1
|
Yao Y, Cao Q, Fang H, Tian H. Application of Nanomaterials in the Diagnosis and Treatment of Retinal Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2503070. [PMID: 40197854 DOI: 10.1002/smll.202503070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 03/24/2025] [Indexed: 04/10/2025]
Abstract
In recent years, nanomaterials have demonstrated broad prospects in the diagnosis and treatment of retinal diseases due to their unique physicochemical properties, such as small-size effects, high biocompatibility, and functional surfaces. Retinal diseases are often accompanied by complex pathological microenvironments, where conventional diagnostic and therapeutic approaches face challenges such as low drug delivery efficiency, risks associated with invasive procedures, and difficulties in real-time monitoring. Nanomaterials hold promise in addressing these limitations of traditional therapies, thereby improving treatment precision and efficacy. The applications of nanomaterials in diagnostics are summarized, where they enable high-resolution retinal imaging by carrying fluorescent probes or contrast agents or act as biosensors to sensitively detect disease-related biomarkers, facilitating early diagnosis and dynamic monitoring. In therapeutics, functionalized nanocarriers can precisely deliver drugs, genes, or antioxidant molecules to retinal target cells, significantly enhancing therapeutic outcomes while reducing systemic toxicity. Additionally, nanofiber materials possess unique properties that make them particularly suitable for retinal regeneration in tissue engineering. By loading neurotrophic factors into nanofiber scaffolds, their regenerative effects can be amplified, promoting the repair of retinal neurons. Despite their immense potential, clinical translation of nanomaterials still requires addressing challenges such as long-term biosafety, scalable manufacturing processes, and optimization of targeting efficiency.
Collapse
Affiliation(s)
- Yingli Yao
- College of Chemistry and Chemical Engineering, Xiamen Eye Center and Eye Institute of Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| | - Qiannan Cao
- College of Chemistry and Chemical Engineering, Xiamen Eye Center and Eye Institute of Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| | - Huapan Fang
- College of Chemistry and Chemical Engineering, Xiamen Eye Center and Eye Institute of Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518000, China
| | - Huayu Tian
- College of Chemistry and Chemical Engineering, Xiamen Eye Center and Eye Institute of Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
2
|
Nikolaidou A, Spyratou E, Sandali A, Gianni T, Platoni K, Lamprogiannis L, Efstathopoulos EP. Utilization of Nanoparticles for Treating Age-Related Macular Degeneration. Pharmaceuticals (Basel) 2025; 18:162. [PMID: 40005976 PMCID: PMC11858808 DOI: 10.3390/ph18020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Age-related macular degeneration (AMD) is a predominant cause of vision loss, posing significant challenges in its management despite advancements such as anti-vascular endothelial growth factor (anti-VEGF) therapy. Nanomedicine, with its novel properties and capabilities, offers promising potential to transform the treatment paradigm for AMD. This review reports the significant advancements in the use of diverse nanoparticles (NPs) for AMD in vitro, in vivo, and ex vivo, including liposomes, lipid nanoparticles, nanoceria, nanofibers, magnetic nanoparticles, quantum dots, dendrimers, and polymer nanoparticles delivered in forms such as gels, eye drops, intravitreally, or intravenously. Drug delivery was the most common use of NPs for AMD, followed by photodynamic therapy dose enhancement, antioxidant function for nanoceria, biomimetic activity, and immune modulation. Innovative approaches arising included nanotechnology-based photodynamic therapy and light-responsive nanoparticles for controlled drug release, as well as gene therapy transfer. Nanomedicine offers a transformative approach to the treatment and management of AMD, with diverse applications. The integration of nanotechnology in AMD management not only provides innovative solutions to overcome current therapeutic limitations but also shows potential in enhancing outcomes and patient quality of life.
