1
|
Elsebay MT, Eissa NG, Balata GF, Kamal MA, Elnahas HM. Nanosuspension: A Formulation Technology for Tackling the Poor Aqueous Solubility and Bioavailability of Poorly Soluble Drugs. Curr Pharm Des 2023; 29:2297-2312. [PMID: 37694786 DOI: 10.2174/1381612829666230911105922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 09/12/2023]
Abstract
The poor water solubility of numerous novel drug candidates presents significant challenges, particularly in terms of oral administration. This limitation can result in various undesirable clinical implications, such as inter-patient variability, poor bioavailability, difficulties in achieving a safe therapeutic index, increased costs, and potential risks of toxicity or inefficacy. Biopharmaceutics Classification System (BCS) class II drugs face particular hurdles due to their limited solubility in the aqueous media of the gastrointestinal tract. In such cases, parenteral administration is often employed as an alternative strategy. To address these challenges, nanosuspension techniques offer a promising solution for enhancing drug solubility and overcoming oral delivery obstacles. This technique has the potential to bridge the gap between drug discovery and preclinical use by resolving problematic solubility. This literature review has delved into contemporary nanosuspension preparation technologies and the incorporation of stabilizing ingredients within the formulation. Furthermore, the manuscript explores nanosuspension strategies for both oral and parenteral/other delivery routes, and separate discussions have been presented to establish a suitable flow that addresses the challenges and strategies relevant to each administration method.
Collapse
Affiliation(s)
- Mohamed T Elsebay
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Noura G Eissa
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
- School of Biotechnology and Science Academy, Badr University in Cairo, Badr City, Cairo, 11829, Egypt
| | - Gehan F Balata
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
- Department of Pharmacy Practice, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Birulia, Bangladesh
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia
- Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Hanan M Elnahas
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
2
|
Han T, Wang M, Li W, An M, Fu H. Bmk9 and Uricase Nanoparticle Complex for the Treatment of Gouty Arthritis and Uric Acid Nephropathy. J Biomed Nanotechnol 2021; 17:2071-2084. [PMID: 34706807 DOI: 10.1166/jbn.2021.3168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Uric acid is the final product of purine metabolism, and excessive serum uric acid can cause gouty arthritis and uric acid nephropathy. Therefore, lowering the uric acid level and alleviating inflammation in the body are the key points to treating these diseases. A stable nanosuspension of peptide BmK9 was prepared by the precipitation-ultrasonication method. By combining uricase on the surface of a positively charged carrier, a complex consisting of neutral rod-shaped BmK9 and uricase nanoparticles (Nplex) was formed to achieve the delivery of BmK9 and uricase, respectively. The formulation of Nplex has a diameter of 180 nm and drug loading up to 200%, which releases BmK9 and uricase slowly and steadily in drug release tests in vitro. There was significantly improved pharmacokinetic behavior of the two drugs because Nplex prolonged the half-life and increased tissue accumulation. Histological assessments showed that the dual drug Nplex can reduce the inflammation response in acute gouty arthritis and chronic uric acid nephropathy in vivo. In the macrophage system, there was lower toxicity and increased beneficial effect on inflammation with Nplex than free BmK9 or uricase. Collectively, this novel formulation provides a dual drug delivery system that can treat gouty arthritis and uric acid nephropathy.
Collapse
Affiliation(s)
- Tianjiao Han
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Science, Peking University, Beijing, 100191, China
| | - Meiying Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Science, Peking University, Beijing, 100191, China
| | - Wenchao Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Science, Peking University, Beijing, 100191, China
| | - Mingxing An
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Science, Peking University, Beijing, 100191, China
| | - Hongzheng Fu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Science, Peking University, Beijing, 100191, China
| |
Collapse
|
3
|
Phadke A, Amin P. A Recent Update on Drug Delivery Systems for Pain Management. J Pain Palliat Care Pharmacother 2021; 35:175-214. [PMID: 34157247 DOI: 10.1080/15360288.2021.1925386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pain remains a global health challenge affecting approximately 1.5 billion people worldwide. Pain has been an implicit variable in the equation of human life for many centuries considering different types and the magnitude of pain. Therefore, developing an efficacious drug delivery system for pain management remains an open challenge for researchers in the field of medicine. Lack of therapeutic efficacy still persists, despite high throughput studies in the field of pain management. Research scientists have been exploiting different alternatives to curb the adverse side effects of pain medications or attempting a more substantial approach to minimize the prevalence of pain. Various drug delivery systems have been developed such as nanoparticles, microparticles to curb adverse side effects of pain medications or minimize the prevalence of pain. This literature review firstly provides a brief introduction of pain as a sensation and its pharmacological interventions. Second, it highlights the most recent studies in the pharmaceutical field for pain management and serves as a strong base for future developments. Herein, we have classified drug delivery systems based on their sizes such as nano, micro, and macro systems, and for each of the reviewed systems, design, formulation strategies, and drug release performance has been discussed.
