1
|
Li Z, Tian Y. Role of NEL‑like molecule‑1 in osteogenesis/chondrogenesis (Review). Int J Mol Med 2025; 55:5. [PMID: 39450541 PMCID: PMC11537270 DOI: 10.3892/ijmm.2024.5446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
A dynamic balance exists between osteogenesis and osteoclastogenesis in bone tissue, which can lead to several bone diseases, such as osteoporosis, osteoarthritis, bone necrosis and bone defects, in cases of insufficient osteogenesis or excessive osteoclastogenesis. NEL‑like molecule‑1 (NELL‑1) was first discovered in 1999 as an osteogenic factor that can prevent or treat bone diseases by increasing osteogenic levels. To date, research has identified multiple signaling pathways involved in improving osteogenic levels. Furthermore, to apply NELL‑1 in clinical practice, researchers have optimized its osteogenic effect by combining it with other molecules, changing its molecular structure and performing bone tissue engineering. Currently, research on NELL‑1 is gaining increasing attention. In the near future, it will definitely be applied in clinical practice to eliminate diseases. Thus, the present study provides a comprehensive review of NELL‑1 in enhancing osteogenic levels from the perspectives of the molecular mechanism, interactions with other molecules/cells, molecular‑level changes, applications in bone tissue engineering and its expression in tumors, providing a solid theoretical basis for its clinical application.
Collapse
Affiliation(s)
- Zihan Li
- Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yihao Tian
- Department of Pathology, Beifang Hospital of China Medical University, General Hospital of Northern Theater Command, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
2
|
Albosultan AI, Ghobeh M, Tabrizi MH. The Anticancer, Anti-metastatic, Anti-oxidant, and Anti-angiogenic Activity of Chitosan-coated Parthenolide/Bovine Serum Albumin Nanoparticles. J Inorg Organomet Polym Mater 2023. [DOI: 10.1007/s10904-023-02541-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
3
|
Tanjaya J, Ha P, Zhang Y, Wang C, Shah Y, Berthiaume E, Pan HC, Shi J, Kwak J, Wu B, Ting K, Zhang X, Soo C. Genetic and pharmacologic suppression of PPARγ enhances NELL-1-stimulated bone regeneration. Biomaterials 2022; 287:121609. [PMID: 35839586 PMCID: PMC10434299 DOI: 10.1016/j.biomaterials.2022.121609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/15/2022] [Accepted: 05/28/2022] [Indexed: 11/02/2022]
Abstract
Recent investigations into mechanisms behind the development of osteoporosis suggest that suppressing PPARγ-mediated adipogenesis can improve bone formation and bone mineral density. In this study, we investigated a co-treatment strategy to enhance bone formation by combining NELL-1, an osteogenic molecule that has been extensively studied for its potential use as a therapeutic for osteoporosis, with two methods of PPARγ suppression. First, we suppressed PPARγ genetically using lentiviral PPARγ-shRNA in immunocompromised mice for a proof of concept. Second, we used a PPARγ antagonist to suppress PPARγ pharmacologically in immunocompetent senile osteopenic mice for clinical transability. We found that the co-treatment strategy significantly increased bone formation, increased the proliferation stage cell population, decreased late apoptosis of primary mouse BMSCs, and increased osteogenic marker mRNA levels in comparison to the single agent treatment groups. The addition of PPARγ suppression to NELL-1 therapy enhanced NELL-1's effects on bone formation by upregulating anabolic processes without altering NELL-1's inhibitory effects on osteoclastic and adipogenic activities. Our findings suggest that combining PPARγ suppression with therapeutic NELL-1 may be a viable method that can be further developed as a novel strategy to reverse bone loss and decrease marrow adiposity in age-related osteoporosis.
Collapse
Affiliation(s)
- Justine Tanjaya
- Section of Orthodontics, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025
| | - Pin Ha
- Section of Orthodontics, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025
| | - Yulong Zhang
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA, USA, 90025; Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025
| | - Chenchao Wang
- Section of Orthodontics, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025
| | - Yash Shah
- Section of Orthodontics, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025
| | - Emily Berthiaume
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA, 90025
| | - Hsin Chuan Pan
- Section of Orthodontics, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025
| | - Jiayu Shi
- Section of Orthodontics, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025
| | - Jinny Kwak
- Section of Orthodontics, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025
| | - Benjamin Wu
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA, USA, 90025; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA, 90025; Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025
| | - Kang Ting
- Forsyth Institute, Harvard University, Cambridge, MA, USA, 02142.
| | - Xinli Zhang
- Section of Orthodontics, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025.