Collapse
Affiliation(s)
- Anna Nikolaidou
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ellas Spyratou
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece (E.P.E.)
| | - Athanasia Sandali
- Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Theodora Gianni
- Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Kalliopi Platoni
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece (E.P.E.)
| | | | - Efstathios P. Efstathopoulos
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece (E.P.E.)
| |
Collapse
|
3
|
Singh M, Negi R, Alka, Vinayagam R, Kang SG, Shukla P. Age-Related Macular Degeneration (AMD): Pathophysiology, Drug Targeting Approaches, and Recent Developments in Nanotherapeutics. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1647. [PMID: 39459435 PMCID: PMC11509623 DOI: 10.3390/medicina60101647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/26/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024]
Abstract
The most prevalent reason for vision impairment in aging inhabitants is age-related macular degeneration (AMD), a posterior ocular disease with a poor understanding of the anatomic, genetic, and pathophysiological progression of the disease. Recently, new insights exploring the role of atrophic changes in the retinal pigment epithelium, extracellular drusen deposits, lysosomal lipofuscin, and various genes have been investigated in the progression of AMD. Hence, this review explores the incidence and risk factors for AMD, such as oxidative stress, inflammation, the complement system, and the involvement of bioactive lipids and their role in angiogenesis. In addition to intravitreal anti-vascular endothelial growth factor (VEGF) therapy and other therapeutic interventions such as oral kinase inhibitors, photodynamic, gene, and antioxidant therapy, as well as their benefits and drawbacks as AMD treatment options, strategic drug delivery methods, including drug delivery routes with a focus on intravitreal pharmacokinetics, are investigated. Further, the recent advancements in nanoformulations such as polymeric and lipid nanocarriers, liposomes, etc., intended for ocular drug delivery with pros and cons are too summarized. Therefore, the purpose of this review is to give new researchers an understanding of AMD pathophysiology, with an emphasis on angiogenesis, inflammation, the function of bioactive lipids, and therapy options. Additionally, drug delivery options that focus on the development of drug delivery system(s) via several routes of delivery can aid in the advancement of therapeutic choices.
Collapse
Affiliation(s)
- Mahendra Singh
- Department of Biotechnology, Institute of Biotechnology, School of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Riyakshi Negi
- Department of Pharmaceutical Sciences, School of Heath Sciences and Technology, UPES, Dehradun 246008, India; (R.N.); (A.)
| | - Alka
- Department of Pharmaceutical Sciences, School of Heath Sciences and Technology, UPES, Dehradun 246008, India; (R.N.); (A.)
| | - Ramachandran Vinayagam
- Department of Biotechnology, Institute of Biotechnology, School of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Sang Gu Kang
- Department of Biotechnology, Institute of Biotechnology, School of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Prashant Shukla
- Department of Pharmaceutical Sciences, School of Heath Sciences and Technology, UPES, Dehradun 246008, India; (R.N.); (A.)
| |
Collapse
|
4
|
Kazemi MS, Shoari A, Salehibakhsh N, Aliabadi HAM, Abolhosseini M, Arab SS, Ahmadieh H, Kanavi MR, Behdani M. Anti-angiogenic biomolecules in neovascular age-related macular degeneration; therapeutics and drug delivery systems. Int J Pharm 2024; 659:124258. [PMID: 38782152 DOI: 10.1016/j.ijpharm.2024.124258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Blindness in the elderly is often caused by age-related macular degeneration (AMD). The advanced type of AMD known as neovascular AMD (nAMD) has been linked to being the predominant cause of visual impairment in these people. Multiple neovascular structures including choroidal neovascular (CNV) membranes, fluid exudation, hemorrhages, and subretinal fibrosis, are diagnostic of nAMD. These pathological alterations ultimately lead to anatomical and visual loss. It is known that vascular endothelial growth factor (VEGF), a type of proangiogenic factor, mediates the pathological process underlying nAMD. Therefore, various therapies have evolved to directly target the disease. In this review article, an attempt has been made to discuss general explanations about this disease, all common treatment methods based on anti-VEGF drugs, and the use of drug delivery systems in the treatment of AMD. Initially, the pathophysiology, angiogenesis, and different types of AMD were described. Then we described current treatments and future treatment prospects for AMD and outlined the advantages and disadvantages of each. In this context, we first examined the types of therapeutic biomolecules and anti-VEGF drugs that are used in the treatment of AMD. These biomolecules include aptamers, monoclonal antibodies, small interfering RNAs, microRNAs, peptides, fusion proteins, nanobodies, and other therapeutic biomolecules. Finally, we described drug delivery systems based on liposomes, nanomicelles, nanoemulsions, nanoparticles, cyclodextrin, dendrimers, and composite vehicles that are used in AMD therapy.