Collapse
|
4
|
Oktay AN, Ilbasmis-Tamer S, Uludag O, Celebi N. Enhanced Dermal Delivery of Flurbiprofen Nanosuspension Based Gel: Development and Ex Vivo Permeation, Pharmacokinetic Evaluations. Pharm Res 2021; 38:991-1009. [PMID: 34086139 DOI: 10.1007/s11095-021-03060-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE The objective of this study was to optimize the Flurbiprofen (FB) nanosuspension (NS) based gel and to investigate the in vitro release, ex vivo permeation, the plasma concentration-time profile and pharmacokinetic parameters. METHODS FB-NSs were developed using the wet milling process with the Design of Experiment (DoE) approach. The optimum FB-NS was characterized on the basis of SEM, DSC, XRPD, solubility and permeation studies. The dermal gel was prepared by incorporating FB-NS into HPMC gel. Then the in-vitro release, ex vivo permeation studies were performed, and pharmacokinetic studies were evaluated on rats. RESULTS The particle size, polydispersity index and zeta potential values of optimum NS were determined as 237.7 ± 6.8 nm, 0.133 ± 0.030 and - 30.4 ± 0.7 mV, respectively. By means of the surfactant content and nanosized particles of the nanosuspension, the solubility of FB was increased about 7-fold. The percentage permeated amount of FB from FB-NS gel (8.40%) was also found to be higher than the physical mixture (5.25%) and coarse suspension (reference) (2.08%) gels. The pharmacokinetic studies showed that the Cmax of FB-NS gel was 2.5 times higher than the reference gel, while AUC0-24 was 2.96 times higher. CONCLUSION FB-NSs were successfully prepared with a wet milling method and optimized with the DoE approach. The optimized FB nanosuspension gel provided better permeation and pharmacokinetic performance compared to FB coarse suspension gel.
Collapse
Affiliation(s)
- Ayse Nur Oktay
- Department of Pharmaceutical Technology, Gazi University-Faculty of Pharmacy, Ankara, Turkey.,Department of Pharmaceutical Technology, University of Health Sciences- Gulhane Faculty of Pharmacy, Ankara, Turkey
| | - Sibel Ilbasmis-Tamer
- Department of Pharmaceutical Technology, Gazi University-Faculty of Pharmacy, Ankara, Turkey
| | - Orhan Uludag
- Department of Pharmacology, Gazi University-Faculty of Pharmacy, Ankara, Turkey
| | - Nevin Celebi
- Department of Pharmaceutical Technology, Gazi University-Faculty of Pharmacy, Ankara, Turkey. .,Department of Pharmaceutical Technology, Başkent University-Faculty of Pharmacy, Ankara, Turkey.
