1
|
Omidian H, Wilson RL. PLGA-Based Strategies for Intranasal and Pulmonary Applications. Pharmaceutics 2025; 17:207. [PMID: 40006573 PMCID: PMC11859611 DOI: 10.3390/pharmaceutics17020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/19/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Poly(D,L-lactide-co-glycolide) (PLGA) has emerged as a cornerstone in the development of advanced drug delivery systems, particularly for intranasal and pulmonary routes. Its biodegradability, biocompatibility, and adaptability make it an ideal platform for addressing challenges associated with conventional therapies. By enabling sustained and controlled drug release, PLGA formulations reduce dosing frequency, improve patient compliance, and enhance therapeutic efficacy. These systems demonstrate versatility, accommodating hydrophilic and hydrophobic drugs, biological molecules, and co-delivery of synergistic agents. Moreover, surface modifications and advanced preparation techniques enhance targeting, bioavailability, and stability, expanding PLGA's applications to treat complex diseases such as tuberculosis, cancer, pulmonary fibrosis, and CNS disorders. This manuscript provides an in-depth review of PLGA's materials, properties, preparation methods, and therapeutic applications, alongside a critical evaluation of challenges and future opportunities in this field.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | | |
Collapse
|
2
|
Rano S, Bhaduri A, Singh M. Nanoparticle-based platforms for targeted drug delivery to the pulmonary system as therapeutics to curb cystic fibrosis: A review. J Microbiol Methods 2024; 217-218:106876. [PMID: 38135160 DOI: 10.1016/j.mimet.2023.106876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
Cystic fibrosis (CF) is a genetic disorder of the respiratory system caused by mutation of the Cystic Fibrosis Trans-Membrane Conductance Regulator (CFTR) gene that affects a huge number of people worldwide. It results in difficulty breathing due to a large accumulation of mucus in the respiratory tract, resulting in serious bacterial infections, and subsequent death. Traditional drug-based treatments face hindered penetration at the site of action due to the thick mucus layer. Nanotechnology offers possibilities for developing advanced and effective treatment platforms by focusing on drugs that can penetrate the dense mucus layer, fighting against the underlying bacterial infections, and targeting the genetic cause of the disease. In this review, current nanoparticle-mediated drug delivery platforms for CF, challenges in therapeutics, and future prospects have been highlighted. The effectiveness of the different types of nano-based systems conjugated with various drugs to combat the symptoms and the challenges of treating CF are brought into focus. The toxic effects of these nano-medicines and the various factors that are responsible for their effectiveness are also highlighted.
Collapse
Affiliation(s)
- Sujoy Rano
- Department of Biotechnology, Haldia Institute of Technology, HIT Campus, Purba Medinipur, Haldia 721657, West Bengal, India; In-vitro Biology, Aragen Life Sciences, Hyderabad 500076, Telangana, India
| | - Ahana Bhaduri
- Department of Biotechnology, Haldia Institute of Technology, HIT Campus, Purba Medinipur, Haldia 721657, West Bengal, India
| | - Mukesh Singh
- Department of Biotechnology, Haldia Institute of Technology, HIT Campus, Purba Medinipur, Haldia 721657, West Bengal, India; Department of Botany, Kabi Nazrul College, Murarai, Birbhum 731219 (West Bengal), India.
| |
Collapse
|
3
|
Formulation attributes, acid tunable degradability and cellular interaction of acetalated maltodextrin nanoparticles. Carbohydr Polym 2022; 288:119378. [DOI: 10.1016/j.carbpol.2022.119378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 01/06/2023]
|
4
|
Moya ELJ, Lombardo SM, Vandenhaute E, Schneider M, Mysiorek C, Türeli AE, Kanda T, Shimizu F, Sano Y, Maubon N, Gosselet F, Günday-Türeli N, Dehouck MP. Interaction of surfactant coated PLGA nanoparticles with in vitro human brain-like endothelial cells. Int J Pharm 2022; 621:121780. [PMID: 35504427 DOI: 10.1016/j.ijpharm.2022.121780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/11/2022] [Accepted: 04/25/2022] [Indexed: 11/27/2022]
Abstract
Treatment for CNS related diseases are limited by the difficulty of the drugs to cross the blood-brain barrier (BBB). The functionalization of polymeric nanoparticles (NPs) coated with the surfactants polysorbate 80 (PS80) and poloxamer 188 (P188), have shown promising results as drugs carriers are able to cross the BBB on animal models. In this study, poly(lactide-co-glycolide) (PLGA) NPs coated with PS80 and P188, labelled with a fluorescent dye were tested on human pre-clinical in vitro model to evaluate and compare their uptake profiles, mechanisms of transport and crossing over human brain-like endothelial cells (BLECs) mimicking the human BBB. In addition, these NPs were produced using a method facilitating their reproducible production at high scale, the MicroJet reactor® technology. Results showed that both formulations were biocompatible and able to be internalized within the BLECs in different uptake profiles depending on their coating: P188 NP showed higher internalization capacity than PS80 NP. Both NPs uptakes were ATP-dependent, following more than one endocytosis pathway with colocalization in the early endosomes, ending with a NPs release in the brain compartment. Thus, both surfactant-coated PLGA NPs are interesting formulations for delivery to the brain through the BBB, presenting different uptake profiles.
