1
|
Ma’ali A, Naseef H, Qurt M, Abukhalil AD, Rabba AK, Sabri I. The Preparation and Evaluation of Cyanocobalamin Mucoadhesive Sublingual Tablets. Pharmaceuticals (Basel) 2023; 16:1412. [PMID: 37895883 PMCID: PMC10610133 DOI: 10.3390/ph16101412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Cobalamin (vitamin B12), an essential vitamin with low oral bioavailability, plays a vital role in cellular functions. This research aimed to enhance the absorption of vitamin B12 using sublingual mucoadhesive tablets by increasing the residence time of the drug at the administration site. This research involved the preparation of different 50 mg placebo formulas using different methods. Formulas with disintegration times less than one minute and appropriate physical characteristics were incorporated into 1 mg of cyanocobalamin (S1-S20) using the direct compression method. The tablets obtained were evaluated ex vivo for residence time, and only those remaining for >15 min were included. The final formulas (S5, S8, S11, and S20) were evaluated in several ways, including pre- and post-compression, drug content, mucoadhesive strength, dissolution, and Permeapad® permeation test employed in the Franz diffusion cell. After conducting the evaluation, formula S11 (Eudragit L100-55) emerged as the most favorable formulation. It exhibited a mucoadhesive residence time of 118.2 ± 2.89 min, required a detachment force of 26 ± 1 g, maintained a drug content of 99.124 ± 0.001699%, and achieved a 76.85% drug release over 22 h, fitting well with the Peppas-Sahlin kinetic model (R2: 0.9949). This suggests that the drug release process encompasses the Fickian and non-Fickian kinetic mechanisms. Furthermore, Eudragit L100-55 demonstrated the highest permeability, boasting a flux value of 6.387 ± 1.860 µg/h/cm2; over 6 h. These findings indicate that including this polymer in the formulation leads to an improved residence time, which positively impacts bioavailability.
Collapse
Affiliation(s)
| | - Hani Naseef
- Pharmacy Department, Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Ramallah P.O. Box 14, Palestine; (A.M.); (M.Q.); (A.D.A.); (A.K.R.); (I.S.)
| | | | | | | | | |
Collapse
|
2
|
El-Say KM, Al-Hejaili OD, El-Sawy HS, Alhakamy NA, Abd-Allah FI, Safo MK, Ahmed TA. Incorporating sodium deoxycholate endorsed the buccal administration of avanafil to heighten the bioavailability and duration of action. Drug Deliv Transl Res 2023:10.1007/s13346-023-01314-x. [PMID: 36853437 DOI: 10.1007/s13346-023-01314-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 03/01/2023]
Abstract
The highly effective phosphodiesterase type 5 inhibitor (avanafil; AVA) is routinely prescribed to treat erectile dysfunction. The drug has poor oral bioavailability and undergoes a significant first-pass metabolism. Therefore, altering AVA's solubility and choosing a different delivery method may boost its effectiveness. Nine different solid dispersion formulations utilizing polyvinylpyrrolidone (PVP) at three different ratios were prepared and characterized. The Box-Behnken design was employed to optimize AVA-buccal tablets. The pre-compression and post-compression characteristics of the tablets were assessed. The mucoadhesion strength of the optimized tablet was investigated using cow buccal mucosal tissue. In vivo performance of the optimized tablets was examined on human volunteers compared to the commercial tablets. PVP K90 at 2:1 drug to polymer ratio showed the highest solubilization capacity. The mucoadhesive polymer type and percentage and the mucopenetration enhancer percentage were significantly affect the mucoadhesion strength, tablet hardness, and the initial and cumulative AVA released from the prepared tablets. The optimized AVA-buccal tablet showed 4.96 folds increase in the mean residence time, higher plasma exposure, and an improvement in the relative bioavailability of AVA by 1076.27% compared with the commercial tablet. Therefore, a successful approach to deal with AVA first-pass metabolism and low bioavailability could be to employ buccal tablets containing a solubility-enhanced form of AVA.
