1
|
Dos Santos Fonseca LM, Machado BAS, Oliveira FO, de Jesus Santos JR, da Silva JW, Hodel KVS, Rosatti BG, Pinto CD, Soares MBP. An overview on recent patents and technologies on nanoparticles for nucleic acid delivery. Expert Opin Ther Pat 2024; 34:171-186. [PMID: 38578253 DOI: 10.1080/13543776.2024.2338097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
INTRODUCTION Nucleic acid-based therapeutics offer groundbreaking potential for treating genetic diseases and advancing next-generation vaccines. Despite their promise, challenges in efficient delivery persist due to the properties of nucleic acids. Nanoparticles (NPs) serve as vital carriers, facilitating effective delivery to target cells, and addressing these challenges. Understanding the global landscape of patents in this field is essential for fostering innovation and guiding decision-making for researchers, the pharmaceutical industry, and regulatory agencies. AREAS COVERED This review provides a comprehensive overview of patent compositions, applications, and manufacturing aspects concerning NPs as nucleic acid delivery systems. It delves into temporal trends, protection locations, market dynamics, and the most influential technological domains. In this work, we provide valuable insights into the advancements and potential of NP-based nucleic acid delivery systems, with a special focus on their pivotal role in advancing cutting-edge therapeutic solutions. EXPERT OPINION Investment in NPs for nucleic acid delivery has significantly surged in recent years. However, translating these therapies into clinical practice faces obstacles, including the need for robust clinical evidence, regulatory compliance, and streamlined manufacturing processes. To address these challenges, our review article summarizes recent advances. We aim to engage researchers worldwide in the development of these promising technologies.
Collapse
Affiliation(s)
- Larissa Moraes Dos Santos Fonseca
- FIOCRUZ Bahia, Gonçalo Moniz Institute (IGM) Oswaldo Cruz Foundation (Fiocruz), Salvador, BA, Brazil
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC University Center, Salvador, BA, Brazil
| | - Bruna Aparecida Souza Machado
- FIOCRUZ Bahia, Gonçalo Moniz Institute (IGM) Oswaldo Cruz Foundation (Fiocruz), Salvador, BA, Brazil
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC University Center, Salvador, BA, Brazil
| | - Fabricia Oliveira Oliveira
- FIOCRUZ Bahia, Gonçalo Moniz Institute (IGM) Oswaldo Cruz Foundation (Fiocruz), Salvador, BA, Brazil
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC University Center, Salvador, BA, Brazil
| | | | - Jaqueline Wang da Silva
- FIOCRUZ Bahia, Gonçalo Moniz Institute (IGM) Oswaldo Cruz Foundation (Fiocruz), Salvador, BA, Brazil
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC University Center, Salvador, BA, Brazil
| | - Katharine Valeria Saraiva Hodel
- FIOCRUZ Bahia, Gonçalo Moniz Institute (IGM) Oswaldo Cruz Foundation (Fiocruz), Salvador, BA, Brazil
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC University Center, Salvador, BA, Brazil
| | - Brisa Gonçalves Rosatti
- FIOCRUZ Bahia, Gonçalo Moniz Institute (IGM) Oswaldo Cruz Foundation (Fiocruz), Salvador, BA, Brazil
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC University Center, Salvador, BA, Brazil
| | | | | |
Collapse
|
2
|
Pancani E, Veclani D, Agnes M, Mazza A, Venturini A, Malanga M, Manet I. Three-in-one: exploration of co-encapsulation of cabazitaxel, bicalutamide and chlorin e6 in new mixed cyclodextrin-crosslinked polymers. RSC Adv 2023; 13:10923-10939. [PMID: 37033421 PMCID: PMC10077339 DOI: 10.1039/d3ra01782f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/09/2023] Open
Abstract
Three-in-one: a single bCyD polymer easily prepared in water is used to co-encapsulate cabazitaxel and bicalutamide with chlorin e6 affording a nanoplatform to implement multimodal cancer therapy.