Collapse
Affiliation(s)
- Elisa L J Moya
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), University of Artois, UR 2465, F-62300 Lens, France
| | - Sonia M Lombardo
- MyBiotech GmbH, Industrie Str. 1B, 66802, Überherrn, Germany; Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus C4 1, 66123 Saarbrücken, Germany
| | | | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus C4 1, 66123 Saarbrücken, Germany
| | - Caroline Mysiorek
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), University of Artois, UR 2465, F-62300 Lens, France
| | - Akif E Türeli
- MyBiotech GmbH, Industrie Str. 1B, 66802, Überherrn, Germany
| | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Fumitaka Shimizu
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yasuteru Sano
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | | | - Fabien Gosselet
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), University of Artois, UR 2465, F-62300 Lens, France
| | | | - Marie-Pierre Dehouck
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), University of Artois, UR 2465, F-62300 Lens, France.
| |
Collapse
|
5
|
A quality by design (QbD) approach in pharmaceutical development of lipid-based nanosystems: A systematic review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Remila L, Guenday-Tuereli N, Houngue U, Belcastro E, Bruckert C, Vandamme T, Tuereli E, Kerth P, Auger C, Schini-Kerth V. Intake of coated EPA:DHA 6:1 nanoparticles improves age-related endothelial dysfunction by restoring the endothelial formation of NO and improving oxidative stress: Role of the local angiotensin system. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
7
|
Yayehrad AT, Wondie GB, Marew T. Different Nanotechnology Approaches for Ciprofloxacin Delivery Against Multidrug-Resistant Microbes. Infect Drug Resist 2022; 15:413-426. [PMID: 35153493 PMCID: PMC8828447 DOI: 10.2147/idr.s348643] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/13/2022] [Indexed: 12/03/2022] Open
Abstract
The percentages of organisms exhibiting antimicrobial resistance, especially resistance to multiple antibiotics, are incessantly increasing. Studies investigated that many bacteria are being resistant to ciprofloxacin. This review addresses the current knowledge on nano-based ciprofloxacin delivery approaches to improve its effectiveness and overcome the resistance issues. Ciprofloxacin delivery can be modified by encapsulating with or incorporating in different polymeric nanoparticles such as chitosan, PLGA, albumin, arginine, and other organic and inorganic nanostructure systems. Most of these nano-approaches are promising as an alternative strategy to improve the therapeutic effectiveness of ciprofloxacin in the future.
Collapse
Affiliation(s)
- Ashagrachew Tewabe Yayehrad
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Pharmacy, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Gebremariam Birhanu Wondie
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tesfa Marew
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
8
|
Rahman Sabuj MZ, Islam N. Inhaled antibiotic-loaded polymeric nanoparticles for the management of lower respiratory tract infections. NANOSCALE ADVANCES 2021; 3:4005-4018. [PMID: 36132845 PMCID: PMC9419283 DOI: 10.1039/d1na00205h] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/16/2021] [Indexed: 05/09/2023]
Abstract
Lower respiratory tract infections (LRTIs) are one of the leading causes of deaths in the world. Currently available treatment for this disease is with high doses of antibiotics which need to be administered frequently. Instead, pulmonary delivery of drugs has been considered as one of the most efficient routes of drug delivery to the targeted areas as it provides rapid onset of action, direct deposition of drugs into the lungs, and better therapeutic effects at low doses and is self-administrable by the patients. Thus, there is a need for scientists to design more convenient pulmonary drug delivery systems towards the innovation of a novel treatment system for LRTIs. Drug-encapsulating polymer nanoparticles have been investigated for lung delivery which could significantly reduce the limitations of the currently available treatment system for LRTIs. However, the selection of an appropriate polymer carrier for the drugs is a critical issue for the successful formulations of inhalable nanoparticles. In this review, the current understanding of LRTIs, management systems for this disease and their limitations, pulmonary drug delivery systems and the challenges of drug delivery through the pulmonary route are discussed. Drug-encapsulating polymer nanoparticles for lung delivery, antibiotics used in pulmonary delivery and drug encapsulation techniques have also been reviewed. A strong emphasis is placed on the impact of drug delivery into the infected lungs.
Collapse
Affiliation(s)
- Mohammad Zaidur Rahman Sabuj
- Pharmacy Discipline, School of Clinical Sciences, Queensland University of Technology (QUT) Brisbane QLD Australia
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT) Brisbane QLD Australia
| | - Nazrul Islam
- Pharmacy Discipline, School of Clinical Sciences, Queensland University of Technology (QUT) Brisbane QLD Australia
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT) Brisbane QLD Australia
- Centre for Immunology and Infection Control (CIIC), Queensland University of Technology (QUT) Brisbane QLD Australia
| |
Collapse
|
9
|
Günday C, Anand S, Gencer HB, Munafò S, Moroni L, Fusco A, Donnarumma G, Ricci C, Hatir PC, Türeli NG, Türeli AE, Mota C, Danti S. Ciprofloxacin-loaded polymeric nanoparticles incorporated electrospun fibers for drug delivery in tissue engineering applications. Drug Deliv Transl Res 2021; 10:706-720. [PMID: 32100267 DOI: 10.1007/s13346-020-00736-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Presented work focuses on the development of biodegradable polymer nanoparticles loaded with antibiotics as drug delivery systems deposited on electrospun scaffolds for tissue engineering. The innovative ciprofloxacin-loaded poly(DL-lactide-co-glycolide) NPs ensure a continuous slow release and high local concentration at the site of action for an optimal therapy. The local delivery of antibiotics as an integrated part of electrospun scaffolds offers an effective, safe, and smart enhancement supporting tissue regeneration. Presented data provides solid scientific evidence for fulfilling the requirements of local nano antibiotic delivery systems with biodegradability and biocompatibility for a wide range of tissue engineering applications, including middle ear tissues (e.g., tympanic membranes) which are subject to bacterial infections. Further characterization of such systems, including in vivo studies, is required to ensure successful transfer from lab to clinical applications. Graphical abstract .