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery and Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, CA, USA, 90025; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA, 90025; Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA, 90025.
| |
Collapse
|
4
|
Liao Y, Li H, Shu R, Chen H, Zhao L, Song Z, Zhou W. Mesoporous Hydroxyapatite/Chitosan Loaded With Recombinant-Human Amelogenin Could Enhance Antibacterial Effect and Promote Periodontal Regeneration. Front Cell Infect Microbiol 2020; 10:180. [PMID: 32411618 PMCID: PMC7201038 DOI: 10.3389/fcimb.2020.00180] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/06/2020] [Indexed: 12/23/2022] Open
Abstract
The recovery of impaired periodontium is still a challenge to the treatment of periodontitis. This study was the first to apply the mesoporous hydroxyapatites/chitosan (mHA/CS) composite scaffold to periodontal regeneration. The aim of our study is to evaluate the biological effects of mesoporous hydroxyapatite/chitosan (mHA/CS) loaded with recombinant human amelogenin (rhAm) on periodontal regeneration. The physicochemical properties of mHA/CS scaffolds were examined by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET) analysis. Then, the biological effects of the mHA/CS loaded with rhAm were evaluated, including antibacterial effect, controlled-release capacity, osteogenic and cementogenic effects in vitro and in vivo. The antibacterial effect was tested on 1.5 mg/mL CS; 3 mg/mL mHA; 2.25 mg/mL mHA/CS; 4.5 mg/mL mHA/CS and 20 μg/mL rhAm. Tryptic Soy Broth culture medium was used as a baseline control. Osteogenic effect of rhAm (20 μg/mL rhAm), mHA/CS (4.5 mg/mL mHA/CS), and mHA/CS-rhAm (4.5 mg/mL mHA/CS and 20 μg/mL rhAm) on human periodontal ligament cells (hPDLCs) was evaluated in osteogenic media. The hPDLCs treated either with osteogenic media or Dulbecco's modified Eagle's medium (DMEM) alone were used as the baseline control. In the animal model, 4-week-old nude mice (BALB/c) (n = 6) implanted with root slices subcutaneously were used to observe the cementogenic effect in vivo. The root slices were treated with rhAm (20 μg/mL rhAm), mHA/CS (4.5 mg/mL mHA/CS), and mHA/CS-rhAm (4.5 mg/mL mHA/CS and 20 μg/mL rhAm). The root slices treated with osteogenic medium alone were used as the baseline control. The analyses showed that the mHA/CS particles were 2 μm in diameter and had a uniform pore size. The mesoporous structure was 7 nm in diameter and its surface area was 33.95 m2/g. The scaffold exhibited antibacterial effects against Fusobacterium nucleatum and Porphyromonas gingivalis. The mHA/CS scaffold sustainably released rhAm. The mHA/CS loaded with 20 μg/mL rhAm upregulated ALP activity, the expression levels of osteogenesis-related genes and proteins in vitro. Additionally, it promoted the formation of cementum-like tissue in vivo. Our findings suggest that mHA/CS loaded with 20 μg/mL rhAm could inhibit the growth of periodontal pathogens and promote the formation of bone and cementum-like tissue.
Collapse
Affiliation(s)
- Yue Liao
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Huxiao Li
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Rong Shu
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Huiwen Chen
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Liping Zhao
- State Key Laboratory for Metallic Matrix Composite Materials, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhongchen Song
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Wei Zhou
- Shanghai Key Laboratory of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, Shanghai, China.,Laboratory of Oral Microbiota and Systemic Disease, Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Tsikourkitoudi V, Karlsson J, Merkl P, Loh E, Henriques-Normark B, Sotiriou GA. Flame-Made Calcium Phosphate Nanoparticles with High Drug Loading for Delivery of Biologics. Molecules 2020; 25:E1747. [PMID: 32290273 PMCID: PMC7181047 DOI: 10.3390/molecules25071747] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 11/18/2022] Open
Abstract
Nanoparticles exhibit potential as drug carriers in biomedicine due to their high surface-to-volume ratio that allows for facile drug loading. Nanosized drug delivery systems have been proposed for the delivery of biologics facilitating their transport across epithelial layers and maintaining their stability against proteolytic degradation. Here, we capitalize on a nanomanufacturing process famous for its scalability and reproducibility, flame spray pyrolysis, and produce calcium phosphate (CaP) nanoparticles with tailored properties. The as-prepared nanoparticles are loaded with bovine serum albumin (model protein) and bradykinin (model peptide) by physisorption and the physicochemical parameters influencing their loading capacity are investigated. Furthermore, we implement the developed protocol by formulating CaP nanoparticles loaded with the LL-37 antimicrobial peptide, which is a biological drug currently involved in clinical trials. High loading values along with high reproducibility are achieved. Moreover, it is shown that CaP nanoparticles protect LL-37 from proteolysis in vitro. We also demonstrate that LL-37 retains its antimicrobial activity against Escherichia coli and Streptococcus pneumoniae when loaded on nanoparticles in vitro. Therefore, we highlight the potential of nanocarriers for optimization of the therapeutic profile of existing and emerging biological drugs.
