1
|
Sanati M, Amin Yavari S. Liposome-integrated hydrogel hybrids: Promising platforms for cancer therapy and tissue regeneration. J Control Release 2024; 368:703-727. [PMID: 38490373 DOI: 10.1016/j.jconrel.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/10/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Drug delivery platforms have gracefully emerged as an indispensable component of novel cancer chemotherapy, bestowing targeted drug distribution, elevating therapeutic effects, and reducing the burden of unwanted side effects. In this context, hybrid delivery systems artfully harnessing the virtues of liposomes and hydrogels bring remarkable benefits, especially for localized cancer therapy, including intensified stability, excellent amenability to hydrophobic and hydrophilic medications, controlled liberation behavior, and appropriate mucoadhesion to mucopenetration shift. Moreover, three-dimensional biocompatible liposome-integrated hydrogel networks have attracted unprecedented interest in tissue regeneration, given their tunable architecture and physicochemical properties, as well as enhanced mechanical support. This review elucidates and presents cutting-edge developments in recruiting liposome-integrated hydrogel systems for cancer treatment and tissue regeneration.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Saber Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands; Regenerative Medicine Centre Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
2
|
Liu J, Tian Q, Zhang M. Preparation of VX765 sodium alginate nanogels and evaluation of their therapeutic effect via local injection on myocardial infarction in rats. Eur J Med Res 2024; 29:169. [PMID: 38475920 DOI: 10.1186/s40001-024-01765-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Myocardial Infarction (MI) is major cause of heart failure, highlighting the critical need for effective therapeutic strategies to improve cardiac repair. This study investigated the cardioprotective effects of VX765-coated polyethyleneimine (PEI)/sodium alginate (AG) composite nanogels (AG/PEI-VX765 NGs) in a rat model of MI. Additionally, AG-VX765 NGs and PEI-VX765 nanospheres (NPs) were synthesized and tested to compare their efficacy. MI was caused in rats by ligating the left anterior descending branch of the coronary artery, and the rats were grouped and set as Sham, MI, MI + VX765, MI + AG-VX765NGs, MI + PEI-VX765NPs, and MI + AG/PEI-VX765NGs. Results demonstrate that AG/PEI-VX765NGs were non-toxic and exhibited a sustained release of VX765. In vivo, experiments demonstrated that all treatment groups significantly enhanced cardiac function, reduced infarct size, fibrosis, and apoptosis in rats with MI, with the MI + AG/PEI-VX765NGs group exhibiting the most favorable outcomes. Our findings indicate that AG/PEI-VX765NGs represent a promising therapeutic approach for MI treatment.
Collapse
Affiliation(s)
- Jianlong Liu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Shangcai Village, Nanbaixiang, Ouhai District, Wenzhou, 325000, Zhejiang, China
| | - Qingxin Tian
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Shangcai Village, Nanbaixiang, Ouhai District, Wenzhou, 325000, Zhejiang, China
| | - Mingxiao Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Shangcai Village, Nanbaixiang, Ouhai District, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
3
|
Makeiff DA, Smith B, Azyat K, Xia M, Alam SB. Development of Gelled-Oil Nanoparticles for the Encapsulation and Release of Berberine. ACS OMEGA 2023; 8:33774-33784. [PMID: 37744867 PMCID: PMC10515596 DOI: 10.1021/acsomega.3c04230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023]
Abstract
In this study, a new drug carrier based on gelled-oil nanoparticles (GNPs) was designed and synthesized for the encapsulation and release of the model hydrophobic drug, berberine chloride (BCl). Two compositions with different oil phases were examined, sesame oil (SO) and cinnamaldehyde (Cin), which were emulsified with water, stabilized with Tween 80 (Tw80), and gelled using an N-alkylated primary oxalamide low-molecular-weight gelator (LMWG) to give stable dispersions of GNPs between 100 and 200 nm in size. The GNP formulation with Cin was significantly favored over SO due to (1) lower gel melting temperatures, (2) higher gel mechanical strength, and (3) significantly higher solubility, encapsulation efficiency, and loading of BCl. Also, the solubility and loading of BCl in Cin were significantly increased (at least 7-fold) with the addition of cinnamic acid. In vitro release studies showed that the release of BCl from the GNPs was independent of gelator concentration and lower than that for BCl solution and the corresponding nanoemulsion (no LWMG). Also, cell internalization studies suggested that the N-alkylated primary oxalamide LMWG did not interfere with the internalization efficiency of BCl into mouse mast cells. Altogether, this work demonstrates the potential use of these new GNP formulations for biomedical studies involving the encapsulation of drugs and nutraceuticals and their controlled release.