Collapse
Affiliation(s)
- Mir Salar Kazemi
- Biotechnology Research Centre, Venom and Biotherapeutics Molecules Laboratory, Pasteur Institute of Iran, Iran
| | - Alireza Shoari
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Neda Salehibakhsh
- Biotechnology Research Centre, Venom and Biotherapeutics Molecules Laboratory, Pasteur Institute of Iran, Iran; Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Hooman Aghamirza Moghim Aliabadi
- Protein Chemistry Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Abolhosseini
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Shahriar Arab
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamid Ahmadieh
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mozhgan Rezaei Kanavi
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mahdi Behdani
- Biotechnology Research Centre, Venom and Biotherapeutics Molecules Laboratory, Pasteur Institute of Iran, Iran.
| |
Collapse
|
5
|
Datta D, Priyanka Bandi S, Colaco V, Dhas N, Siva Reddy DV, Vora LK. Fostering the unleashing potential of nanocarriers-mediated delivery of ocular therapeutics. Int J Pharm 2024; 658:124192. [PMID: 38703931 DOI: 10.1016/j.ijpharm.2024.124192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Ocular delivery is the most challenging aspect in the field of pharmaceutical research. The major hurdle for the controlled delivery of drugs to the eye includes the physiological static barriers such as the complex layers of the cornea, sclera and retina which restrict the drug from permeating into the anterior and posterior segments of the eye. Recent years have witnessed inventions in the field of conventional and nanocarrier drug delivery which have shown considerable enhancement in delivering small to large molecules across the eye. The dynamic challenges associated with conventional systems include limited drug contact time and inadequate ocular bioavailability resulting from solution drainage, tear turnover, and dilution or lacrimation. To this end, various bioactive-based nanosized carriers including liposomes, ethosomes, niosomes, dendrimer, nanogel, nanofibers, contact lenses, nanoprobes, selenium nanobells, nanosponge, polymeric micelles, silver nanoparticles, and gold nanoparticles among others have been developed to circumvent the limitations associated with the conventional dosage forms. These nanocarriers have been shown to achieve enhanced drug permeation or retention and prolong drug release in the ocular tissue due to their better tissue adherence. The surface charge and the size of nanocarriers (10-1000 nm) are the important key factors to overcome ocular barriers. Various nanocarriers have been shown to deliver active therapeutic molecules including timolol maleate, ampicillin, natamycin, voriconazole, cyclosporine A, dexamethasone, moxifloxacin, and fluconazole among others for the treatment of anterior and posterior eye diseases. Taken together, in a nutshell, this extensive review provides a comprehensive perspective on the numerous facets of ocular drug delivery with a special focus on bioactive nanocarrier-based approaches, including the difficulties and constraints involved in the fabrication of nanocarriers. This also provides the detailed invention, applications, biodistribution and safety-toxicity of nanocarriers-based therapeutcis for the ophthalmic delivery.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| | - Sony Priyanka Bandi
- Loka Laboratories Private Limited, Technology Business Incubator, BITS Pilani Hyderabad Campus, Jawahar Nagar, Medchal 500078, Telangana, India.
| | - Viola Colaco
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - D V Siva Reddy
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio TX78227, USA
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| |
Collapse
|
6
|
Ponnusamy C, Ayarivan P, Selvamuthu P, Natesan S. Age-Related Macular Degeneration - Therapies and Their Delivery. Curr Drug Deliv 2024; 21:683-696. [PMID: 37165500 DOI: 10.2174/1567201820666230510100742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/15/2022] [Accepted: 01/05/2023] [Indexed: 05/12/2023]
Abstract
Age-related macular degeneration (ARMD) is a degenerative ocular disease that is the most important cause of irreversible vision loss in old-aged people in developed countries. Around fifty percent of vision impairments in developed countries are due to ARMD. It is a multifaceted disease that is associated with both genetic and environmental risk factors. The most important treatments option for ARMD includes laser photocoagulation, photodynamic therapy (PDT), Anti-VEGF Injections, and combination therapies. In this review, we also propose that topical ocular drug delivery with nanocarriers has more attention for the treatment of ARMD. The nanocarriers were specially designed for enhanced corneal residential time, prolonged drug release and action, and minimizing the frequency of administrations. Different types of nanocarriers were developed for the topical ocular delivery system, such as nanomicelles, nanoemulsions, nanosuspensions, liposomes, and polymeric nanoparticles. These topical ocular nanocarriers were administered topically, and they can fix the hydrophobic substances, increase solubility and improve the bioavailability of an administered drug. Hence the topical ocular delivery systems with nanocarriers provide a safe and effective therapeutic strategy and promising tool for the treatment of posterior segment ocular diseases ARMD.
