1
|
Sobel D, Ramasubramanian B, Sawhney P, Parmar K. Preparation of PLGA Microspheres Using the Non-Toxic Glycofurol as Polymer Solvent by a Modified Phase Inversion Methodology. Polymers (Basel) 2024; 16:434. [PMID: 38337323 DOI: 10.3390/polym16030434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Poly(D,L-lactide-co-glycolide is a biodegradable copolymer that can release pharmaceuticals. These pharmaceuticals can provide local therapy and also avert the clinical issues that occur when a drug must be given continuously and/or automatically. However, the drawbacks of using poly(D,L-lactide-co-glycolide include the kinetics and duration of time of poly(D,L-lactide-co-glycolide drug release, the denaturing of the drug loaded drug, and the potential clinical side effects. These drawbacks are mainly caused by the volatile organic solvents needed to prepare poly(D,L-lactide-co-glycolide spheres. Using the non-toxic solvent glycofurol solvent instead of volatile organic solvents to construct poly(D,L-lactide-co-glycolide microspheres may deter the issues of using volatile organic solvents. Up to now, preparation of such glycofurol spheres has previously met with limited success. We constructed dexamethasone laden poly(D,L-lactide-co-glycolide microspheres utilizing glycofurol as the solvent within a modified phase inversion methodology. These prepared microspheres have a higher drug load and a lower rate of water diffusion. This prolongs drug release compared to dichloromethane constructed spheres. The glycofurol-generated spheres are also not toxic to target cells as is the case for dichloromethane-constructed spheres. Further, glycofurol-constructed spheres do not denature the dexamethasone molecule and have kinetics of drug release that are more clinically advantageous, including a lower drug burst and a prolonged drug release.
Collapse
Affiliation(s)
- Douglas Sobel
- Medical School, Georgetown University, Washington, DC 20057, USA
| | | | - Puja Sawhney
- Medical School, Georgetown University, Washington, DC 20057, USA
| | - Keerat Parmar
- Medical School, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
2
|
Abraham B, Syamnath VL, Arun KB, Fathima Zahra PM, Anjusha P, Kothakotta A, Chen YH, Ponnusamy VK, Nisha P. Lignin-based nanomaterials for food and pharmaceutical applications: Recent trends and future outlook. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163316. [PMID: 37028661 DOI: 10.1016/j.scitotenv.2023.163316] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/05/2023] [Accepted: 04/02/2023] [Indexed: 06/01/2023]
Abstract
Small particles of size ranging from 1 to 100 nm are referred to as nanoparticles. Nanoparticles have tremendous applications in various sectors, including the areas of food and pharmaceutics. They are being prepared from multiple natural sources widely. Lignin is one such source that deserves special mention due to its ecological compatibility, accessibility, abundance, and low cost. This amorphous heterogeneous phenolic polymer is the second most abundant molecule in nature after cellulose. Apart from being used as a biofuel source, lignin is less explored for its potential at a nano-level. In plants, lignin exhibits cross-linking structures with cellulose and hemicellulose. Numerous advancements have taken place in synthesizing nanolignins for manufacturing lignin-based materials to benefit from the untapped potential of lignin in high-value-added applications. Lignin and lignin-based nanoparticles have numerous applications, but in this review, we are mainly focusing on the applications in the food and pharmaceutical sectors. The exercise we undertake has great relevance as it helps scientists and industries gain valuable insights into lignin's capabilities and exploit its physical and chemical properties to facilitate the development of future lignin-based materials. We have summarized the available lignin resources and their potential in the food and pharmaceutical industries at various levels. This review attempts to understand various methods adopted for the preparation of nanolignin. Furthermore, the unique properties of nano-lignin-based materials and their applications in fields including the packaging industry, emulsions, nutrient delivery, drug delivery hydrogels, tissue engineering, and biomedical applications were well-discussed.