Collapse
Affiliation(s)
- Vasiliki Tsikourkitoudi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-1 71 77 Stockholm, Sweden; (V.T.); (J.K.); (P.M.); (E.L.); (B.H.-N.)
| | - Jens Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-1 71 77 Stockholm, Sweden; (V.T.); (J.K.); (P.M.); (E.L.); (B.H.-N.)
| | - Padryk Merkl
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-1 71 77 Stockholm, Sweden; (V.T.); (J.K.); (P.M.); (E.L.); (B.H.-N.)
| | - Edmund Loh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-1 71 77 Stockholm, Sweden; (V.T.); (J.K.); (P.M.); (E.L.); (B.H.-N.)
- Lee Kong Chian School of Medicine (LKC) and Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 639798, Singapore
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-1 71 77 Stockholm, Sweden; (V.T.); (J.K.); (P.M.); (E.L.); (B.H.-N.)
- Lee Kong Chian School of Medicine (LKC) and Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 639798, Singapore
- Department of Clinical Microbiology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Georgios A. Sotiriou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-1 71 77 Stockholm, Sweden; (V.T.); (J.K.); (P.M.); (E.L.); (B.H.-N.)
| |
Collapse
|
6
|
Yan X, Chen YR, Song YF, Yang M, Ye J, Zhou G, Yu JK. Scaffold-Based Gene Therapeutics for Osteochondral Tissue Engineering. Front Pharmacol 2020; 10:1534. [PMID: 31992984 PMCID: PMC6970981 DOI: 10.3389/fphar.2019.01534] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 11/27/2019] [Indexed: 12/20/2022] Open
Abstract
Significant progress in osteochondral tissue engineering has been made for biomaterials designed to deliver growth factors that promote tissue regeneration. However, due to diffusion characteristics of hydrogels, the accurate delivery of signaling molecules remains a challenge. In comparison to the direct delivery of growth factors, gene therapy can overcome these challenges by allowing the simultaneous delivery of growth factors and transcription factors, thereby enhancing the multifactorial processes of tissue formation. Scaffold-based gene therapy provides a promising approach for tissue engineering through transfecting cells to enhance the sustained expression of the protein of interest or through silencing target genes associated with bone and joint disease. Reports of the efficacy of gene therapy to regenerate bone/cartilage tissue regeneration are widespread, but reviews on osteochondral tissue engineering using scaffold-based gene therapy are sparse. Herein, we review the recent advances in gene therapy with a focus on tissue engineering scaffolds for osteochondral regeneration.
Collapse
Affiliation(s)
- Xin Yan
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - You-Rong Chen
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Yi-Fan Song
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Meng Yang
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Jing Ye
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Gang Zhou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jia-Kuo Yu
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
7
|
Liu L, Lam WMR, Naidu M, Yang Z, Wang M, Ren X, Hu T, Kumarsing R, Ting K, Goh JCH, Wong HK. Synergistic Effect of NELL-1 and an Ultra-Low Dose of BMP-2 on Spinal Fusion. Tissue Eng Part A 2019; 25:1677-1689. [PMID: 31337284 DOI: 10.1089/ten.tea.2019.0124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bone morphogenetic protein 2 (BMP-2) is widely used in spinal fusion but it can cause adverse effects such as ectopic bone and adipose tissue in vivo. Neural epidermal growth factor like-like molecule-1 (NELL-1) has been shown to suppress BMP-2-induced adverse effects. However, no optimum carriers that control both NELL-1 and BMP-2 releases to elicit long-term bioactivity have been developed. In this study, we employed polyelectrolyte complex (PEC) as a control release carrier for NELL-1 and BMP-2. An ultra-low dose of BMP-2 synergistically functioned with NELL-1 on bone marrow mesenchymal stem cells osteogenic differentiation with greater mineralization in vitro. The osteoinductive ability of NELL-1 and an ultra-low dose of BMP-2 in PEC was investigated in rat posterolateral spinal fusion. Our results showed increased fusion rate, bone architecture, and improved bone stiffness at 8 weeks after surgery in the combination groups compared with NELL-1 or BMP-2 alone. Moreover, the formation of ectopic bone and adipose tissue was negligible in all the PEC groups. In summary, dual delivery of NELL-1 and an ultra-low dose of BMP-2 in the PEC control release carrier has greater fusion efficiency compared with BMP-2 alone and could potentially be a better alternative to the currently used BMP-2 treatments for spinal fusion. Impact Statement In this study, polyelectrolyte complex was used to absorb neural epidermal growth factor like-like molecule-1 (NELL-1) and bone morphogenetic protein 2 (BMP-2) to achieve controlled dual release. The addition of NELL-1 significantly reduced the effective dose of BMP-2 to 2.5% of its conventional dose in absorbable collagen sponge, to produce solid spinal fusion without significant adverse effects. This study was the first to identify the efficacy of combination NELL-1 and BMP-2 in a control release carrier in spinal fusion, which could be potentially used clinically to increase fusion rate and avoid the adverse effects commonly associated with conventional BMP-2.