Collapse
Affiliation(s)
- Elisabetta Pancani
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Daniele Veclani
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Marco Agnes
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Arianna Mazza
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Alessandro Venturini
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Milo Malanga
- CycloLab, Cyclodextrin R&D Ltd., Budapest, Hungary
| | - Ilse Manet
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| |
Collapse
|
3
|
Pérez-Figueroa SE, Gallegos-Lozano A, Mendoza CI. Packing core-corona particles on a spherical surface. SOFT MATTER 2022; 18:6812-6824. [PMID: 36040141 DOI: 10.1039/d2sm00719c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We explore the non-trivial structures that can be obtained by the assembly of repulsive core-corona particles confined on a spherical surface. Using Monte Carlo simulations, we study the low-temperature equilibrium configurations as a function of the size of the confining (spherical) surface for a small number of particles (N ≤ 12) and obtain a large variety of minimal-energy arrangements including anisotropic and chiral structures. For a small cluster (N = 4), we construct a phase diagram in the confining surface radius vs corona range plane that showed regions where configurations with a certain energy are not accessible. Also, a phase diagram in the temperature and confining surface radius plane showed the presence of reentrant phases. The assembly of Platonic and Archimedean solids and the emergence of helical structures are also discussed. When the number of particles is large (N ≥ 100), apart from the appearance of defects, the overall configurations correspond closely to the ones formed in an unconfined two-dimensional case. Interestingly, the present model reproduces the symmetry of experimentally obtained small clusters of colloidal spheres confined at the surface of evaporating liquid droplets which cannot be explained in terms of packing of hard spheres. Thus, our simulations provide insight on the role that the softness of the particles may have in the assembly of clusters of nanoparticles.
Collapse
Affiliation(s)
- S E Pérez-Figueroa
- Instituto Politécnico Nacional, ESIME Culhuacan, Av. Santa Ana 1000 Col. San Francisco Culhuacan, 04440 CdMx, Mexico
| | - Andrés Gallegos-Lozano
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apdo. Postal 70-360, 04510 CdMx, Mexico.
| | - Carlos I Mendoza
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apdo. Postal 70-360, 04510 CdMx, Mexico.
| |
Collapse
|
4
|
Compatibilized Biopolymer-based Core–shell Nanoparticles: A New Frontier in Malaria Combo-therapy. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09664-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Carbajo‐Gordillo AI, González‐Cuesta M, Jiménez Blanco JL, Benito JM, Santana‐Armas ML, Carmona T, Di Giorgio C, Przybylski C, Ortiz Mellet C, Tros de Ilarduya C, Mendicuti F, García Fernández JM. Trifaceted Mickey Mouse Amphiphiles for Programmable Self-Assembly, DNA Complexation and Organ-Selective Gene Delivery. Chemistry 2021; 27:9429-9438. [PMID: 33882160 PMCID: PMC8361672 DOI: 10.1002/chem.202100832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Indexed: 12/15/2022]
Abstract
Instilling segregated cationic and lipophilic domains with an angular disposition in a trehalose-based trifaceted macrocyclic scaffold allows engineering patchy molecular nanoparticles leveraging directional interactions that emulate those controlling self-assembling processes in viral capsids. The resulting trilobular amphiphilic derivatives, featuring a Mickey Mouse architecture, can electrostatically interact with plasmid DNA (pDNA) and further engage in hydrophobic contacts to promote condensation into transfectious nanocomplexes. Notably, the topology and internal structure of the cyclooligosaccharide/pDNA co-assemblies can be molded by fine-tuning the valency and characteristics of the cationic and lipophilic patches, which strongly impacts the transfection efficacy in vitro and in vivo. Outstanding organ selectivities can then be programmed with no need of incorporating a biorecognizable motif in the formulation. The results provide a versatile strategy for the construction of fully synthetic and perfectly monodisperse nonviral gene delivery systems uniquely suited for optimization schemes by making cyclooligosaccharide patchiness the focus.