Collapse
Affiliation(s)
- Cemre Günday
- MJR PharmJet GmbH, Industriestr. 1B, 66802, Überherrn, Germany
| | - Shivesh Anand
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Hikmet Burcu Gencer
- Department of Biomedical Engineering, Istanbul Arel University, 34537, İstanbul, Turkey
| | - Sara Munafò
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, 6229 ER, Maastricht, The Netherlands.,Department of Civil and Industrial Engineering, University of Pisa, 56122, Pisa, Italy
| | - Lorenzo Moroni
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Alessandra Fusco
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.,Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Florence, Italy
| | - Giovanna Donnarumma
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.,Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Florence, Italy
| | - Claudio Ricci
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Florence, Italy
| | - Pinar Cakir Hatir
- Department of Biomedical Engineering, Istanbul Arel University, 34537, İstanbul, Turkey
| | | | | | - Carlos Mota
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, 56122, Pisa, Italy.,Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Florence, Italy
| |
Collapse
|
10
|
Testing of aerosolized ciprofloxacin nanocarriers on cystic fibrosis airway cells infected with P. aeruginosa biofilms. Drug Deliv Transl Res 2021; 11:1752-1765. [PMID: 34047967 PMCID: PMC8236054 DOI: 10.1007/s13346-021-01002-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 01/22/2023]
Abstract
The major pathogen found in the lungs of adult cystic fibrosis (CF) patients is Pseudomonas aeruginosa, which builds antibiotic-resistant biofilms. Pulmonary delivery of antibiotics by inhalation has already been proved advantageous in the clinic, but the development of novel anti-infective aerosol medicines is complex and could benefit from adequate in vitro test systems. This work describes the first in vitro model of human bronchial epithelial cells cultivated at the air-liquid interface (ALI) and infected with P. aeruginosa biofilm and its application to demonstrate the safety and efficacy of aerosolized anti-infective nanocarriers. Such a model may facilitate the translation of novel therapeutic modalities into the clinic, reducing animal experiments and the associated problems of species differences. A preformed biofilm of P. aeruginosa PAO1 was transferred to filter-grown monolayers of the human CF cell line (CFBE41o-) at ALI and additionally supplemented with human tracheobronchial mucus. This experimental protocol provides an appropriate time window to deposit aerosolized ciprofloxacin-loaded nanocarriers at the ALI. When applied 1 h post-infection, the nanocarriers eradicated all planktonic bacteria and reduced the biofilm fraction of the pathogen by log 6, while CFBE41o- viability and barrier properties were maintained. The here described complex in vitro model approach may open new avenues for preclinical safety and efficacy testing of aerosol medicines against P. aeruginosa lung infection.
Collapse
|
11
|
Shah S, Cristopher D, Sharma S, Soniwala M, Chavda J. Inhalable linezolid loaded PLGA nanoparticles for treatment of tuberculosis: Design, development and in vitro evaluation. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Känkänen V, Seitsonen J, Tuovinen H, Ruokolainen J, Hirvonen J, Balasubramanian V, Santos HA. Evaluation of the effects of nanoprecipitation process parameters on the size and morphology of poly(ethylene oxide)-block-polycaprolactone nanostructures. Int J Pharm 2020; 590:119900. [PMID: 32991959 DOI: 10.1016/j.ijpharm.2020.119900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 11/26/2022]
Abstract
Nanoprecipitation is a straightforward method for the production of block copolymer nanoparticles for drug delivery applications. However, the effects of process parameters need to be understood to optimize and control the particle size distribution (PSD). To this end, we investigated the effects of material and process factors on PSD and morphology of nanoparticles prepared from an amphiphilic diblock copolymer, poly(ethylene oxide)-block-polycaprolactone. Using a Design of Experiments approach, we explored the joint effects of molecular weight, block length ratios, water volume fraction, stirring rate, polymer concentration and organic phase addition rate on hydrodynamic size and polydispersity index of the nanostructures and created statistical models explaining up to 94% of the variance in hydrodynamic diameter. In addition, we performed morphological characterization by cryogenic transmission electron microscopy and showed that increasing the process temperature may favor the formation of vesicles from these polymers. We showed that the effects of process parameters are dependent on the polymer configuration and we found that the most useful parameters to fine-tune the PSD are the initial polymer concentration and the stirring rate. Overall, this study provides evidence on the joint effects of material and process parameters on PSD and morphology, which will be useful for rational design of formulation-specific optimization studies, scale-up and process controls.
Collapse
Affiliation(s)
- Voitto Känkänen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Jani Seitsonen
- Nanomicroscopy Center, Aalto University, Puumiehenkuja 2, FI-02150 Espoo, Finland
| | - Henri Tuovinen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Janne Ruokolainen
- Nanomicroscopy Center, Aalto University, Puumiehenkuja 2, FI-02150 Espoo, Finland
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | | | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014 Helsinki, Finland.
| |
Collapse
|
13
|
Pircalabioru GG, Chifiriuc MC. Nanoparticulate drug-delivery systems for fighting microbial biofilms: from bench to bedside. Future Microbiol 2020; 15:679-698. [PMID: 32495694 DOI: 10.2217/fmb-2019-0251] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Biofilms are highly tolerant to antimicrobial agents and adverse environmental conditions being important reservoirs for chronic and hard-to-treat infections. Nanomaterials exhibit microbiostatic/microbicidal/antipathogenic properties and can be also used for the delivery of antibiofilm agents. However, few of the many promising leads offered by nanotechnology reach clinical studies and eventually, become available to clinicians. The aim of this paper was to review the progress and challenges in the development of nanotechnology-based antibiofilm drug-delivery systems. The main identified challenges are: most papers report only in vitro studies of the activity of different nanoformulations; lack of standardization in the methodological approaches; insufficient collaboration between material science specialists and clinicians; paucity of in vivo studies to test efficiency and safety.