Collapse
Affiliation(s)
- Billu Abraham
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
| | - V L Syamnath
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum 695019, India
| | - K B Arun
- Department of Life Sciences, Christ (Deemed to be University), Bangalore 29, India
| | - P M Fathima Zahra
- College of Agriculture, Vellayani, Kerala Agricultural University, India
| | - P Anjusha
- College of Agriculture, Vellayani, Kerala Agricultural University, India
| | - Anjhinaeyulu Kothakotta
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Yi-Hsun Chen
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| | - Vinoth Kumar Ponnusamy
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City 807, Taiwan; Department of Chemistry, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan; Ph.D. Program of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City 811, Taiwan.
| | - P Nisha
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Abdullah T, İlyasoğlu G, Memić A. Designing Lignin-Based Biomaterials as Carriers of Bioactive Molecules. Pharmaceutics 2023; 15:pharmaceutics15041114. [PMID: 37111600 PMCID: PMC10143462 DOI: 10.3390/pharmaceutics15041114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/18/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
There is a need to develop circular and sustainable economies by utilizing sustainable, green, and renewable resources in high-tech industrial fields especially in the pharmaceutical industry. In the last decade, many derivatives of food and agricultural waste have gained considerable attention due to their abundance, renewability, biocompatibility, environmental amiability, and remarkable biological features. Particularly, lignin, which has been used as a low-grade burning fuel in the past, recently attracted a lot of attention for biomedical applications because of its antioxidant, anti-UV, and antimicrobial properties. Moreover, lignin has abundant phenolic, aliphatic hydroxyl groups, and other chemically reactive sites, making it a desirable biomaterial for drug delivery applications. In this review, we provide an overview of designing different forms of lignin-based biomaterials, including hydrogels, cryogels, electrospun scaffolds, and three-dimensional (3D) printed structures and how they have been used for bioactive compound delivery. We highlight various design criteria and parameters that influence the properties of each type of lignin-based biomaterial and corelate them to various drug delivery applications. In addition, we provide a critical analysis, including the advantages and challenges encountered by each biomaterial fabrication strategy. Finally, we highlight the prospects and future directions associated with the application of lignin-based biomaterials in the pharmaceutical field. We expect that this review will cover the most recent and important developments in this field and serve as a steppingstone for the next generation of pharmaceutical research.
Collapse
|
4
|
Dutta S, Pal S, Panwar P, Sharma RK, Bhutia PL. Biopolymeric Nanocarriers for Nutrient Delivery and Crop Biofortification. ACS OMEGA 2022; 7:25909-25920. [PMID: 35936412 PMCID: PMC9352165 DOI: 10.1021/acsomega.2c02494] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/07/2022] [Indexed: 05/17/2023]
Abstract
Driven by the possibility of precise transformational change in nutrient-enrichment technology to meet global food demand, advanced nutrient delivery strategies have emerged to pave the path toward success for nutrient enrichment in edible parts of crops through bioderived nanocarriers with increased productivity. Slow and controlled release of nutrient carrier materials influences the nutrient delivery rate in soil and in the edible parts of crops with a sluggish nutrient delivery to enhance their availability in roots by minimizing nutrient loss. With a limited understanding of the nutrient delivery mechanism in soil and the edible parts of crops, it is envisaged to introduce nutrient-enrichment technology for nutrient delivery that minimizes environmental impact due to its biodegradable nature. This article attempts to analyze the possible role of the cellulose matrix for nutrient release and the role of cellulose nanocomposites and nanofibers. We have proposed a few cellulose derived biofortificant materials as nutrient carriers, such as (1) nanofibers, (2) polymer-nanocellulose-clay composites, (3) silk-fibroin derived nanocarriers, and (4) carboxymethyl cellulose. An effort is undertaken to describe the research need by linking a biopolymer derived nanocarrier for crop growth regulation and experimental nitrogen release analysis. We have finally provided a perspective on cellulose nanofibers (CNFs) for microcage based nutrient loading ability. This article aims to explain why biopolymer derived nutrient carriers are the alternative candidate for alleviating nutrient deficiency challenges which are involved in focusing the nutrient delivery profile of biopolymers and promising biofortification of crops.