Collapse
Affiliation(s)
| | - Manuel González‐Cuesta
- Department of Organic ChemistryFaculty of ChemistryUniversity of SevillaC/ Prof García González 141012SevillaSpain
| | - José L. Jiménez Blanco
- Department of Organic ChemistryFaculty of ChemistryUniversity of SevillaC/ Prof García González 141012SevillaSpain
| | - Juan M. Benito
- Institute for Chemical ResearchIIQCSIC-Univ. SevillaC/ Américo Vespucio 4941092SevillaSpain
| | - María L. Santana‐Armas
- Department of Pharmaceutical Technology and ChemistrySchool of Pharmacy and NutritionUniversity of Navarra31080PamplonaSpain
| | - Thais Carmona
- Department of Analytical ChemistryPhysical Chemistry and Chemical EngineeringInstituto de Investigación Química “Andrés M. del Rio” (IQAR)University of AlcaláCampus Universitario Ctra. Madrid-Barcelona Km 33.60028871Alcalá de HenaresSpain
| | - Christophe Di Giorgio
- Institut de Chimie NiceUMR 7272Université Côte d'Azur28, Avenue de Valrose06108NiceFrance
| | - Cédric Przybylski
- CNRSInstitut Parisien de Chimie MoléculaireIPCMSorbonne UniversitéParisFrance
| | - Carmen Ortiz Mellet
- Department of Organic ChemistryFaculty of ChemistryUniversity of SevillaC/ Prof García González 141012SevillaSpain
| | - Conchita Tros de Ilarduya
- Department of Pharmaceutical Technology and ChemistrySchool of Pharmacy and NutritionUniversity of Navarra31080PamplonaSpain
| | - Francisco Mendicuti
- Department of Analytical ChemistryPhysical Chemistry and Chemical EngineeringInstituto de Investigación Química “Andrés M. del Rio” (IQAR)University of AlcaláCampus Universitario Ctra. Madrid-Barcelona Km 33.60028871Alcalá de HenaresSpain
| | | |
Collapse
|
6
|
Akpa PA, Ugwuoke JA, Attama AA, Ugwu CN, Ezeibe EN, Momoh MA, Echezona AC, Kenechukwu FC. Improved antimalarial activity of caprol-based nanostructured lipid carriers encapsulating artemether-lumefantrine for oral administration. Afr Health Sci 2020; 20:1679-1697. [PMID: 34394228 PMCID: PMC8351851 DOI: 10.4314/ahs.v20i4.20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Artemether and lumefantrine display low aqueous solubility leading to poor release profile; hence the need for the use of lipid-based systems to improve their oral bioavailability so as to improve their therapeutic efficacy. AIM AND OBJECTIVE The objective of this work was to utilize potentials of nanostructured lipid carriers (NLCs) for improvement of the oral bioavailability of artemether and lumefantrine combination and to evaluate its efficacy in the treatment of malaria. This study reports a method of formulation, characterization and evaluation of the therapeutic efficacies of caprol-based NLC delivery systems with artemether and lumefantrine. METHOD The artemether-lumefantrine co-loaded NLCs were prepared using the lipid matrix (5% w/w) (containing beeswax and Phospholipon® 90H and Caprol-PGE 860), artemether (0.1%w/w) and lumefantrine (0.6%w/w), sorbitol (4%w/w), Tween® 80(2%w/w as surfactant) and distilled water (q.s to 100%) by high shear homogenization and evaluated for physicochemical performance. The in vivo antimalarial activities of the NLC were tested in chloroquine-sensitive strains of Plasmodium berghei (NK-65) using Peter´s 4-day suppressive protocol in mice and compared with controls. Histopathological studies were also carried out on major organs implicated in malaria. RESULTS The NLC showed fairly polydispersed nano-sized formulation (z-average:188.6 nm; polydispersity index, PDI=0.462) with no major interaction occurring between the components while the in vivo study showed a gradual but sustained drug release from the NLC compared with that seen with chloroquine sulphate and Coartem®. Results of histopathological investigations also revealed more organ damage with the untreated groups than groups treated with the formulations. CONCLUSION This study has shown the potential of caprol-based NLCs for significant improvement in oral bioavailability and hence antimalarial activity of poorly soluble artemether and lumefantrine. Importantly, this would improve patient compliance due to decrease in dosing frequency as a sustained release formulation.