| |
Collapse
|
5
|
Babadi D, Dadashzadeh S, Osouli M, Abbasian Z, Daryabari MS, Sadrai S, Haeri A. Biopharmaceutical and pharmacokinetic aspects of nanocarrier-mediated oral delivery of poorly soluble drugs. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
6
|
Li G, Lu Y, Fan Y, Ning Q, Li W. Enhanced oral bioavailability of magnolol via mixed micelles and nanosuspensions based on Soluplus ®-Poloxamer 188. Drug Deliv 2020; 27:1010-1017. [PMID: 32631085 PMCID: PMC7470061 DOI: 10.1080/10717544.2020.1785582] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 11/29/2022] Open
Abstract
Magnolol, known to have extensive biological activities, is the major bioactive ingredient isolated from the root and stem bark of Magnolia officinalis. However, the clinical application of magnolol is limited by poor aqueous solubility and absorption. The aim of this study is to develop novel mixed micelles and nanosuspensions composed of two biocompatible copolymers, Soluplus® and Poloxamer 188, and to improve the solubility and oral bioavailability of magnolol. The magnolol-loaded mixed micelles (MMs) and magnolol nanosuspensions (MNs) were prepared to use film hydration and antisolvent methods, respectively. The optimal MMs and MNs formulations were prepared to use magnolol, Soluplus®, and Poloxamer 188 in ratios of 1:12:5 and 2:1:1, respectively. The average particle size of MMs was 111.8 ± 14.6, and MNs was 78.53 ± 5.4 nm. The entrapment and drug loading efficiency for MMs were 89.58 ± 2.54% and 5.46 ± 0.65%, correspondingly. The drug loading efficiency of MNs was 42.50 ± 1.57%. In the in vitro release study, MMs showed a slow drug release while that of MNs was fast. The results of the Caco-2 transcellular transport study indicated that both MMs and MNs increased the permeation of magnolol. MMs and MNs markedly promoted gastrointestinal drug absorption by 2.85 and 2.27-fold, respectively, as shown in the pharmacokinetics study. These results indicated that both MMs and MNs formulations prepared with Soluplus® and Poloxamer 188 are promising drug delivery systems for improving the oral absorption of insoluble drugs in the gastrointestinal tract.
Collapse
Affiliation(s)
- Guoyuan Li
- State Key Laboratory of Natural Medicines, The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, Department of Marine Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Yuting Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Yongchun Fan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Qing Ning
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Weiguang Li
- State Key Laboratory of Natural Medicines, The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, Department of Marine Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| |
Collapse
|
7
|
Wang H, Xiao Y, Wang H, Sang Z, Han X, Ren S, Du R, Shi X, Xie Y. Development of daidzein nanosuspensions: Preparation, characterization, in vitro evaluation, and pharmacokinetic analysis. Int J Pharm 2019; 566:67-76. [PMID: 31125715 DOI: 10.1016/j.ijpharm.2019.05.051] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/01/2019] [Accepted: 05/19/2019] [Indexed: 01/31/2023]
Abstract
The purpose of this investigation was to improve the solubility and oral bioavailability of daidzein via preparing nanosuspensions (NS) with steric stabilizers, electrostatic stabilizers, or a combination of both. Based on particle size and zeta potential, daidzein NS stabilized by HP-β-CD, soy lecithin, HP-β-CD + soy lecithin, TPGS, TPGS + SBE-β-CD, SDS, or HPMC E5 + SDS were generated and characterized by scanning electron microscopy, powder X-ray diffraction, and Fourier transform-infrared spectroscopy. In addition, the stability, cytotoxicity, solubility, dissolution, and pharmacokinetics of NS were evaluated. The resulting daidzein NS were physically stable and biocompatible and presented as regular shapes with homogenous particle sizes of 360-600 nm and decreased crystallinity. Due to the increased solubility and dissolution rate, the oral bioavailability of daidzein NS in rats was 1.63-2.19 times greater than that of crude daidzein. In particular, among the investigated seven daidzein NS formulations, daidzein NS prepared with the costabilizers HPMC E5 + SDS is an optimal formulation for increased daidzein bioavailability. The present study proposes that the combined usage of steric and electrostatic stabilizers is a promising strategy for improving the bioavailability of water-insoluble flavonoid compounds by an NS approach.
Collapse
Affiliation(s)
- Hui Wang
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Pharmacy Department, Long Hua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yi Xiao
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hai Wang
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zechun Sang
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaole Han
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shuzhen Ren
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ruofei Du
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiufeng Shi
- Pharmacy Department, Long Hua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Yan Xie
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
8
|
Lu Y, Lv Y, Li T. Hybrid drug nanocrystals. Adv Drug Deliv Rev 2019; 143:115-133. [PMID: 31254558 DOI: 10.1016/j.addr.2019.06.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/14/2019] [Accepted: 06/24/2019] [Indexed: 01/01/2023]
Abstract
Nanocrystals show promise to deliver poorly water-soluble drugs to yield systemic exposure. However, our knowledge regarding the in vivo fate of nanocrystals is in its infancy, as nanocrystallization is simply viewed as an approach to enhance the dissolution of drug crystals. The dying crystal phenomenon inspired the development of hybrid nanocrystals by physically embedding fluorophores into the crystal lattice. This approach achieved concurrent therapy and bioimaging and is well-established to study pharmacokinetics and nanocrystal dissolution in vivo. Nanocrystals also offer the advantage of long-term durability in the body for interacting with biological tissues and cells. This review introduces the hybrid nanocrystal technique, including the theoretical concepts, preparation, and applications. We also discuss the latest development in self-discriminative hybrid nanocrystals utilizing environment-responsive probes. This review will stimulate further development and application of nanocrystal-based drug delivery systems for theranostic strategies.