Collapse
Affiliation(s)
- Gratiela G Pircalabioru
- University of Bucharest, Faculty of Biology, Research Institute of The University of Bucharest (ICUB), Bucharest, Romania
| | - Mariana-Carmen Chifiriuc
- University of Bucharest, Faculty of Biology, Research Institute of The University of Bucharest (ICUB), Bucharest, Romania
| |
Collapse
|
14
|
Tran TT, Hadinoto K. Ternary nanoparticle complex of antibiotic, polyelectrolyte, and mucolytic enzyme as a potential antibiotic delivery system in bronchiectasis therapy. Colloids Surf B Biointerfaces 2020; 193:111095. [PMID: 32416520 DOI: 10.1016/j.colsurfb.2020.111095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/07/2020] [Accepted: 04/24/2020] [Indexed: 11/30/2022]
Abstract
Antibiotic-polyelectrolyte nanoparticle complex (or nanoplex in short) has been recently demonstrated as a superior antibiotic delivery system to the native antibiotic in bronchiectasis therapy owed to its ability to overcome the lung's mucus barrier and generate high localized antibiotic exposure in the infected sites. The present work aimed to further improve the mucus permeability, hence the antibacterial efficacy of the nanoplex, by incorporating mucolytic enzyme papain (PAP) at the nanoplex formation step to produce PAP-decorated antibiotic-polyelectrolyte nanoplex exhibiting built-in mucolytic capability. Ciprofloxacin (CIP) and dextran sulfate (DXT) were used as the models for antibiotics and polyelectrolyte, respectively. The results showed that the PAP inclusion had minimal effects on the physical characteristics, preparation efficiency, and dissolution of the CIP-DXT nanoplex. The optimal CIP-(DXT-PAP) nanoplex exhibited size and zeta potential of approximately 200 nm and -50 mV with CIP and PAP payloads of 60% and 32% (w/w), respectively. The nanoplex was prepared at high efficiency with larger than 80% CIP and PAP utilization rates. The CIP-(DXT-PAP) nanoplex exhibited tenfold improvement in the mucus permeability compared to its CIP-DXT nanoplex counterpart, resulting in the former's superior bactericidal activity against clinical Pseudomonas aeruginosa biofilm in the presence of mucus barrier. A trade-off, nevertheless, existed between antibacterial efficacy and cytotoxicity towards human lung epithelium cells upon the incorporation of PAP above a certain concentration threshold. Therefore, the optimal dosing of the CIP-(DXT-PAP) nanoplex must be carefully determined.
Collapse
Affiliation(s)
- The-Thien Tran
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Kunn Hadinoto
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore.
| |
Collapse
|
15
|
Ceylan S, Bahadori F, Akbas F. Engineering of siRNA loaded PLGA Nano-Particles for highly efficient silencing of GPR87 gene as a target for pancreatic cancer treatment. Pharm Dev Technol 2020; 25:855-864. [PMID: 32188321 DOI: 10.1080/10837450.2020.1745232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
G protein-coupled receptor (GPCR) 87, is overexpressed in various cancer cells especially pancreatic cancer and plays a critical role in tumor cell survival. Nano-particles (NP) have become the essential vehicles for nucleotide internalization to the cell, due to the negative charge of nucleotides and their poor stability in blood circulation. In this study, the HEK293T cell linewas transfected with GPR87-plasmid after which the double-stranded RNA molecules targeting the GPR87 gene were prepared and purified. 1.1B4 cancer cell lines were used as model pancreatic cancer cells. Produced siRNA molecules were encapsulated in Poly(Lactic-Co-Glycolic Acid) (PLGA) nano-micelles using three different methods, two of which were according to literature with (siR-PLGA-S) or without (siR-PLGA-V) sonication. However, a new method was suggested to overcome problems such as poly-dispersity and large sizes of siR-PLGA-S and siR-PLGA-V. The new method consists of encapsulating siRNA using mild agitation to the pre-made PLGA NPs. The latter method provided mono-dispersed particles (siR-P-PLGA) with 92 nm size and desired Encapsulation Efficiency (EE%). siR-P-PLGA was able to silence the GPR-87 gene in a ratio of 83.9%, almost 41 times more effective than siR-PLGA-S and siR-PLGA-V in HEK 293 T cells. siR-P-PLGA was able to show a mild cytotoxic effect on 1.1B4 pancreatic cancer cells within 48 h.
Collapse
Affiliation(s)
- Seyma Ceylan
- Department of Medicinal Biology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey.,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Fatemeh Bahadori
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Fahri Akbas
- Department of Medicinal Biology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
16
|
Handali S, Moghimipour E, Rezaei M, Ramezani Z, Dorkoosh FA. PHBV/PLGA nanoparticles for enhanced delivery of 5-fluorouracil as promising treatment of colon cancer. Pharm Dev Technol 2019; 25:206-218. [PMID: 31648589 DOI: 10.1080/10837450.2019.1684945] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
5-Fluorouracil (5-FU) is one of the most widely used agents in the first-line chemotherapy for colon cancer. However, clinical use of 5-FU is limited because of the low efficacy of drug uptake and systemic toxic effects. Therefore, there is a critical need to find better drug delivery systems in order to improve the efficacy of the drug. In the present study, we have developed a novel combination drug delivery system based on PHBV/PLGA NPs for delivery of 5-FU to cancer cells. NPs were prepared by the double emulsion method and their optimization of preparation was evaluated using Box-Behnken design (BBD) of response surface methodology (RSM). 5-FU loaded NPs were characterized by scanning electron microscope (SEM), differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), and Fourier transformed infra-red spectroscopy (FT-IR). SEM image implied that NPs were spherical in shape and the results of DSC, TGA, and FT-IR suggest that 5-FU was encapsulated into NPs. The obtained results revealed that 5-FU loaded PHBV/PLGA NPs induced significant higher cell death at concentration much lower than free 5-FU. Results of hemolysis assay indicated that the NPs were hemo-compatible. In vivo anti-tumor studies showed that 5-FU loaded NPs reduced tumor volume significantly in comparison with free 5-FU. As the first example of using PHBV/PLGA as nano-drug delivery system with enhanced anti-tumor activities, this study establishes PHBV/PLGA as a novel promising drug delivery platform for treatment of colon cancer.