Collapse
Affiliation(s)
| | | | | | - Chinenye Nnenna Ugwu
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka
| | | | | | | | | |
Collapse
|
7
|
Hammons JA, Ingólfsson HI, Lee JRI, Carpenter TS, Sanborn J, Tunuguntla R, Yao YC, Weiss TM, Noy A, Van Buuren T. Decoupling copolymer, lipid and carbon nanotube interactions in hybrid, biomimetic vesicles. NANOSCALE 2020; 12:6545-6555. [PMID: 32159198 DOI: 10.1039/c9nr09973e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bilayer vesicles that mimic a real biological cell can be tailored to carry out a specific function by manipulating the molecular composition of the amphiphiles. These bio-inspired and bio-mimetic structures are increasingly being employed for a number of applications from drug delivery to water purification and beyond. Complex hybrid bilayers are the key building blocks for fully synthetic vesicles that can mimic biological cell membranes, which often contain a wide variety of molecular species. While the assembly and morpholgy of pure phospholid bilayer vesicles is well understood, the functionality and structure dramaticlly changes when copolymer and/or carbon nanotube porins (CNTP) are added. The aim of this study is to understand how the collective molecular interactions within hybrid vesicles affect their nanoscale structure and properties. In situ small and wide angle X-ray scattering (SAXS/WAXS) and molecular dynamics simulations (MD) are used to investigate the morphological effect of molecular interactions between polybutadiene polyethylene oxide, lipids and carbon nanotubes (CNT) within the hybrid vesicle bilayer. Within the lipid/copolymer system, the hybrid bilayer morphology transitions from phase separated lipid and compressed copolymer at low copolymer loadings to a mixed bilayer where opposing lipids are mostly separated from the inner region. This transition begins between 60 wt% and 70 wt%, with full homogenization observed by 80 wt% copolymer. The incorporation of CNT into the hybrid vesicles increases the bilayer thickness and enhances the bilayer symmetry. Analysis of the WAXS and MD indicate that the CNT-dioleoyl interactions are much stronger than the CNT-polybutadiene.
Collapse
Affiliation(s)
- Joshua A Hammons
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Albernaz VL, Bach M, Weber A, Southan A, Tovar GEM. Active Ester Containing Surfmer for One-Stage Polymer Nanoparticle Surface Functionalization in Mini-Emulsion Polymerization. Polymers (Basel) 2018; 10:E408. [PMID: 30966443 PMCID: PMC6415249 DOI: 10.3390/polym10040408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/23/2018] [Accepted: 03/30/2018] [Indexed: 12/16/2022] Open
Abstract
Functional surface active monomers (surfmers) are molecules that combine the functionalities of surface activity, polymerizability, and reactive groups. This study presents an improved pathway for the synthesis of the active ester containing surfmer p-(11-acrylamido)undecanoyloxyphenyl dimethylsulfonium methyl sulfate (AUPDS). Further, the preparation of poly(methyl methacrylate) and polystyrene nanoparticles (NPs) by mini-emulsion polymerization using AUPDS is investigated, leading to NPs with active ester groups on their surface. By systematically varying reaction parameters and reagent concentrations, it was found that AUPDS feed concentrations between 2⁻4 mol% yielded narrowly distributed and stable spherical particles with average sizes between 83 and 134 nm for non-cross-linked NPs, and up to 163 nm for cross-linked NPs. By basic hydrolysis of the active ester groups in aqueous dispersion, the positive ζ-potential (ZP) was converted into a negative ZP and charge quantities determined by polyelectrolyte titrations before and after hydrolysis were in the same range, indicating that the active ester groups were indeed accessible in aqueous suspension. Increasing cross-linker amounts over 10 mol% also led to a decrease of ZP of NPs, probably due to internalization of the AUPDS during polymerization. In conclusion, by using optimized reaction conditions, it is possible to prepare active ester functionalized NPs in one stage using AUPDS as a surfmer in mini-emulsion polymerization.
Collapse
Affiliation(s)
- Vanessa L Albernaz
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstraße 12, 70569 Stuttgart, Germany.
| | - Monika Bach
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstraße 12, 70569 Stuttgart, Germany.
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstraße 12, 70569 Stuttgart, Germany.
| | - Achim Weber
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstraße 12, 70569 Stuttgart, Germany.
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstraße 12, 70569 Stuttgart, Germany.
| | - Alexander Southan
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstraße 12, 70569 Stuttgart, Germany.
| | - Günter E M Tovar
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstraße 12, 70569 Stuttgart, Germany.