Collapse
Affiliation(s)
- Khalid M El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Omar D Al-Hejaili
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hossam S El-Sawy
- Department of Pharmaceutics and Pharmaceutical Technology, Egyptian Russian University, Cairo, 11829, Egypt
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Fathy I Abd-Allah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, 11651, Egypt
| | - Martin K Safo
- Department of Medicinal Chemistry and the Institute for Structural Biology, Drug Discovery and Development School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Tarek A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
3
|
Jawed S, Cs S. Exploration of polymethacrylate and Hypromellose for the development of a non-sulfhydryl ACE inhibitor mucoadhesive system using Box-Behnken design: in-vitro and ex-vivo evaluation. Drug Dev Ind Pharm 2023; 49:115-128. [PMID: 36827197 DOI: 10.1080/03639045.2023.2184636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
PURPOSE To counteract early morning pathology like hypertension a time-dependent release of the drug is required. This study is focused to formulate a pulsatile and mucoadhesive drug delivery system of an ACE inhibitor Perindopril Erbumine. METHOD Two matrix tablets were punched with Eudragit RSPO, Eudragit RLPO, and HPMC K15M using a 3-3-3 Box-Behnken Design of Response Surface Methodology. Based on the design-optimized formulation P1T3 and P2T8 were coated for a lag time with compression coating of HPMC K4M and a blend of 1:1 ratio of ethylcellulose and carbopol polymer and further encapsulated in a Eudracap™ capsule to provide gastric resistance. RESULT The in-vitro release data confirmed an initial pause phase of 4.5 h then release of the drug for 5.2 ± 0.3 h to cope with the early morning rush in blood pressure. After that, a gap of 6 h and then sustained release of the drug for 10.5 ± 0.5 h. From the ex-vivo study, mucoadhesive strength was obtained as 55.13 ± 0.03 gm and 56.39 ± 0.02 gm for P1T3 and P2T8 respectively. The lag time for coated tablet P1T3 came to 2.15 ± 0.15 h and for P2T8 11.9 ± 0.10 h proving the coating efficiency of polymers. CONCLUSION The current study strongly suggests that perindopril Erbumine in association with Eudragit and Hypromellose polymer can open a path for the time-regulated release of the drug for hypertension chronotherapy with less risk of dose dumping.
Collapse
Affiliation(s)
- Saniya Jawed
- Faculty of Pharmaceutical Sciences, PES University, Bangalore, India
| | - Satish Cs
- Faculty of Pharmaceutical Sciences, PES University, Bangalore, India
| |
Collapse
|
4
|
Oteiro AA, Delboni LA, Pedro de Freitas LA, Lara MG. Analysis of interactions between polymeric gel and esophageal mucosae by a multivariate experimental approach. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
A novel versatile flow-donor chamber as biorelevant ex-vivo test assessing oral mucoadhesive formulations. Eur J Pharm Sci 2021; 166:105983. [PMID: 34461276 DOI: 10.1016/j.ejps.2021.105983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
Oral transmucosal drug delivery is a non-invasive administration route for rapid therapeutic onset and greater bioavailability avoiding the first-pass metabolism. Mucoadhesive formulations are advantageous as they may retain the drug at the administration site. Proper equipment to assess mucoadhesive properties and corresponding drug absorption is fundamental for the development of novel drug delivery systems. Here we developed a new flow-through donor chamber for well-established diffusion cells, and we tested the effects on drug and formulation retention in situ of adding mucoadhesive polymers or mesoporous silica particles to a reference formulation. Mesoporous silica particles are of particular interest as they may be used to encapsulate and retain drug molecules. Compared to other ex-vivo methods described in literature for assessing mucoadhesive performance and transmucosal drug delivery, this new donor chamber provides several advantages: i) it reflects physiological conditions better as a realistic saliva flow can be provided over the administration site, ii) it is versatile since it can be mounted on any kind of vertical diffusion cell allowing simultaneous detection of drug retention at the administration site and drug permeation through the tissue, and iii) it enables optical quantification of formulations residence time aided by image processing. This new flow-through donor diffusion cell set-up proved sensitive to differentiate a reference formulation from one where 20 %(w/w) Carbomer was added (to further improve the mucoadhesive properties), with respect to both drug and formulation residence times. We also found that mesoporous silica particles, investigated as particles only and mixed together with the reference formulation, gave very similar drug and formulation retention to what we observed with the mucoadhesive Carbomer. However, after some time (>30 min) it became obvious that the tablet excipients in the reference formulation promote particle retention on the mucosa. This work provides a new simple and versatile biorelevant test for the evaluation of oral mucoadhesive formulations and paves the way for further studies on mesoporous silica particles as valuable excipients for enhancing oral mucoadhesion.