Collapse
Affiliation(s)
- Chandrasekar Ponnusamy
- Department of Pharmaceutical Technology, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli-620024, Tamil Nadu, India
| | - Puratchikody Ayarivan
- Drug Discovery and Development Research Group, Department of Pharmaceutical Technology, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli-620024, Tamil Nadu, India
| | - Preethi Selvamuthu
- Department of Pharmaceutical Technology, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli-620024, Tamil Nadu, India
| | - Subramanian Natesan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, ChunilalBhawan, Kolkata-700054, West Bengal, India
| |
Collapse
|
7
|
Han H, Li S, Xu M, Zhong Y, Fan W, Xu J, Zhou T, Ji J, Ye J, Yao K. Polymer- and lipid-based nanocarriers for ocular drug delivery: Current status and future perspectives. Adv Drug Deliv Rev 2023; 196:114770. [PMID: 36894134 DOI: 10.1016/j.addr.2023.114770] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Ocular diseases seriously affect patients' vision and life quality, with a global morbidity of over 43 million blindness. However, efficient drug delivery to treat ocular diseases, particularly intraocular disorders, remains a huge challenge due to multiple ocular barriers that significantly affect the ultimate therapeutic efficacy of drugs. Recent advances in nanocarrier technology offer a promising opportunity to overcome these barriers by providing enhanced penetration, increased retention, improved solubility, reduced toxicity, prolonged release, and targeted delivery of the loaded drug to the eyes. This review primarily provides an overview of the progress and contemporary applications of nanocarriers, mainly polymer- and lipid-based nanocarriers, in treating various eye diseases, highlighting their value in achieving efficient ocular drug delivery. Additionally, the review covers the ocular barriers and administration routes, as well as the prospective future developments and challenges in the field of nanocarriers for treating ocular diseases.
Collapse
Affiliation(s)
- Haijie Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Su Li
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Mingyu Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Yueyang Zhong
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Wenjie Fan
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Jingwei Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Tinglian Zhou
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China.
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China; Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, People's Republic of China.
| |
Collapse
|
8
|
Chen X, Yang R, Shen J, Huang Q, Wu Z. Research Progress of Bioinspired Nanostructured Systems for the Treatment of Ocular Disorders. Pharmaceuticals (Basel) 2023; 16:ph16010096. [PMID: 36678597 PMCID: PMC9865244 DOI: 10.3390/ph16010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
How to enhance the bioavailability and prolong the residence time of drugs in the eye present the major barriers to traditional eye delivery. Nanotechnology has been widely used in ocular drug delivery systems because of its advantages of minimizing adverse reactions, decreasing the frequency of administration, prolonging the release time, and improving the bioavailability of the drug in the eye. As natural product-based nanostructured systems, bioinspired nanostructured systems have presented as less toxic, easy to prepare, and cost-effective and have potential application value in the field of nanotechnology. A systematic classification of bioinspired nanostructured systems based on their inspiration source and formulation and their brief applications in disease are presented here. A review of recent research progress of the bioinspired nanostructured systems for the treatment of the anterior and posterior segment of ocular disorders is then presented in detail. Finally, current challenges and future directions with regard to manufacturing bioinspired nanomaterials are provided.