Collapse
Affiliation(s)
- Darren A. Makeiff
- Nanotechnology Research Center, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, Alberta T6G
2M9, Canada
| | - Brad Smith
- Nanotechnology Research Center, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, Alberta T6G
2M9, Canada
| | - Khalid Azyat
- Nanotechnology Research Center, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, Alberta T6G
2M9, Canada
| | - Mike Xia
- Nanotechnology Research Center, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, Alberta T6G
2M9, Canada
| | - Syed Benazir Alam
- Nanotechnology Research Center, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, Alberta T6G
2M9, Canada
| |
Collapse
|
4
|
Pereira L, Ferreira FC, Pires F, Portugal CAM. Magnetic-Responsive Liposomal Hydrogel Membranes for Controlled Release of Small Bioactive Molecules-An Insight into the Release Kinetics. MEMBRANES 2023; 13:674. [PMID: 37505040 PMCID: PMC10385637 DOI: 10.3390/membranes13070674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
This work explores the unique features of magnetic-responsive hydrogels to obtain liposomal hydrogel delivery platforms capable of precise magnetically modulated drug release based on the mechanical responses of these hydrogels when exposed to an external magnetic field. Magnetic-responsive liposomal hydrogel delivery systems were prepared by encapsulation of 1,2-dipalmitoyl-sn-glycero-3-phosphocoline (DPPC) multilayered vesicles (MLVs) loaded with ferulic acid (FA), i.e., DPPC:FA liposomes, into gelatin hydrogel membranes containing dispersed iron oxide nanoparticles (MNPs), i.e., magnetic-responsive gelatin. The FA release mechanisms and kinetics from magnetic-responsive liposomal gelatin were studied and compared with those obtained with conventional drug delivery systems, e.g., free liposomal suspensions and hydrogel matrices, to access the effect of liposome entrapment and magnetic field on FA delivery. FA release from liposomal gelatin membranes was well described by the Korsmeyer-Peppas model, indicating that FA release occurred under a controlled diffusional regime, with or without magnetic stimulation. DPPC:FA liposomal gelatin systems provided smoother controlled FA release, relative to that obtained with the liposome suspensions and with the hydrogel platforms, suggesting the promising application of liposomal hydrogel systems in longer-term therapeutics. The magnetic field, with low intensity (0.08 T), was found to stimulate the FA release from magnetic-responsive liposomal gelatin systems, increasing the release rates while shifting the FA release to a quasi-Fickian mechanism. The magnetic-responsive liposomal hydrogels developed in this work offer the possibility to magnetically activate drug release from these liposomal platforms based on a non-thermal related delivery strategy, paving the way for the development of novel and more efficient applications of MLVs and liposomal delivery systems in biomedicine.
Collapse
Affiliation(s)
- Luís Pereira
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Filipa Pires
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Carla A M Portugal
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
5
|
Meng D, Song J, Yi Y, Li J, Zhang T, Shu Y, Wu X. Controlled released naringin-loaded liposome/sucrose acetate isobutyrate hybrid depot for osteogenesis in vitro and in vivo. Front Bioeng Biotechnol 2023; 10:1097178. [PMID: 36686256 PMCID: PMC9849584 DOI: 10.3389/fbioe.2022.1097178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction: A common problem in bone tissue engineering is that the burst release of active osteogenic factors is not beneficial for osteogenesis. This study aimed to prepare naringin (Ng) liposomes to reduce the burst release of Ng and improve new bone formation. Methods: We synthesized Ng liposomes using the thin-film hydration method. Drug-encapsulation efficacy experiments were conducted using the ultracentrifugation technique. The morphology and size distributions of freezedried liposomes were determined by transmission electron microscopy and dynamic light scattering. The Ng liposomes and Ng-lipo/sucrose acetate isobutyrate (SAIB) depots were characterized using Fourier transform infrared spectroscopy and in vitro release studies. After implantation of the Ng-lipo/SAIB depots, in vitro osteoblast-liposome interactions and in vivo osteogenesis were tested. Results: The formulation of freeze-dried Ng liposomes via an optimized recipe yielded nanosized (136.9 nm) negatively charged particles with a high encapsulation efficiency (~76.3%). Their chemical structure did not change after adding SAIB to the Ng liposomes. The burst release was reduced dramatically from 74.4% to 23.7%. In vivo, after 8 weeks, the new bone formation rate in the calvarial defects of Sprague-Dawley rats receiving Ng-lipo/SAIB was 57% compared with 25.18% in the control group (p = .0003). Discussion: Our results suggested that Ng-lipo/SAIB hybrid depots could serve as candidate materials for drug delivery in bone regeneration applications.