Collapse
|
6
|
Nordström EA, Teixeira C, Montelius C, Jeppsson B, Larsson N. Lactiplantibacillus plantarum 299v (LP299V ®): three decades of research. Benef Microbes 2021; 12:441-465. [PMID: 34365915 DOI: 10.3920/bm2020.0191] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review aims to provide a comprehensive overview of the in vitro, animal, and clinical studies with the bacterial strain Lactiplantibacillus plantarum 299v (L. plantarum 299v; formerly named Lactobacillus plantarum 299v) published up until June 30, 2020. L. plantarum 299v is the most documented L. plantarum strain in the world, described in over 170 scientific publications out of which more than 60 are human clinical studies. The genome sequence of L. plantarum 299v has been determined and is available in the public domain (GenBank Accession number: NZ_LEAV01000004). The probiotic strain L. plantarum 299v was isolated from healthy human intestinal mucosa three decades ago by scientists at Lund University, Sweden. Thirty years later, a wealth of data coming from in vitro, animal, and clinical studies exist, showing benefits primarily for gastrointestinal health, such as reduced flatulence and abdominal pain in patients with irritable bowel syndrome (IBS). Moreover, several clinical studies have shown positive effects of L. plantarum 299v on iron absorption and more recently also on iron status. L. plantarum 299v is safe for human consumption and does not confer antibiotic resistance. It survives the harsh conditions of the human gastrointestinal tract, adheres to mannose residues on the intestinal epithelial cells and has in some cases been re-isolated more than ten days after administration ceased. Besides studying health benefits, research groups around the globe have investigated L. plantarum 299v in a range of applications and processes. L. plantarum 299v is used in many different food applications as well as in various dietary supplements. In a freeze-dried format, L. plantarum 299v is robust and stable at room temperature, enabling long shelf-lives of consumer healthcare products such as capsules, tablets, or powder sachets. The strain is patent protected for a wide range of indications and applications worldwide as well as trademarked as LP299V®.
Collapse
Affiliation(s)
| | - C Teixeira
- Probi AB, Ideongatan 1A, 22370 Lund, Sweden
| | | | - B Jeppsson
- Department of Surgery, Lund University, Universitetssjukhuset, 22184 Lund, Sweden
| | - N Larsson
- Probi AB, Ideongatan 1A, 22370 Lund, Sweden
| |
Collapse
|
7
|
Mucoadhesion and Mucopenetration of Cannabidiol (CBD)-Loaded Mesoporous Carrier Systems for Buccal Drug Delivery. Sci Pharm 2021. [DOI: 10.3390/scipharm89030035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Transmucosal drug delivery represents a promising noninvasive option when drugs are employed which have a low oral bioavailability like CBD. However, this concept can only be successful as long as the formulation provides sufficient buccal retention and mucosal penetration. In this study, mucoadhesive carrier systems were evaluated consisting of CBD-loaded silica (Aeroperl 300) carriers, mucoadhesive polymers (Hypromellose (HPMC), chitosan and carbomer) and propylene glycol as a penetration enhancer. Mucoadhesive effect, drug release and penetration ability were evaluated for each carrier system. The results show that the addition of HPMC and carbomer substantially improve mucoadhesion compared to pure CBD, with an increase of 16-fold and 20-fold, respectively. However, due to their strong swelling, HPMC and carbomer hinder the penetration of CBD and rely on co-administration of propylene glycol as an enhancer to achieve sufficient mucosal absorption. Chitosan, on the other hand, achieves an 8-fold increase in mucoadhesion and enhances the amount of CBD absorbed by three times compared to pure CBD. Thus, chitosan represents a promising polymer to combine both effects. Considering the results, the development of silica-based buccal drug delivery systems is a promising approach for the effective delivery of CBD.