Collapse
Affiliation(s)
- Saikat Dutta
- Electrochemical
Energy & Sensor Research Laboratory, Amity Institute of Click
Chemistry Research & Studies, Amity
University, Noida 201303, India
| | - Sharmistha Pal
- Research
Center, ICAR-Indian Institute of Soil &
Water Conservation, Sector 27 A Madhya Marg, Chandigarh 160019, India
| | - Pankaj Panwar
- Research
Center, ICAR-Indian Institute of Soil &
Water Conservation, Sector 27 A Madhya Marg, Chandigarh 160019, India
| | - Rakesh K. Sharma
- Sustainable
Materials and Catalysis Research Laboratory (SMCRL), Department of
Chemistry, Indian Institute of Technology
Jodhpur, Jodhpur 342037, Rajasthan, India
| | - Pempa Lamu Bhutia
- Division
of Agroforestry, Indian Council of Agriculture
Research (ICAR), Research Complex for NEH Region, Nagaland Centre, Umiam, Nagaland 797106, India
| |
Collapse
|
5
|
Formulation and Evaluation of Chitosan/NaCl/Maltodextrin Microparticles as a Saltiness Enhancer: Study on the Optimization of Excipients for the Spray-Drying Process. Polymers (Basel) 2021; 13:polym13244302. [PMID: 34960854 PMCID: PMC8706731 DOI: 10.3390/polym13244302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
Spray-dried chitosan/NaCl/maltodextrin microparticles have the potential to be used to enhance saltiness; however, its notable hygroscopicity results in handling and storage problems, thus limiting its application. In the present study, we attempted to introduce maltodextrin, microcrystalline cellulose (MCC), and waxy starch (WS) as excipients into the spray drying formulation of microparticles to reduce the cohesiveness and caking behavior and improve the yield simultaneously by ameliorating the moisture absorption tendency. The prepared microparticles showed a spherical appearance and had particle sizes ranging from 6.29 to 7.64 μm, while the sizes of the NaCl crystals embedded in the microparticles were 0.36 to 1.24 μm. The crystalline reflections of WS and MCC were retained in the microparticles after the spray-drying process. The handling properties were assessed to be acceptable. The formulation with only maltodextrin as the excipient showed a high moisture absorption rate of 2.83 g/100 g·h and a caking strength of 3.27 kg. The addition of MCC and WS significantly reduced the hygroscopic rate and caking strength. The spray-dried products provided better saltiness perception than native NaCl; as such, they may be promising for seasoning dry food products to achieve sodium intake reduction in the food industry.
Collapse
|
6
|
Ghavidel N, Fatehi P. Recent Developments in the Formulation and Use of Polymers and Particles of Plant-based Origin for Emulsion Stabilizations. CHEMSUSCHEM 2021; 14:4850-4877. [PMID: 34424605 DOI: 10.1002/cssc.202101359] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/20/2021] [Indexed: 06/13/2023]
Abstract
The main scope of this Review was the recent progress in the use of plant-based polymers and particles for the stabilization of Pickering and non-Pickering emulsion systems. Due to their availability and promising performance, it was discussed how the source, modification, and formulation of cellulose, starch, protein, and lignin-based polymers and particles would impact their emulsion stabilization. Special attention was given toward the material synthesis in two forms of polymeric surfactants and particles and the corresponding formulated emulsions. Also, the effects of particle size, degree of aggregation, wettability, degree of substitution, and electrical charge in stabilizing oil/water systems and micro- and macro-structures of oil droplets were discussed. The wide range of applications using such plant-based stabilizers in different technologies as well as their challenge and future perspectives were described.