Collapse
Affiliation(s)
- Di Meng
- Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yin Yi
- Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jihong Li
- Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Ting Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yu Shu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xiaohong Wu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,*Correspondence: Xiaohong Wu,
| |
Collapse
|
6
|
Mou Y, Zhang P, Lai WF, Zhang D. Design and applications of liposome-in-gel as carriers for cancer therapy. Drug Deliv 2022; 29:3245-3255. [PMID: 36310364 DOI: 10.1080/10717544.2022.2139021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Cancer has long been a hot research topic, and recent years have witnessed the incidence of cancer trending toward younger individuals with great socioeconomic burden. Even with surgery, therapeutic agents serve as the mainstay to combat cancer in the clinic. Intensive research on nanomaterials can overcome the shortcomings of conventional drug delivery approaches, such as the lack of selectivity for targeted regions, poor stability against degradation, and uncontrolled drug release behavior. Over the years, different types of drug carriers have been developed for cancer therapy. One of these is liposome-in-gel (LP-Gel), which has combined the merits of both liposomes and hydrogels, and has emerged as a versatile carrier for cancer therapy. LP-Gel hybrids have addressed the lack of stability of conventional liposomes against pH and ionic strength while displaying higher efficiency of delivery hydrophilic drugs as compared to conventional gels. They can be classified into three types according to their assembled structure, are characterized by their nontoxicity, biodegradability, and flexibility for clinical use, and can be mainly categorized based on their controlled release, transmucosal delivery, and transdermal delivery properties for anticancer therapy. This review covers the recent progress on the applications of LP-Gel hybrids for anticancer therapy.
Collapse
Affiliation(s)
- Yixuan Mou
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Zhejiang, China
| | - Pu Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Zhejiang, China
| | - Wing-Fu Lai
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Zhejiang, China.,Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Dahong Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Zhejiang, China
| |
Collapse
|
7
|
Yin N, Zhang W, Wei R, Yang Q, He F, Guo L, Feng M. Liposome cocktail activator modulates hepatocytes and remodels the microenvironment to mitigate acute liver failure. Asian J Pharm Sci 2022; 17:867-879. [PMID: 36600898 PMCID: PMC9800940 DOI: 10.1016/j.ajps.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/09/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
Acute liver failure (ALF) is a mortal and critical hepatic disease, in which oxidative stress, inflammation storm and hepatocyte death are crucial in the pathogenesis. Hence, in contrast to the control of a single link, a combination therapy targeting multiple pathogenic links of the disease will be a favorable means to control the progression of the disease. In this study, we constructed dimethyl itaconate-loaded liposomes modified with dodecyl gallate as a cocktail activator to investigate its functional role in acetaminophen (APAP)-induced ALF. Our results demonstrated that the cocktail activator acted on hepatocytes and triggered cocktail efficacy, thereby simultaneously attenuating APAP-induced hepatocyte damage and remodeling the damage microenvironment. The cocktail activator could effectively scavenge reactive oxygen species, inhibit excessive inflammatory responses and reduce cell death in impaired hepatocytes for detoxification. More importantly, the cocktail activator could remodel the damage microenvironment, thus further promoting hepatocyte expansion and specifically switching macrophages from the M1 to M2 phenotype for a favorable liver regeneration of ALF. Furthermore, in APAP-induced ALF mouse model, the cocktail activator improved liver function, alleviated histopathological damage and increased survival rate. In summary, these findings indicate that the cocktail activator may provide a promising therapeutic approach for ALF treatment as a nanomedicine.
Collapse
Affiliation(s)
- Na Yin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Wenjun Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Runxiu Wei
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Qiang Yang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Fengming He
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Ling Guo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Corresponding authors.
| | - Min Feng
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- Corresponding authors.