Collapse
Affiliation(s)
- Somayeh Handali
- Medical Biomaterial Research Centre (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Eskandar Moghimipour
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohsen Rezaei
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Ramezani
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farid Abedin Dorkoosh
- Medical Biomaterial Research Centre (MBRC), Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Lababidi N, Sigal V, Koenneke A, Schwarzkopf K, Manz A, Schneider M. Microfluidics as tool to prepare size-tunable PLGA nanoparticles with high curcumin encapsulation for efficient mucus penetration. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:2280-2293. [PMID: 31807413 PMCID: PMC6880834 DOI: 10.3762/bjnano.10.220] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/24/2019] [Indexed: 05/10/2023]
Abstract
Great challenges still remain to develop drug carriers able to penetrate biological barriers (such as the dense mucus in cystic fibrosis) and for the treatment of bacteria residing in biofilms, embedded in mucus. Drug carrier systems such as nanoparticles (NPs) require proper surface chemistry and small size to ensure their permeability through the hydrogel-like systems. We have employed a microfluidic system to fabricate poly(lactic-co-glycolic acid) (PLGA) nanoparticles coated with a muco-penetrating stabilizer (Pluronic), with a tunable hydrodynamic diameter ranging from 40 nm to 160 nm. The size dependence was evaluated by varying different parameters during preparation, namely polymer concentration, stabilizer concentration, solvent nature, the width of the focus mixing channel, flow rate ratio and total flow rate. Furthermore, the influence of the length of the focus mixing channel on the size was evaluated in order to better understand the nucleation-growth mechanism. Surprisingly, the channel length was revealed to have no effect on particle size for the chosen settings. In addition, curcumin was loaded (EE% of ≈68%) very efficiently into the nanoparticles. Finally, the permeability of muco-penetrating PLGA NPs through pulmonary human mucus was assessed; small NPs with a diameter of less than 100 nm showed fast permeation, underlining the potential of microfluidics for such pharmaceutical applications.
Collapse
Affiliation(s)
- Nashrawan Lababidi
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany
| | - Valentin Sigal
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany
| | - Aljoscha Koenneke
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany
| | - Konrad Schwarzkopf
- Department of Anaesthesia and Intensive Care, Klinikum Saarbrücken, Winterberg, 66119 Saarbrücken, Germany
| | | | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
18
|
Bahadori F, Eskandari Z, Ebrahimi N, Bostan MS, Eroğlu MS, Oner ET. Development and optimization of a novel PLGA-Levan based drug delivery system for curcumin, using a quality-by-design approach. Eur J Pharm Sci 2019; 138:105037. [DOI: 10.1016/j.ejps.2019.105037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 10/26/2022]
|
19
|
Polyethylenimine-coated PLGA nanoparticles-encapsulated Angelica sinensis polysaccharide as an adjuvant to enhance immune responses. Carbohydr Polym 2019; 223:115128. [PMID: 31427012 DOI: 10.1016/j.carbpol.2019.115128] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/24/2019] [Accepted: 07/24/2019] [Indexed: 01/28/2023]
Abstract
Nanoparticle delivery systems have been widely investigated as new vaccines strategy to enhance the immune responses to antigens against infectious diseases. The positively charged nanoparticles could efficiently improve the immune responses due to targeting and activating the antigen-presenting cells. In this study, the immunopotentiator Angelica sinensis polysaccharide (ASP) was encapsulated into Poly (lactic-co-glycolic acid) (PLGA) nanoparticles, and the polyethylenimine, one of the cationic polymers, was used to coat nanoparticles to develop a new nanoparticle delivery system (ASP-PLGA-PEI) with positively charged. The ASP-PLGA-PEI nanoparticles significantly activated macrophages, and promoted the expression of the MHCII and CD86 and the production of IL-1β and IL-12p70 cytokines of macrophages. Furthermore, the antigen adsorbed on the surface of the ASP-PLGA-PEI nanoparticles enhanced the antigen uptake by macrophages. Moreover, the mice immunized with PCV2 antigen adsorbed ASP-PLGA-PEI nanoparticles significantly enhanced PCV2-specific IgG immune response and the levels of cytokines, induced a mixed Th1/Th2 immune response with Th1 bias compared with other groups. These findings demonstrate that the positively charged nanoparticles (ASP-PLGA-PEI) have the potential to serve as an effective vaccine delivery and adjuvant system to induce vigorous and long-term immune responses.