Collapse
Affiliation(s)
- Nasim Ghavidel
- Chemical Engineering Department, Green Processes Research Centre, Lakehead University, 955 Oliver Road, Thunder Bay, P7B5E1 ON, Canada
| | - Pedram Fatehi
- Chemical Engineering Department, Green Processes Research Centre, Lakehead University, 955 Oliver Road, Thunder Bay, P7B5E1 ON, Canada
| |
Collapse
|
7
|
Culebras M, Pishnamazi M, Walker GM, Collins MN. Facile Tailoring of Structures for Controlled Release of Paracetamol from Sustainable Lignin Derived Platforms. Molecules 2021; 26:1593. [PMID: 33805704 PMCID: PMC8000009 DOI: 10.3390/molecules26061593] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/19/2021] [Accepted: 03/10/2021] [Indexed: 12/25/2022] Open
Abstract
Nowadays, sustainable materials are receiving significant attention due to the fact that they will be crucial for the development of the next generation of products and devices. In the present work, hydrogels have been successfully synthesized using lignin which is non-valorized biopolymer from the paper industry. Hydrogels were prepared via crosslinking with Poly(ethylene) glycol diglycidyl ether (PEGDGE). Different crosslinker ratios were used to determine their influence on the structural and chemical properties of the resulting hydrogels. It has been found that pore size was reduced by increasing crosslinker amount. The greater crosslinking density increased the swelling capacity of the hydrogels due to the presence of more hydrophilic groups in the hydrogel network. Paracetamol release test showed higher drug diffusion for hydrogels produced with a ratio lignin:PEGDGE 1:1. The obtained results demonstrate that the proposed approach is a promising route to utilize lignocellulose waste for producing porous materials for advanced biomedical applications in the pharmacy industry.
Collapse
Affiliation(s)
- Mario Culebras
- Stokes Laboratories, School of Engineering, Bernal Institute and AMBER, University of Limerick, V94 T9PX Limerick, Ireland;
| | - Mahboubeh Pishnamazi
- Pharmaceutical Centre (SSPC), University of Limerick, V94 T9PX Limerick, Ireland; (M.P.); (G.M.W.)
| | - Gavin M. Walker
- Pharmaceutical Centre (SSPC), University of Limerick, V94 T9PX Limerick, Ireland; (M.P.); (G.M.W.)
| | - Maurice N. Collins
- Stokes Laboratories, School of Engineering, Bernal Institute and AMBER, University of Limerick, V94 T9PX Limerick, Ireland;
| |
Collapse
|
8
|
He X, Lu W, Sun C, Khalesi H, Mata A, Andaleeb R, Fang Y. Cellulose and cellulose derivatives: Different colloidal states and food-related applications. Carbohydr Polym 2020; 255:117334. [PMID: 33436177 DOI: 10.1016/j.carbpol.2020.117334] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/30/2022]
Abstract
Development of new sources and isolation processes has recently enhanced the production of cellulose in many different colloidal states. Even though cellulose is widely used as a functional ingredient in the food industry, the relationship between the colloidal states of cellulose and its applications is mostly unknown. This review covers the recent progress on illustrating various colloidal states of cellulose and the influencing factors with special emphasis on the correlation between the colloidal states of cellulose and its applications in food industry. The associated unique colloidal states of cellulose like high aspect ratio, crystalline structure, surface charge, and wettability not only promote the stability of colloidal systems, but also help improve the nutritional aspects of cellulose by facilitating its interactions with digestive system. Further studies are required for the rational control and improvement of the colloidal states of cellulose and producing food systems with enhanced functional and nutritional properties.