| |
Collapse
|
8
|
Ali AA, Al-Othman A, Al-Sayah MH. Multifunctional stimuli-responsive hybrid nanogels for cancer therapy: Current status and challenges. J Control Release 2022; 351:476-503. [PMID: 36170926 DOI: 10.1016/j.jconrel.2022.09.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022]
Abstract
With cancer research shifting focus to achieving multifunctionality in cancer treatment strategies, hybrid nanogels are making a rapid rise to the spotlight as novel, multifunctional, stimuli-responsive, and biocompatible cancer therapeutic strategies. They can possess cancer cell-specific cytotoxic effects themselves, carry drugs or enzymes that can produce cytotoxic effects, improve imaging modalities, and target tumor cells over normal cells. Hybrid nanogels bring together a wide range of desirable properties for cancer treatment such as stimuli-responsiveness, efficient loading and protection of molecules such as drugs or enzymes, and effective crossing of cellular barriers among other properties. Despite their promising abilities, hybrid nanogels are still far from being used in the clinic, and their available data remains relatively limited. However, many studies can be done to facilitate this clinical transition. This review is critically summarizing and analyzing the recent information and progress on the use of hybrid nanogels particularly inorganic nanoparticle-based and organic nanoparticle-based hybrid nanogels in the field of oncology and future directions to aid in transferring those results to the clinic. This work concludes that the future of hybrid nanogels is greatly impacted by therapeutic and non-therapeutic factors. Therapeutic factors include the lack of hemocompatibility studies, acute and chronic toxicological studies, and information on agglomeration capability and extent, tumor heterogeneity, interaction with proteins in physiological fluids, endocytosis-exocytosis, and toxicity of the nanogels' breakdown products. Non-therapeutic factors include the lack of clear regulatory guidelines and standardized assays, limitations of animal models, and difficulties associated with good manufacture practices (GMP).
Collapse
Affiliation(s)
- Amaal Abdulraqeb Ali
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| | - Amani Al-Othman
- Department of Chemical Engineering, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates.
| | - Mohammad H Al-Sayah
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| |
Collapse
|
9
|
Fardous J, Omoso Y, Yoshida K, Ono F, Patwary MKA, Ijima H. Gel-in-water nanodispersion for potential application in intravenous delivery of anticancer drugs. J Biosci Bioeng 2021; 133:174-180. [PMID: 34789413 DOI: 10.1016/j.jbiosc.2021.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/09/2021] [Accepted: 10/01/2021] [Indexed: 12/25/2022]
Abstract
Organogels are semi-solid systems that can gel organic liquids at low concentrations. The use of organogels in drug delivery has grown rapidly in the last decade owing to their fibrous microstructure and suitability for different routes of administration. The current study is characterized by nanogel dispersion (NGD) development based on emulsion technology. The efficiency of this organogel based NGD as a carrier for anticancer drugs was assessed both in vitro and in vivo. 12-Hydroxystearic acid formed an organogel with lipiodol and encapsulated the anticancer drug paclitaxel. The gel-in-water (G/W) nanodispersion was prepared via ultrasonication and stabilized by a nonionic surfactant. The results showed that the organogel enabled sustained drug release from G/W nanodispersion over time, along with enhanced cellular uptake. The prepared G/W nanodispersion was found to be biocompatible with mouse hepatocytes and fibroblast cells in vitro, whereas paclitaxel-loaded G/W nanodispersion showed cytotoxicity (p <0.05) against lung cancer (A549) cell lines. Similarly, intravenous administration of paclitaxel-loaded G/W nanodispersion exerts an anticancer effect against lung cancer in vivo, with a significant decrease in tumor volume (p <0.05). Therefore, the proposed G/W nanodispersion could be a promising carrier for chemotherapy agents with sustained drug release and better therapeutic outcomes against cancer.
Collapse
Affiliation(s)
- Jannatul Fardous
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Department of Pharmacy, Faculty of Science, Comilla University, Cumilla 3506, Bangladesh.
| | - Yuji Omoso
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Kozue Yoshida
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Fumiyasu Ono
- Global Innovation Center, Kyushu University, Fukuoka Industry-Academia Symphonicity, 4-1 Kyudai-Shinmachi, Nishi-ku, Fukuoka-city, Fukuoka 819-0388, Japan.