Collapse
Affiliation(s)
- Ling Liu
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wing Moon Raymond Lam
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mathanapriya Naidu
- Cancer Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zheng Yang
- NUS Tissue Engineering Program (NUSTEP), Life Science Institute, National University of Singapore, Singapore, Singapore
| | - Ming Wang
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiafei Ren
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tao Hu
- Department of Spine Surgery, Shanghai East Hospital, Shanghai, China
| | - Ramruttun Kumarsing
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kang Ting
- Section of Orthodontics, School of Dentistry, Dental and Craniofacial Research Institute, University of California Los Angeles, Los Angeles, California
| | - James Cho-Hong Goh
- NUS Tissue Engineering Program (NUSTEP), Life Science Institute, National University of Singapore, Singapore, Singapore.,Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Hee-Kit Wong
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Tissue Engineering Program (NUSTEP), Life Science Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
8
|
Bone Tissue Engineering Strategies in Co-Delivery of Bone Morphogenetic Protein-2 and Biochemical Signaling Factors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:233-244. [PMID: 30357626 DOI: 10.1007/978-981-13-0950-2_12] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Administration of bone morphogenetic protein-2 (BMP-2), which is commercially approved by the food and drug administration to damaged bone sites has been investigated for the purpose of bone tissue regeneration. BMP-2 can promote osteoblastic differentiation of mesenchymal stem cells as well as regeneration of bone formation in early phase. This review highlights various factors such as vitamin D, dexamethasone, platelet-derived growth factor, placental growth factor, BMP-7, and NEL-like protein-1 that enhance and stimulate angiogenesis, cell differentiation, and bone regeneration. These biochemical signals and growth factors (GFs) accelerate bone repair and remodeling either synergistically or individually. Delivery systems and scaffolds are used for sustained release of these cargo molecules and support at damaged bone sites. Compared with direct administration of BMP-2, current studies have demonstrated that a combination of multiple GFs and/or therapeutic chemical factors with delivery platforms synergistically facilitates bone regeneration. Therefore, in the future, multiple combinations of various GFs, chemicals, and materials could provide patients and surgeons with non-invasive treatment options without secondary surgery and pain. To the end, this review summarizes the biological functions and synergistic effects of dual administration modalities involving BMP-2 as well as recent developments in bone tissue engineering applications.
Collapse
|
9
|
Chitosan-stablized bovine serum albumin nanoparticles having ability to control the release of NELL-1 protein. Int J Biol Macromol 2017; 109:672-680. [PMID: 29288032 DOI: 10.1016/j.ijbiomac.2017.12.104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 11/24/2022]
Abstract
The study was designed to prepare and evaluate chitosan stabilized-albumin nanoparticles as NELL-1 protein carriers(Chi/NNPs). The Chi/NNPs were prepared by desolvation method and then stabilized by chitosan through electrostatic interaction. The Chi/NNPs were characterized for drug loading efficiency, surface morphology, particle size, surface charge. Fluorescein isothiocyanate-labeled chitosan was used to confirm the homogeneity of chitosan coating on the BSA nanoparticles. The NELL-1 bioactivity of Chi/NNPs and the release kinetics were investigated in vitro. It was observed that the mean particle size with chitosan (0.075 wt%,0.15 wt%, 0.3 wt%, respectively) and the surface charge were 368.663 ± 15.470 nm, 382.881 ± 18.767 nm, 390.480 ± 11.465 nm and +25.03 ± 1.42 mV, +30.27 ± 1.80 mV, +31.03 ± 2.05 mV respectively. Drug entrapment efficiency ranged from 87.83% to 89.30%. The Chi/NNPs prepared with the 0.15 wt% chitosan were able to successfully control the release of NELL-1 and maintain a sustained release for up to 8 days. Furthermore, more than 82.67 ± 8.74% of the loaded protein's bioactivity was preserved in Chi/NNPs over the period of the investigation. Our findings suggest that Chi/NNPs as promising protein delivery nanocarriers have the ability to maintain sustained release kinetics and to preserve the bioactivity of released NELL-1.
Collapse
|