Collapse
|
20
|
Poly(lactic acid)/poly(lactic-co-glycolic acid) particulate carriers for pulmonary drug delivery. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00443-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Chen Q, Shah KN, Zhang F, Salazar AJ, Shah PN, Li R, Sacchettini JC, Wooley KL, Cannon CL. Minocycline and Silver Dual-Loaded Polyphosphoester-Based Nanoparticles for Treatment of Resistant Pseudomonas aeruginosa. Mol Pharm 2019; 16:1606-1619. [PMID: 30817887 DOI: 10.1021/acs.molpharmaceut.8b01288] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pseudomonas aeruginosa has been detected in the lungs of ∼50% of patients with cystic fibrosis (CF), including 20% of adult CF patients. The majority of these adult patients harbor multi-drug resistant (MDR) strains, limiting the available treatment options. Silver has long been used as a broad-spectrum antimicrobial agent with a low incidence of resistance. Despite low toxicity, poor availability of silver cations mandates a high dosage to effectively eradicate infections. To address this shortcoming of silver, nanoparticles have been used as delivery devices to improve treatment outcomes. Furthermore, studies have demonstrated that synergistic combinations with careful dose calibrations and efficient delivery systems result in superior antimicrobial activity while avoiding potential side effects of both therapeutics. Here 4-epi-minocycline, a metabolite of minocycline, was identified as an active antimicrobial against P. aeruginosa using a high-throughput screen. The antimicrobial activities of 4-epi-minocycline, minocycline, and silver acetate against clinical isolates of P. aeruginosa obtained from CF patients were evaluated in vitro. Next, the synergistic activity of the silver/minocycline combination against P. aeruginosa isolates was investigated using checkerboard assays and identified with end-point colony forming unit determination assays. Finally, nanoparticles coloaded with minocycline and silver were evaluated in vitro for antimicrobial activity. The results demonstrated that both silver and minocycline are potent antimicrobials alone and that the combination allows a reduced dosage of both therapeutics to achieve the same antimicrobial effect. Furthermore, the proposed synergistic silver/minocycline combination can be coloaded into nanoparticles as a next-generation antibiotic to combat the threats presented by MDR pathogens.
Collapse
Affiliation(s)
- Qingquan Chen
- Department of Microbial Pathogenesis and Immunology , Texas A&M Health Science Center , College Station , Texas 77843 , United States
| | - Kush N Shah
- Department of Microbial Pathogenesis and Immunology , Texas A&M Health Science Center , College Station , Texas 77843 , United States
| | - Fuwu Zhang
- Department of Chemistry, Department of Chemical Engineering, Department of Materials Science and Engineering, and Laboratory for Synthetic-Biologic Interactions , Texas A&M University , College Station , Texas 77842 , United States
| | - Adam J Salazar
- Department of Biochemistry and Biophysics , Texas A&M University , College Station , Texas 77842 , United States
| | - Parth N Shah
- Department of Microbial Pathogenesis and Immunology , Texas A&M Health Science Center , College Station , Texas 77843 , United States
| | - Richen Li
- Department of Chemistry, Department of Chemical Engineering, Department of Materials Science and Engineering, and Laboratory for Synthetic-Biologic Interactions , Texas A&M University , College Station , Texas 77842 , United States
| | - James C Sacchettini
- Department of Biochemistry and Biophysics , Texas A&M University , College Station , Texas 77842 , United States
| | - Karen L Wooley
- Department of Chemistry, Department of Chemical Engineering, Department of Materials Science and Engineering, and Laboratory for Synthetic-Biologic Interactions , Texas A&M University , College Station , Texas 77842 , United States
| | - Carolyn L Cannon
- Department of Microbial Pathogenesis and Immunology , Texas A&M Health Science Center , College Station , Texas 77843 , United States
| |
Collapse
|
22
|
Tran TT, Yu H, Vidaillac C, Lim AYH, Abisheganaden JA, Chotirmall SH, Hadinoto K. An evaluation of inhaled antibiotic liposome versus antibiotic nanoplex in controlling infection in bronchiectasis. Int J Pharm 2019; 559:382-392. [PMID: 30731256 DOI: 10.1016/j.ijpharm.2019.01.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/15/2019] [Accepted: 01/26/2019] [Indexed: 01/28/2023]
Abstract
Inhaled antibiotic nanoparticles have emerged as an effective strategy to control infection in bronchiectasis lung owed to their mucus-penetrating ability. Using ciprofloxacin (CIP) as the model antibiotic, we evaluated dry powder inhaler (DPI) formulations of two classes of antibiotic nanoparticles (i.e. liposome and nanoplex) in their (1) physical characteristics (i.e. size, zeta potential, CIP payload, preparation efficiency), (2) dissolution in artificial sputum medium, (3) ex vivo mucus permeability, (4) antimicrobial activity against Pseudomonas aeruginosa in mucus, (5) cytotoxicity towards human lung epithelium cells, and (6) in vitro aerosolization efficiency. The results showed that the CIP nanoplex exhibited fast dissolution with CIP supersaturation generation, in contrast to the slower release of the liposome (80 versus 30% dissolution after 1 h). Both nanoparticles readily overcame the mucus barrier attributed to their nanosize and mucus-inert surface (50% permeation after 1 h), leading to their similarly high antipseudomonal activity. The CIP liposome, however, possessed much lower CIP payload than the nanoplex (84% versus 3.5%), resulting in high lipid contents in its DPI formulation that led to higher cytotoxicity and lower aerosolization efficiency. The CIP nanoplex thus represented a superior formulation owed to its simpler preparation, higher CIP payload hence lower dosage, better aerosolization, and lower cytotoxicity.
Collapse
Affiliation(s)
- The-Thien Tran
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Hong Yu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Celine Vidaillac
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Albert Y H Lim
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| | - John A Abisheganaden
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Kunn Hadinoto
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore.
| |
Collapse
|
23
|
Preparation of Fenofibrate loaded Eudragit L100 nanoparticles by nanoprecipitation method. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.matpr.2019.03.176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
A novel method for the simultaneous determination of 5-fluorouracil and oxaliplatin in new biodegradable PHBV/PLGA nanoparticles. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1538-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Gänger S, Schindowski K. Tailoring Formulations for Intranasal Nose-to-Brain Delivery: A Review on Architecture, Physico-Chemical Characteristics and Mucociliary Clearance of the Nasal Olfactory Mucosa. Pharmaceutics 2018; 10:pharmaceutics10030116. [PMID: 30081536 PMCID: PMC6161189 DOI: 10.3390/pharmaceutics10030116] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/25/2018] [Accepted: 08/01/2018] [Indexed: 12/17/2022] Open
Abstract
The blood-brain barrier and the blood-cerebrospinal fluid barrier are major obstacles in central nervous system (CNS) drug delivery, since they block most molecules from entering the brain. Alternative drug delivery routes like intraparenchymal or intrathecal are invasive methods with a remaining risk of infections. In contrast, nose-to-brain delivery is a minimally invasive drug administration pathway, which bypasses the blood-brain barrier as the drug is directed from the nasal cavity to the brain. In particular, the skull base located at the roof of the nasal cavity is in close vicinity to the CNS. This area is covered with olfactory mucosa. To design and tailor suitable formulations for nose-to-brain drug delivery, the architecture, structure and physico-chemical characteristics of the mucosa are important criteria. Hence, here we review the state-of-the-art knowledge about the characteristics of the nasal and, in particular, the olfactory mucosa needed for a rational design of intranasal formulations and dosage forms. Also, the information is suitable for the development of systemic or local intranasal drug delivery as well as for intranasal vaccinations.