Collapse
|
8
|
Hoffmann A, Fischer JT, Daniels R. Development of probiotic orodispersible tablets using mucoadhesive polymers for buccal mucoadhesion. Drug Dev Ind Pharm 2020; 46:1753-1762. [DOI: 10.1080/03639045.2020.1831013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Anja Hoffmann
- Department of Pharmaceutical Technology, Eberhard Karls University, Tuebingen, Germany
| | | | - Rolf Daniels
- Department of Pharmaceutical Technology, Eberhard Karls University, Tuebingen, Germany
| |
Collapse
|
9
|
Ahmed TA, Bawazir AO, Alharbi WS, Safo MK. Enhancement of Simvastatin ex vivo Permeation from Mucoadhesive Buccal Films Loaded with Dual Drug Release Carriers. Int J Nanomedicine 2020; 15:4001-4020. [PMID: 32606661 PMCID: PMC7294046 DOI: 10.2147/ijn.s256925] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Simvastatin (SMV), a hypocholesterolemic agent, suffers from very low bioavailability due to its poor aqueous solubility and extensive first-pass metabolism. METHODS Two SMV carrier systems, namely, polymeric drug inclusion complex (IC) and mixed micelles (MM) nanoparticles, were developed and loaded into mucoadhesive buccal films to enhance SMV bioavailability. The two carrier systems were characterized and their permeation across human oral epithelial cells (OEC) was studied. The effect of IC to MM ratio (X1) and the mucoadhesive polymer concentration (X2) on the cumulative percent of drug released, elongation percent and the mucoadhesive strength, from the prepared mucoadhesive films, were optimized. Ex vivo permeation across bovine mucosal tissue was investigated. The permeation parameters for the in vitro and ex vivo release data were calculated. RESULTS Complexation of SMV with hydroxypropyl beta-cyclodextrin (HP β-CD) was superior to all other polymers as revealed by the equilibrium saturation solubility, stability constant, complexation efficiency and thermodynamic potential. SMV-HP β-CD IC was utilized to develop a saturated polymeric drug solution. Both carrier systems showed enhanced permeation across OEC when compared to pure drug. X1 and X2 were significantly affecting the characteristics of the prepared films. The optimized mucoadhesive buccal film formulation loaded with SMV IC and drug MM nanoparticles demonstrated superior ex vivo permeation when compared to the corresponding pure drug buccal film, and the calculated permeation parameters confirmed this finding. CONCLUSION Mucoadhesive buccal films containing SMV IC and drug MM can be used to improve drug bioavailability; however, additional pharmacokinetic and pharmacodynamic studies are required.
Collapse
Affiliation(s)
- Tarek A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Alaa O Bawazir
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Waleed S Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Martin K Safo
- Department of Medicinal Chemistry and the Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA23298, USA
| |
Collapse
|
10
|
Li T, Bao Q, Shen J, Lalla RV, Burgess DJ. Mucoadhesive in situ forming gel for oral mucositis pain control. Int J Pharm 2020; 580:119238. [DOI: 10.1016/j.ijpharm.2020.119238] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/08/2020] [Accepted: 03/15/2020] [Indexed: 01/20/2023]
|
11
|
Han X, Shan X, Du Y, Pang S, Hu L. Development and evaluation of novel innovative multi-channel aripiprazole orally disintegrating tablets. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Rohani Shirvan A, Bashari A, Hemmatinejad N. New insight into the fabrication of smart mucoadhesive buccal patches as a novel controlled-drug delivery system. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Ultra-fast disintegrating ODTs comprising viable probiotic bacteria and HPMC as a mucoadhesive. Eur J Pharm Biopharm 2019; 139:240-245. [PMID: 30946916 DOI: 10.1016/j.ejpb.2019.03.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/20/2019] [Accepted: 03/30/2019] [Indexed: 01/28/2023]
Abstract
Orodispersible tablets (ODTs) are a convenient dosage form and a recent trend in formulation development. The fast disintegration is accompanied by rapid removal of the active principle and the excipients from the mouth due to saliva flow and swallowing. Probiotic bacteria are a promising strategy to fight disease with bacterial aetiology in the mouth, but a certain residence time in the oral cavity is inevitable to exert their positive effects. The addition of a mucoadhesive polymer, like hydroxypropyl methylcellulose (HPMC), is an auspicious strategy to prolong this residence time. Nevertheless, the disintegration time of the tablets should still meet the acceptance level from the FDA (<30 s). To reach intimate contact of bacteria and mucoadhesive polymer on the one hand and to support fast disintegration on the other hand, granulation of probiotic bacteria and mucoadhesive HPMC with a methacrylic acid copolymer was performed first. Moreover, high mucoadhesion could be obtained because bacteria and mucoadhesive polymer could interact more strongly with the mucosa after the ODT disintegrated and the methacrylic acid copolymer dissolved in the pH neutral saliva.
Collapse
|