Collapse
Affiliation(s)
- Yi Lu
- Department of Industrial & Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yongjiu Lv
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Tonglei Li
- Department of Industrial & Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
9
|
Xiong S, Liu W, Li D, Chen X, Liu F, Yuan D, Pan H, Wang Q, Fang S, Chen T. Oral Delivery of Puerarin Nanocrystals To Improve Brain Accumulation and Anti-Parkinsonian Efficacy. Mol Pharm 2019; 16:1444-1455. [PMID: 30811206 DOI: 10.1021/acs.molpharmaceut.8b01012] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Puerarin (PU) has emerged as a promising herb-derived anti-Parkinsonism compound. However, the undesirable water solubility as well as the unwanted bioavailability of PU limit its application. Therefore, this study aimed to develop and characterize PU nanocrystals (PU-NCs) with enhanced oral bioavailability and improved brain accumulation for the treatment of Parkinson's disease (PD). The fabricated PU-NCs were approximately spherical, with a mean size of 83.05 ± 1.96 nm, a PDI of 0.047 ± 0.009, a drug loading of 72.7%, and a rapid dissolution rate in vitro. Molecular dynamics simulation of PU and Pluronic F68 demonstrated the interaction energy and binding energy of -88.1 kJ/mol and -40.201 ± 0.685 kJ/mol, respectively, indicating a spontaneous binding with van der Waals interactions. In addition, the cellular uptake and permeability of PU-NCs were significantly enhanced as compared to PU alone ( p < 0.01). Moreover, PU-NCs exerted a significant neuroprotective effect against the cellular damage induced by the 1-methyl-4-phenylpyridinium ion (MPP+). Besides, PU-NCs demonstrated no obvious toxic effects on zebrafish, as evidenced by the unaltered morphology, hatching, survival rate, body length, and heart rate. Fluorescence resonance energy transfer (FRET) imaging revealed that intact nanocrystals were found in the intestine and brain of adult zebrafish gavaged with DiO/DiI/PU-NCs. Increased values of Cmax and AUC0- t were observed in the plasma of rats following oral administration of PU-NCs compared to PU suspension. Likewise, brain accumulation of PU-NCs was higher than that of PU suspension. Furthermore, PU-NCs attenuated dopamine depletion, ameliorated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced behavioral deficits, and enhanced the levels of dopamine and its metabolites. Taken altogether, this study provides evidence that PU-NCs could be exploited as a potential oral delivery system to treat PD, by improving the poor bioavailability of PU and enhancing their delivery into the brain.
Collapse
Affiliation(s)
- Sha Xiong
- Institute of Clinical Pharmacology , Guangzhou University of Chinese Medicine , Guangzhou 510405 , China
| | - Wei Liu
- Institute of Clinical Pharmacology , Guangzhou University of Chinese Medicine , Guangzhou 510405 , China
| | - Dongli Li
- Institute of Clinical Pharmacology , Guangzhou University of Chinese Medicine , Guangzhou 510405 , China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences , University of Macau , Macau , China
| | - Fang Liu
- Institute of Tropical Medicine , Guangzhou University of Chinese Medicine , Guangzhou 501405 , China
| | - Dongsheng Yuan
- Institute of Clinical Pharmacology , Guangzhou University of Chinese Medicine , Guangzhou 510405 , China
| | - Huafeng Pan
- Institute of Clinical Pharmacology , Guangzhou University of Chinese Medicine , Guangzhou 510405 , China
| | - Qi Wang
- Institute of Clinical Pharmacology , Guangzhou University of Chinese Medicine , Guangzhou 510405 , China
| | - Shuhuan Fang
- Institute of Clinical Pharmacology , Guangzhou University of Chinese Medicine , Guangzhou 510405 , China
| | - Tongkai Chen
- Institute of Clinical Pharmacology , Guangzhou University of Chinese Medicine , Guangzhou 510405 , China
| |
Collapse
|