Collapse
Affiliation(s)
- Stella Gänger
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany.
- Faculty of Medicine, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Katharina Schindowski
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany.
| |
Collapse
|
26
|
Ojha S, Kumar B. Preparation and Statistical Modeling of Solid Lipid Nanoparticles of Dimethyl Fumarate for Better Management of Multiple Sclerosis. Adv Pharm Bull 2018; 8:225-233. [PMID: 30023324 PMCID: PMC6046417 DOI: 10.15171/apb.2018.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 04/05/2018] [Accepted: 04/08/2018] [Indexed: 01/08/2023] Open
Abstract
Purpose: The objective of this study was to synthesize and statistically optimize dimethyl fumarate (DMF) loaded solid lipid nanoparticles (SLNs) for better management of multiple sclerosis (MS). Methods: SLNs were formulated by hot emulsion, ultrasonication method and optimized with response surface methodology (RSM). A three factor and three level box-behnken design was used to demonstrate the role of polynomial quadratic equation and contour plots in predicting the effect of independent variables on dependent responses that were particle size and % entrapment efficiency (%EE). Results: The results were analyzed by analysis of variance (ANOVA) to evaluate the significant differences between the independent variables. The optimized SLNs were characterized and found to have an average particle size of 300 nm, zeta potential value of -34.89 mv and polydispersity index value < 0.3. Entrapment efficiency was found to be 59% and drug loading was 15%. TEM microphotograph revealed spherical shape and no aggregation of nanoparticles. In-vitro drug release profile was an indicative of prolonged therapy. In-vivo pharmacokinetic data revealed that the relative bioavailability was enhanced in DMF loaded SLNs in Wistar rats. Conclusion: This study showed that the present formulation with improved characteristics can be a promising formulation with a longer half-life for the better management of MS.
Collapse
Affiliation(s)
- Smriti Ojha
- Vishveshwarya Group of Institutions, Department of Pharmacy, G.B. Nagar, Uttar Pradesh 203207
| | - Babita Kumar
- Sanskar Educational Group, Department of Pharmacy, Ghaziabad, Uttar Pradesh 201302
| |
Collapse
|
27
|
Chiesa E, Dorati R, Modena T, Conti B, Genta I. Multivariate analysis for the optimization of microfluidics-assisted nanoprecipitation method intended for the loading of small hydrophilic drugs into PLGA nanoparticles. Int J Pharm 2017; 536:165-177. [PMID: 29175645 DOI: 10.1016/j.ijpharm.2017.11.044] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/14/2017] [Accepted: 11/21/2017] [Indexed: 12/14/2022]
Abstract
Design of Experiment-assisted evaluation of critical process (total flow rate, TFR, flow rate ratio, FRR) and formulation (polymer concentration and structure, drug:polymer ratio) variables in a novel microfluidics-based device, a staggered herringbone micromixer (SHM), for poly(lactic-co-glycolic acid) copolymer (PLGA) nanoparticles (NPs) manufacturing was performed in order to systematically evaluate and mathematically describe their effects on NPs sizes and drug encapsulation; a small hydrophilic moiety, N-acetylcysteine, was chosen as challenging model drug. SHM-assisted nanoprecipitation method consistently yielded NPs with tailor made sizes (in the range of 100-900 nm) and polydispersity index range from 0.061 to 0.286. Significant effects on NPs sizes were highlighted for TFR and FRR: increasing TFR (from 5 to 15 mL/min) and decreasing FRR (from 1:1 to 1:5 v/v, acetonitrile: buffer) NPs with mean diameter <200 nm were obtained. SHM technique allowed for flexible, application-specific tuning of PLGA NPs size using organic solvents with relatively low toxicity (acetone, acetonitrile), varying aqueous phase composition (Tris buffer vs PVA aqueous solution) and PLGA characteristics (Mw ranging from 25-90 kDa, capped or un-capped PLGA, different lactide:glycolide molar ratio). A very satisfactory N-Ac encapsulation efficiency (more than 67%) and a prolonged release (by 168 h) were achieved.
Collapse
Affiliation(s)
- E Chiesa
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy
| | - R Dorati
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy; Polymerix s.r.l., V.le Taramelli 24, 27100 Pavia, Italy
| | - T Modena
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy
| | - B Conti
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy; Polymerix s.r.l., V.le Taramelli 24, 27100 Pavia, Italy
| | - I Genta
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
28
|
Intravenous anti-MRSA phosphatiosomes mediate enhanced affinity to pulmonary surfactants for effective treatment of infectious pneumonia. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:215-225. [PMID: 29128664 DOI: 10.1016/j.nano.2017.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/26/2017] [Accepted: 10/16/2017] [Indexed: 12/25/2022]
Abstract
The aim of this study was to develop PEGylated phosphatidylcholine (PC)-rich nanovesicles (phosphatiosomes) carrying ciprofloxacin (CIPX) for lung targeting to eradicate extracellular and intracellular methicillin-resistant Staphylococcus aureus (MRSA). Soyaethyl morphonium ethosulfate (SME) was intercalated in the nanovesicle surface with the dual goals of achieving strengthened bactericidal activity of CIPX-loaded phosphatiosomes and delivery to the lungs. The isothermal titration calorimetry (ITC) results proved the strong association of SME phosphatiosomes with pulmonary surfactant. We demonstrated a superior anti-MRSA activity of SME phosphatiosomes compared to plain phosphatiosomes and to free CIPX. A synergistic effect of CIPX and SME nanocarriers was found in the biofilm eradication. SME phosphatiosomes were readily engulfed by the macrophages, restricting the intracellular MRSA count by 1-2 log units. SME phosphatiosomes efficiently accumulated in the lungs after intravenous injection. In a rat model of lung infection, the MRSA burden in the lungs could be decreased by 8-fold after SME nanosystem application.