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstraße 12, 70569 Stuttgart, Germany.
| |
Collapse
|
9
|
Garci A, Castor KJ, Fakhoury J, Do JL, Di Trani J, Chidchob P, Stein RS, Mittermaier AK, Friščić T, Sleiman H. Efficient and Rapid Mechanochemical Assembly of Platinum(II) Squares for Guanine Quadruplex Targeting. J Am Chem Soc 2017; 139:16913-16922. [PMID: 29058892 DOI: 10.1021/jacs.7b09819] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We present a rapid and efficient method to generate a family of platinum supramolecular square complexes, including previously inaccessible targets, through the use of ball milling mechanochemistry. This one-pot, two-step process occurs in minutes and enables the synthesis of the squares [Pt4(en)4(N∩N)4][CF3SO3]8 (en= ethylenediamine, N∩N = 4,4'-bipyridine derivatives) from commercially available precursor K2PtCl4 in good to excellent yields. In contrast, solution-based assembly requires heating the reagents for weeks and gives lower yields. Mechanistic investigations into this remarkable rate acceleration revealed that solution-based assembly (refluxing for days) results in the formation of large oligomeric side-products that are difficult to break down into the desired squares. On the other hand, ball milling in the solid state is rapid and appears to involve smaller intermediates. We examined the binding of the new supramolecular squares to guanine quadruplexes, including oncogene and telomere-associated DNA and RNA sequences. Sub-micromolar binding affinities were obtained by fluorescence displacement assays (FID) and isothermal titration calorimetry (ITC), with binding preference to telomere RNA (TERRA) sequences. ITC showed a 1:1 binding stoichiometry of the metallosquare to TERRA, while the stoichiometry was more complex for telomeric quadruplex DNA and a double-stranded DNA control.
Collapse
Affiliation(s)
- Amine Garci
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Katherine J Castor
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Johans Fakhoury
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Jean-Louis Do
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Justin Di Trani
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Pongphak Chidchob
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Robin S Stein
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Anthony K Mittermaier
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Tomislav Friščić
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Hanadi Sleiman
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| |
Collapse
|
10
|
Salzano G, Wankar J, Ottani S, Villemagne B, Baulard AR, Willand N, Brodin P, Manet I, Gref R. Cyclodextrin-based nanocarriers containing a synergic drug combination: A potential formulation for pulmonary administration of antitubercular drugs. Int J Pharm 2017; 531:577-587. [PMID: 28522424 DOI: 10.1016/j.ijpharm.2017.05.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 01/25/2023]
Abstract
Tuberculosis (TB) remains a major global health problem. The use of ethionamide (ETH), a main second line drug, is associated to severe toxic side-effects due to its low therapeutic index. In this challenging context, "booster" molecules have been synthetized to increase the efficacy of ETH. However, the administration of ETH/booster pair is mostly hampered by the low solubility of these drugs and the tendency of ETH to crystallize. Here, ETH and a poorly water-soluble booster, so-called BDM43266, were simultaneously loaded in polymeric β-cyclodextrin nanoparticles (pβCyD NPs) following a "green" protocol. The interaction of ETH and BDM43266 with pβCyD NPs was investigated by complementary techniques. Remarkably, the inclusion of ETH and BDM43266 pβCyD NPs led to an increase of their apparent solubility in water of 10- and 90-fold, respectively. Competition studies of ETH and BDM43266 for the CyD cavities of pβCyD NPs corroborated the fact that the drugs did not compete with each other, confirming the possibility to simultaneously co-incorporate them in NPs. The drug-loaded NP suspensions could be filtered through 0.22μm filters. Finally, the drug-loaded NPs were passed through a Microsprayer® to evaluate the feasibility to administer pβCyD NPs by pulmonary route. Each spray delivered a constant amount of both drugs and the NPs were totally recovered after passage through the Microsprayer®. These promising results pave the way for a future use of pβCyD NPs for the pulmonary delivery of the ETH/BDM43266 pair.
Collapse
Affiliation(s)
- Giuseppina Salzano
- Institute of Molecular Sciences, UMR CNRS 8214, Paris-Sud University, 91400 Orsay, France
| | - Jitendra Wankar
- Istituto per la Sintesi Organica e la Fotoreattività, ISOF, CNR, via P. Gobetti 101, 40129 Bologna, Italy
| | - Stefano Ottani
- Istituto per la Sintesi Organica e la Fotoreattività, ISOF, CNR, via P. Gobetti 101, 40129 Bologna, Italy
| | - Baptiste Villemagne
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Alain R Baulard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Nicolas Willand
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Priscille Brodin
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Ilse Manet
- Istituto per la Sintesi Organica e la Fotoreattività, ISOF, CNR, via P. Gobetti 101, 40129 Bologna, Italy.
| | - Ruxandra Gref
- Institute of Molecular Sciences, UMR CNRS 8214, Paris-Sud University, 91400 Orsay, France.
| |
Collapse
|
11
|
|