Collapse
Affiliation(s)
- Xuan Chen
- Department of Ophthalmology, Wuxi Second People’s Hospital, Nanjing Medical University, Wuxi 214002, China
| | - Rui Yang
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214002, China
- Correspondence: (R.Y.); (Z.W.)
| | - Jinyan Shen
- Department of Ophthalmology, Wuxi Second People’s Hospital, Nanjing Medical University, Wuxi 214002, China
| | - Qingyu Huang
- Department of Ophthalmology, Wuxi Second People’s Hospital, Nanjing Medical University, Wuxi 214002, China
| | - Zhifeng Wu
- Department of Ophthalmology, Wuxi Second People’s Hospital, Nanjing Medical University, Wuxi 214002, China
- Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong University, Wuxi 214002, China
- Correspondence: (R.Y.); (Z.W.)
| |
Collapse
|
9
|
Redox-sensitive doxorubicin liposome: a formulation approach for targeted tumor therapy. Sci Rep 2022; 12:11310. [PMID: 35788647 PMCID: PMC9253031 DOI: 10.1038/s41598-022-15239-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022] Open
Abstract
In this study redox-sensitive (RS) liposomes manufactured using 10,10′-diselanediylbis decanoic acid (DDA), an organoselenium RS compound, to enhance the therapeutic performance of doxorubicin (Dox). The DDA structure was confirmed by 1H NMR and LC–MS/MS. Various liposomal formulations (33 formulations) were prepared using DOPE, Egg PC, and DOPC with Tm ˂ 0 and DDA. Some formulations had mPEG2000-DSPE and cholesterol. After extrusion, the external phase was exchanged with sodium bicarbonate to create a pH gradient. Then, Dox was remotely loaded into liposomes. The optimum formulations indicated a burst release of 30% in the presence of 0.1% hydrogen peroxide at pH 6.5, thanks to the redox-sensitive role of DDA moieties; conversely, Caelyx (PEGylated liposomal Dox) showed negligible release at this condition. RS liposomes consisting of DOPE/Egg PC/DDA at 37.5 /60/2.5% molar ratio, efficiently inhibited C26 tumors among other formulations. The release of Dox from RS liposomes in the TME through the DDA link fracture triggered by ROS or glutathione is seemingly the prerequisite for the formulations to exert their therapeutic action. These findings suggest the potential application of such intelligent formulations in the treatment of various malignancies where the TME redox feature could be exploited to achieve an improved therapeutic response.
Collapse
|
10
|
Qualls ML, Sagar R, Lou J, Best MD. Demolish and Rebuild: Controlling Lipid Self-Assembly toward Triggered Release and Artificial Cells. J Phys Chem B 2021; 125:12918-12933. [PMID: 34792362 DOI: 10.1021/acs.jpcb.1c07406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The ability to modulate the structures of lipid membranes, predicated on our nuanced understanding of the properties that drive and alter lipid self-assembly, has opened up many exciting biological applications. In this Perspective, we focus on two endeavors in which the same principles are invoked to achieve completely opposite results. On one hand, controlled liposome decomposition enables triggered release of encapsulated cargo through the development of synthetic lipid switches that perturb lipid packing in the presence of disease-associated stimuli. In particular, recent approaches have utilized artificial lipid switches designed to undergo major conformational changes in response to a range of target conditions. On the other end of the spectrum, the ability to drive the in situ formation of lipid bilayer membranes from soluble precursors is an important component in the establishment of artificial cells. This work has culminated in chemoenzymatic strategies that enable lipid manufacturing from simple components. Herein, we describe recent advancements in these two unique undertakings that are linked by their reliance on common principles of lipid self-assembly.
Collapse
Affiliation(s)
- Megan L Qualls
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | - Ruhani Sagar
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | - Jinchao Lou
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | - Michael D Best
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| |
Collapse
|
11
|
Yang B, Li G, Liu J, Li X, Zhang S, Sun F, Liu W. Nanotechnology for Age-Related Macular Degeneration. Pharmaceutics 2021; 13:pharmaceutics13122035. [PMID: 34959316 PMCID: PMC8705006 DOI: 10.3390/pharmaceutics13122035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/04/2021] [Accepted: 11/22/2021] [Indexed: 01/12/2023] Open
Abstract
Age-related macular degeneration (AMD) is a degenerative eye disease that is the leading cause of irreversible vision loss in people 50 years and older. Today, the most common treatment for AMD involves repeated intravitreal injections of anti-vascular endothelial growth factor (VEGF) drugs. However, the existing expensive therapies not only cannot cure this disease, they also produce a variety of side effects. For example, the number of injections increases the cumulative risk of endophthalmitis and other complications. Today, a single intravitreal injection of gene therapy products can greatly reduce the burden of treatment and improve visual effects. In addition, the latest innovations in nanotherapy provide the best drug delivery alternative for the treatment of AMD. In this review, we discuss the development of nano-drug delivery systems and gene therapy strategies for AMD in recent years. In addition, we discuss some novel targeting strategies and the potential application of these delivery methods in the treatment of AMD. Finally, we also propose that the combination of CRISPR/Cas9 technology with a new non-viral delivery system may be promising as a therapeutic strategy for the treatment of AMD.