Collapse
|
29
|
da Silva AL, Cruz FF, Rocco PRM, Morales MM. New perspectives in nanotherapeutics for chronic respiratory diseases. Biophys Rev 2017; 9:793-803. [PMID: 28914424 PMCID: PMC5662054 DOI: 10.1007/s12551-017-0319-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/14/2017] [Indexed: 12/12/2022] Open
Abstract
According to the World Health Organization (WHO), hundreds of millions of people of all ages and in all countries suffer from chronic respiratory diseases, with particular negative consequences such as poor health-related quality of life, impaired work productivity, and limitations in the activities of daily living. Chronic obstructive pulmonary disease, asthma, occupational lung diseases (such as silicosis), cystic fibrosis, and pulmonary arterial hypertension are the most common of these diseases, and none of them are curable with current therapies. The advent of nanotechnology holds great therapeutic promise for respiratory conditions, because non-viral vectors are able to overcome the mucus and lung remodeling barriers, increasing pharmacologic and therapeutic potency. It has been demonstrated that the extent of pulmonary nanoparticle uptake depends not only on the physical and chemical features of nanoparticles themselves, but also on the health status of the organism; thus, the huge diversity in nanotechnology could revolutionize medicine, but safety assessment is a challenging task. Within this context, the present review discusses some of the major new perspectives in nanotherapeutics for lung disease and highlights some of the most recent studies in the field.
Collapse
Affiliation(s)
- Adriana Lopes da Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Fernanda Ferreira Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcelo Marcos Morales
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
30
|
Günday Türeli N, Torge A, Juntke J, Schwarz BC, Schneider-Daum N, Türeli AE, Lehr CM, Schneider M. Ciprofloxacin-loaded PLGA nanoparticles against cystic fibrosis P. aeruginosa lung infections. Eur J Pharm Biopharm 2017; 117:363-371. [PMID: 28476373 DOI: 10.1016/j.ejpb.2017.04.032] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/09/2017] [Accepted: 04/12/2017] [Indexed: 12/28/2022]
Abstract
Current pulmonary treatments against Pseudomonas aeruginosa infections in cystic fibrosis (CF) lung suffer from deactivation of the drug and immobilization in thick and viscous biofilm/mucus blend, along with the general antibiotic resistance. Administration of nanoparticles (NPs) with high antibiotic load capable of penetrating the tight mesh of biofilm/mucus can be an advent to overcome the treatment bottlenecks. Biodegradable and biocompatible polymer nanoparticles efficiently loaded with ciprofloxacin complex offer a solution for emerging treatment strategies. NPs were prepared under controlled conditions by utilizing MicroJet Reactor (MJR) to yield a particle size of 190.4±28.6nm with 0.089 PDI. Encapsulation efficiency of the drug was 79% resulting in a loading of 14%. Release was determined to be controlled and medium-independent in PBS, PBS+0.2% Tween 80 and simulated lung fluid. Cytotoxicity assays with Calu-3 cells and CF bronchial epithelial cells (CFBE41o-) indicated that complex-loaded PLGA NPs were non-toxic at concentrations ≫ MICcipro against lab strains of the bacteria. Antibacterial activity tests revealed enhanced activity when applied as nanoparticles. NPs' colloidal stability in mucus was proven. Notably, a decrease in mucus turbidity was observed upon incubation with NPs. Herewith, ciprofloxacin complex-loaded PLGA NPs are introduced as promising pulmonary nano drug delivery systems against P.aeruginosa infections in CF lung.
Collapse
Affiliation(s)
- Nazende Günday Türeli
- MJR PharmJet GmbH, Industriestr. 1B, 66802 Überherrn, Germany; Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany
| | - Afra Torge
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany
| | - Jenny Juntke
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Saarbrücken, Germany
| | - Bianca C Schwarz
- Pferdeklinik Altforweiler, Raiffeisenstraβe 100, 66802 Überherrn, Germany
| | - Nicole Schneider-Daum
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Saarbrücken, Germany
| | | | - Claus-Michael Lehr
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Saarbrücken, Germany
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany.
| |
Collapse
|
31
|
Dua K, Shukla SD, de Jesus Andreoli Pinto T, Hansbro PM. Nanotechnology: Advancing the translational respiratory research. Interv Med Appl Sci 2017; 9:39-41. [PMID: 28932494 PMCID: PMC5598120 DOI: 10.1556/1646.9.2017.1.02] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Considering the various limitations associated with the conventional dosage forms, nanotechnology is gaining increased attention in drug delivery particularly in respiratory medicine and research because of its advantages like targeting effects, improved pharmacotherapy, and patient compliance. This paper provides a quick snapshot about the recent trends and applications of nanotechnology to various translational and formulation scientists working on various respiratory diseases, which can help paving a new path in developing effective drug delivery system.
Collapse
Affiliation(s)
- Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, NSW, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Shakti Dhar Shukla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, NSW, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | | | - Philip Michael Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, NSW, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|