Collapse
Affiliation(s)
- Xiangxiang He
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Lu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cuixia Sun
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hoda Khalesi
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Analucia Mata
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rani Andaleeb
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yapeng Fang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
9
|
Kumar A, Durand H, Zeno E, Balsollier C, Watbled B, Sillard C, Fort S, Baussanne I, Belgacem N, Lee D, Hediger S, Demeunynck M, Bras J, De Paëpe G. The surface chemistry of a nanocellulose drug carrier unravelled by MAS-DNP. Chem Sci 2020; 11:3868-3877. [PMID: 34122855 PMCID: PMC8152408 DOI: 10.1039/c9sc06312a] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cellulose nanofibrils (CNF) are renewable bio-based materials with high specific area, which makes them ideal candidates for multiple emerging applications including for instance on-demand drug release. However, in-depth chemical and structural characterization of the CNF surface chemistry is still an open challenge, especially for low weight percentage of functionalization. This currently prevents the development of efficient, cost-effective and reproducible green synthetic routes and thus the widespread development of targeted and responsive drug-delivery CNF carriers. We show in this work how we use dynamic nuclear polarization (DNP) to overcome the sensitivity limitation of conventional solid-state NMR and gain insight into the surface chemistry of drug-functionalized TEMPO-oxidized cellulose nanofibrils. The DNP enhanced-NMR data can report unambiguously on the presence of trace amounts of TEMPO moieties and depolymerized cellulosic units in the starting material, as well as coupling agents on the CNFs surface (used in the heterogeneous reaction). This enables a precise estimation of the drug loading while differentiating adsorption from covalent bonding (∼1 wt% in our case) as opposed to other analytical techniques such as elemental analysis and conductometric titration that can neither detect the presence of coupling agents, nor differentiate unambiguously between adsorption and grafting. The approach, which does not rely on the use of 13C/15N enriched compounds, will be key to further develop efficient surface chemistry routes and has direct implication for the development of drug delivery applications both in terms of safety and dosage. DNP-enhanced solid-state NMR unravels the surface chemistry of functionalized nanocellulose.![]()
Collapse
Affiliation(s)
- Akshay Kumar
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-MEM Grenoble France
| | | | - Elisa Zeno
- Centre Technique du Papier (CTP) Grenoble France
| | - Cyril Balsollier
- Univ. Grenoble Alpes, CNRS, CERMAV Grenoble France.,Univ. Grenoble Alpes, CNRS, DPM Grenoble France
| | | | - Cecile Sillard
- Univ. Grenoble Alpes, CNRS, Grenoble-INP, LGP2 Grenoble France
| | | | | | - Naceur Belgacem
- Univ. Grenoble Alpes, CNRS, Grenoble-INP, LGP2 Grenoble France
| | - Daniel Lee
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-MEM Grenoble France
| | - Sabine Hediger
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-MEM Grenoble France
| | | | - Julien Bras
- Univ. Grenoble Alpes, CNRS, Grenoble-INP, LGP2 Grenoble France
| | - Gaël De Paëpe
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-MEM Grenoble France
| |
Collapse
|
10
|
Cho CH, Kim JY, Park ES. Systematic approach to elucidate compaction behavior of acyclovir using a compaction simulator. Int J Pharm 2020; 575:118904. [PMID: 31846727 DOI: 10.1016/j.ijpharm.2019.118904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 11/19/2022]
Abstract
In this research, various approaches were attempted with a compaction simulator to investigate the unidentified compaction behavior of acyclovir, a model compound. Various indicators for the compaction behavior of acyclovir were obtained and compared with those of three commonly used excipients with relatively well-known compaction behavior. From two frequently used powder compaction models, the Heckel and Walker models, curvature of plot, yield stress, D0, SRS value, and W value were acquired. In addition, compression and elastic energies were obtained during the loading and unloading phases, respectively. The ratio of the two energies was also utilized. To characterize the mechanical properties of materials during bond formation, the radial tensile strength of powder compacts was measured. For all evaluations, the effects of compaction rate and lubrication were studied simultaneously. We found that primary particles of acyclovir were compacted mainly by plastic flow, with high viscoelasticity and low particle interactions. Their bond formation was highly sensitive to strain rate and lubrication. This study showed the potential application of a compaction simulator to elucidate the compaction behavior of a material of interest.
