amyloid precursor protein (APP), enhances clearance of amyloid beta-peptides, and reduces Aβ aggregation. Moreover, Res also protects neuronal functions through its antioxidant properties. This review discusses the action of Res on Aβ production, clearance and aggregation and multiple potential mechanisms, providing evidence of the useful of Res for AD treatment.
Collapse
Affiliation(s)
- Yongming Jia
- Department of Neuropharmacology, Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar 161006, China.
| | - Na Wang
- Department of Pathophysiology, Qiqihar Medical University, Qiqihar 161006, China.
| | - Xuewei Liu
- Department of Neuropharmacology, Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar 161006, China.
| |
Collapse
|
15
|
|
16
|
Li Y, Revalde J, Paxton JW. The effects of dietary and herbal phytochemicals on drug transporters. Adv Drug Deliv Rev 2017; 116:45-62. [PMID: 27637455 DOI: 10.1016/j.addr.2016.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/10/2016] [Accepted: 09/05/2016] [Indexed: 12/22/2022]
Abstract
Membrane transporter proteins (the ABC transporters and SLC transporters) play pivotal roles in drug absorption and disposition, and thus determine their efficacy and safety. Accumulating evidence suggests that the expression and activity of these transporters may be modulated by various phytochemicals (PCs) found in diets rich in plants and herbs. PC absorption and disposition are also subject to the function of membrane transporter and drug metabolizing enzymes. PC-drug interactions may involve multiple major drug transporters (and metabolizing enzymes) in the body, leading to alterations in the pharmacokinetics of substrate drugs, and thus their efficacy and toxicity. This review summarizes the reported in vitro and in vivo interactions between common dietary PCs and the major drug transporters. The oral absorption, distribution into pharmacological sanctuaries and excretion of substrate drugs and PCs are considered, along with their possible interactions with the ABC and SLC transporters which influence these processes.
Collapse
|
17
|
Wang H, Sun P, Wang C, Meng Q, Liu Z, Huo X, Sun H, Ma X, Peng J, Liu K. Liver uptake of cefditoren is mediated by OATP1B1 and OATP2B1 in humans and Oatp1a1, Oatp1a4, and Oatp1b2 in rats. RSC Adv 2017; 7:30038-30048. [DOI: 10.1039/c7ra03537c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025] Open
Abstract
OATPs and Oatps mediated liver uptake of cefditoren in humans and in rats.
Collapse
|
18
|
Stieger B, Mahdi ZM, Jäger W. Intestinal and Hepatocellular Transporters: Therapeutic Effects and Drug Interactions of Herbal Supplements. Annu Rev Pharmacol Toxicol 2016; 57:399-416. [PMID: 27648763 DOI: 10.1146/annurev-pharmtox-010716-105010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Herbal supplements are generally considered safe; however, drug disposition is influenced by the interactions of herbal supplements and food constituents with transport and metabolic processes. Although the interference of herbal supplements with drug metabolism has been studied extensively, knowledge of how they interact with the drug transport processes is less advanced. Therefore, we describe here specific examples of experimental and human interaction studies of herbal supplement components with drug transporters addressing, for example, organic anion transporting polypeptides or P-glycoprotein, as such interactions may lead to severe side effects and altered drug efficacy. Hence, it is clearly necessary to increase the awareness of the clinical relevance of the interference of herbal supplements with the drug transport processes.
Collapse
Affiliation(s)
- Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| | - Zainab M Mahdi
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| | - Walter Jäger
- Division of Clinical Pharmacy and Diagnostics, Department of Pharmaceutical Chemistry, University of Vienna, A-1090 Vienna, Austria;
| |
Collapse
|
19
|
P-gp, MRP2 and OAT1/OAT3 mediate the drug-drug interaction between resveratrol and methotrexate. Toxicol Appl Pharmacol 2016; 306:27-35. [PMID: 27377006 DOI: 10.1016/j.taap.2016.06.030] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/26/2016] [Accepted: 06/29/2016] [Indexed: 01/27/2023]
Abstract
The purpose of present study was to investigate the effect of resveratrol (Res) on altering methotrexate (MTX) pharmacokinetics and clarify the related molecular mechanism. Res significantly increased rat intestinal absorption of MTX in vivo and in vitro. Simultaneously, Res inhibited MTX efflux transport in MDR1-MDCK and MRP2-MDCK cell monolayers, suggesting that the target of drug interaction was MDR1 and MRP2 in the intestine during the absorption process. Furthermore, there was a significant decrease in renal clearance of MTX after simultaneous intravenous administration. Similarly, MTX uptake was markedly inhibited by Res in rat kidney slices and hOAT1/3-HEK293 cell, indicating that OAT1 and OAT3 were involved in the drug interaction in the kidney. Additionally, concomitant administration of Res decreased cytotoxic effects of MTX in hOAT1/3-HEK293 cells, and ameliorated nephrotoxicity caused by MTX in rats. Conversely, intestinal damage caused by MTX was not exacerbated after Res treatment. In conclusion, Res enhanced MTX absorption in intestine and decreased MTX renal elimination by inhibiting P-gp, MRP2, OAT1 and OAT3 in vivo and in vitro. Res improved MTX-induced renal damage without increasing intestinal toxicity.
Collapse
|
20
|
Modulation of expression and activity of intestinal multidrug resistance-associated protein 2 by xenobiotics. Toxicol Appl Pharmacol 2016; 303:45-57. [DOI: 10.1016/j.taap.2016.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/29/2016] [Accepted: 05/01/2016] [Indexed: 12/24/2022]
|