Collapse
Affiliation(s)
- Bo Yang
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun 130012, China;
- School of Life Sciences, Jilin University, Changchun 130012, China; (G.L.); (J.L.); (X.L.); (S.Z.); (F.S.)
| | - Ge Li
- School of Life Sciences, Jilin University, Changchun 130012, China; (G.L.); (J.L.); (X.L.); (S.Z.); (F.S.)
| | - Jiaxin Liu
- School of Life Sciences, Jilin University, Changchun 130012, China; (G.L.); (J.L.); (X.L.); (S.Z.); (F.S.)
| | - Xiangyu Li
- School of Life Sciences, Jilin University, Changchun 130012, China; (G.L.); (J.L.); (X.L.); (S.Z.); (F.S.)
| | - Shixin Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China; (G.L.); (J.L.); (X.L.); (S.Z.); (F.S.)
| | - Fengying Sun
- School of Life Sciences, Jilin University, Changchun 130012, China; (G.L.); (J.L.); (X.L.); (S.Z.); (F.S.)
| | - Wenhua Liu
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun 130012, China;
- Correspondence:
| |
Collapse
|
12
|
Mollazadeh S, Mackiewicz M, Yazdimamaghani M. Recent advances in the redox-responsive drug delivery nanoplatforms: A chemical structure and physical property perspective. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111536. [PMID: 33255089 DOI: 10.1016/j.msec.2020.111536] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/28/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023]
Abstract
Poor water solubility, off-target toxicity, and small therapeutic window are among major obstacles for the development of drug products. Redox-responsive drug delivery nanoplatforms not only overcome the delivery and pharmacokinetic pitfalls observed in conventional drug delivery, but also leverage the site-specific delivery properties. Cleavable diselenide and disulfide bonds in the presence of elevated reactive oxygen species (ROS) and glutathione concentration are among widely used stimuli-responsive bonds to design nanocarriers. This review covers a wide range of redox-responsive chemical structures and their properties for designing nanoparticles aiming controlled loading, delivery, and release of hydrophobic anticancer drugs at tumor site.
Collapse
Affiliation(s)
- Shirin Mollazadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marcin Mackiewicz
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Poland
| | - Mostafa Yazdimamaghani
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
13
|
Suri R, Neupane YR, Jain GK, Kohli K. Recent theranostic paradigms for the management of Age-related macular degeneration. Eur J Pharm Sci 2020; 153:105489. [PMID: 32717428 DOI: 10.1016/j.ejps.2020.105489] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/07/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022]
Abstract
Degenerative diseases of eye like Age-related macular degeneration (AMD), that affects the central portion of the retina (macula), is one of the leading causes of blindness worldwide especially in the elderly population. It is classified mainly as wet and dry form. With expanding knowledge about the underlying pathophysiology of the disease, various treatment strategies are being employed to halt the course of the disease progression. Hitherto, there is no ideal therapy which can cure the disease completely, and targeting the posterior segment of the eye is yet another challenge. The purpose of this review is to summarize the recent advances in the management and treatment stratagems (therapies, delivery systems and diagnostic tools) pertaining to AMD viz. molecular targeting, stem cell therapy, nanotechnology and exosomes with special reference to newer technologies like artificial intelligence and 3D printing. Furthermore, the role of diet and nutritional supplements in the prevention and treatment of the disease has also been highlighted. The alarming increase in the said disorder around the globe demands exhaustive research and investigations in the treatment zone. This review thus additionally directs the attention towards the challenges and future perspectives of different treatment approaches for AMD.
Collapse
Affiliation(s)
- Reshal Suri
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Yub Raj Neupane
- Department of Pharmacy, National University of Singapore, 117559, Singapore
| | - Gaurav Kumar Jain
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|