Collapse
Affiliation(s)
- Cheol-Hee Cho
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ju-Young Kim
- College of Pharmacy, Woosuk University, Wanju-gun 55338, Republic of Korea
| | - Eun-Seok Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
11
|
Xiao D, Liang W, Li Z, Cheng J, Du Y, Zhao J. High foliar affinity cellulose for the preparation of efficient and safe fipronil formulation. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121408. [PMID: 31677913 DOI: 10.1016/j.jhazmat.2019.121408] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/05/2019] [Accepted: 10/05/2019] [Indexed: 05/15/2023]
Abstract
In this work, fipronil was encapsulated within ethanediamine-modified carboxymethylcellulose (ACMC) to prepare an efficient and environmentally safe pesticide formulation (ACMCF). The chemical structure, morphology, foliar adhesion, bioactivity, and soil mobility of ACMCF were also systematically investigated. Results demonstrated that fipronil was encapsulated to form microcapsules successfully. Compared with the traditional fipronil emulsion (FE), ACMCF had a relatively high retention rate on cucumber and peanut leaves. The acute contact toxicity of ACMCF (LD50 = 0.151 μg a.i./bee) toward Apis mellifera was far lower than that of FE (LD50 = 0.00204 μg a.i./bee). Biological activity surveys confirmed that ACMCF has insecticidal ability against Plutella xylostella similar to that of FE. Moreover, the leaching and migration properties of ACMCF in three different kinds soils were weaker than those of FE. These results imply that ACMCF has promising application potential in increasing the effective utilization of fipronil and reducing risk to non-target organisms and the environment.
Collapse
Affiliation(s)
- Douxin Xiao
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Wenlong Liang
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Zhongshan Li
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Jingli Cheng
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Yongjun Du
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Jinhao Zhao
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
12
|
Fujisawa S, Togawa E, Kuroda K, Saito T, Isogai A. Fabrication of ultrathin nanocellulose shells on tough microparticles via an emulsion-templated colloidal assembly: towards versatile carrier materials. NANOSCALE 2019; 11:15004-15009. [PMID: 31298680 DOI: 10.1039/c9nr02612f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Here, we develop a robust approach to forming an ∼8 nm thick cellulose nanofiber (CNF) shell on polymer microparticles through an emulsion-templated assembly. The median diameter of the CNF-shelled microparticles was 3.0 μm. The microparticles showed good dispersibility in water with a ζ-potential of -46.7 ± 0.5 mV and had good mechanical resistance. The surface CNF shells showed pH-sensitive drug loading/releasing properties, which suggest potential for a range of therapeutic and biomedical applications.
Collapse
Affiliation(s)
- Shuji Fujisawa
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.
| | | | | | | | | |
Collapse
|
13
|
Meng Y, Lu J, Cheng Y, Li Q, Wang H. Lignin-based hydrogels: A review of preparation, properties, and application. Int J Biol Macromol 2019; 135:1006-1019. [PMID: 31154040 DOI: 10.1016/j.ijbiomac.2019.05.198] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 12/12/2022]
Abstract
Lignin as the second most abundant and the only polyaromatics-contained bio-polymer in plant has been most studied for various applications. In the past decade, the utilization of lignin for value-added materials has been extensively sought after since lignin valorization represents one of the main challenging issues of the paper industry and lignocellulosic biorefinery. Among these researches, making lignin into hydrogels has great potential for upgrading lignin into functional materials. In this review, lignin hydrogel is wrapped up with preparation strategies, properties and applications. The major cross-linking strategies to synthesize lignin-based hydrogels were reviewed first, including monomers copolymerization, crosslinking of monomers with reactive polymer precursors and polymer-polymer crosslinking. Two most important properties of mechanical and porous structures of lignin hydrogel were then discussed. More importantly, we extensively reviewed current applications of lignin hydrogel, including absorption, controlled release, smart materials for stimuli sensitive, biosensors and electrodes. These applications have paved avenues for lignin valorization. Overall, this paper covers recent advancements regarding lignin-based hydrogel and represents a timely review of this promising material.
Collapse
Affiliation(s)
- Yi Meng
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Jie Lu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yi Cheng
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Qiang Li
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77840, USA.
| | - Haisong Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|