| | | | - Hiroyuki Ijima
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
10
|
Espinosa-Dzib A, Vyazovkin S. Nanoconfined gelation in systems based on stearic and 12-hydroxystearic acids: A calorimetric study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Fardous J, Omoso Y, Joshi A, Yoshida K, Patwary MKA, Ono F, Ijima H. Development and characterization of gel-in-water nanoemulsion as a novel drug delivery system. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112076. [PMID: 33947568 DOI: 10.1016/j.msec.2021.112076] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/25/2021] [Accepted: 03/06/2021] [Indexed: 12/19/2022]
Abstract
The effective delivery of anti-cancer drugs with minimal side effects and better therapeutic efficacy has remained an active area of research for many decades. Organogels have gained attention in recent years as potential drug delivery systems due to their high bioavailability, no first-pass metabolism and rapid action. Considering this, in the current study an organogel based nanoemulsion was developed aiming to effectively deliver hydrophobic drugs via encapsulation within in situ gellable organogel droplets, termed as gel-in-water (G/W) nanoemulsion. G/W nanoemulsion was prepared using a combination of lipiodol and organogelator 12-hydroxystearic acid (12-HSA) as inner gel phase; dispersed in water by ultrasonication and stabilized with polyoxyethylene hydrogenated castor oil (HCO-60) as a surfactant. The prepared nanoemulsion showed high drug loading efficiency (≈97%) with a mean diameter of 206 nm. Lower polydispersity index (PdI) value (≈0.1) suggests monodispersed nature of G/W nanoemulsion in the continuous phase. G/W nanoemulsion was found stable over six months in terms of particle size, zeta potential and pH at different storage temperatures. There was no cytotoxic effect of prepared G/W nanoemulsion on primary hepatocytes in vitro. In contrast, paclitaxel-loaded G/W showed a significant decrease in melanoma cell growth (*p < 0.05) both in vitro and in vivo. Our results support the hypothesis that organogel based nanoemulsions can be a promising drug delivery system.
Collapse
Affiliation(s)
- Jannatul Fardous
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Department of Pharmacy, Faculty of Science, Comilla University, Cumilla 3506, Bangladesh
| | - Yuji Omoso
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akshat Joshi
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kozue Yoshida
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | | | - Fumiyasu Ono
- Global Innovation Center, Kyushu University, Fukuoka Industry-Academia Symphonicity 4-1, Kyudai-Shinmachi, Nishi-ku, Fukuoka-city, Fukuoka 819-0388, Japan
| | - Hiroyuki Ijima
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
12
|
Kuznetsova DA, Gabdrakhmanov DR, Gaynanova GA, Vasileva LA, Kuznetsov DM, Lukashenko SS, Voloshina AD, Sapunova AS, Nizameev IR, Sibgatullina GV, Samigullin DV, Kadirov MK, Petrov KA, Zakharova LY. Novel biocompatible liposomal formulations for encapsulation of hydrophilic drugs – Chloramphenicol and cisplatin. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125673] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Mirgorodskaya AB, Kuznetsova DA, Kushnazarova RA, Gabdrakhmanov DR, Zhukova NA, Lukashenko SS, Sapunova AS, Voloshina AD, Sinyashin OG, Mamedov VA, Zakharova LY. Soft nanocarriers for new poorly soluble conjugate of pteridine and benzimidazole: Synthesis and cytotoxic activity against tumor cells. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
A nanofiber-based drug depot with high drug loading for sustained release. Int J Pharm 2020; 583:119397. [DOI: 10.1016/j.ijpharm.2020.119397] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/13/2020] [Accepted: 04/30/2020] [Indexed: 12/24/2022]
|
15
|
Alginate-coating of artemisinin-loaded cochleates results in better control over gastro-intestinal release for effective oral delivery. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.04.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
16
|
Lyu Y, Xiao Q, Li Y, Wu Y, He W, Yin L. "Locked" cancer cells are more sensitive to chemotherapy. Bioeng Transl Med 2019; 4:e10130. [PMID: 31249880 PMCID: PMC6584094 DOI: 10.1002/btm2.10130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 12/23/2022] Open
Abstract
The treatment of metastatic cancer is a great challenging issue throughout the world. Conventional chemotherapy can kill the cancer cells and, whereas, would exacerbate the metastasis and induce drug resistance. Here, a new combinatorial treatment strategy of metastatic cancer was probed via subsequentially dosing dual nanomedicines, marimastat-loaded thermosensitive liposomes (MATT-LTSLs) and paclitaxel nanocrystals (PTX-Ns), via intravenous and intratumoral injection. First, the metastasis was blocked and cancer cells were locked in the tumor microenvironment (TME) by delivering the matrix metalloproteinase (MMP) inhibitor, MATT, to the tumor with LTSLs, downregulating the MMPs by threefold and reducing the degradation of the extracellular matrix. And then, the "locked" cancer cells were efficiently killed via intratumoral injection of the other cytotoxic nanomedicine, PTX-Ns, along with no metastasis and 100% inhibition of tumor growth. This work highlights the importance of the TME's integrity in the chemotherapy duration. We believe this is a generalized strategy for cancer treatment and has potential guidance for the clinical administration.
Collapse
Affiliation(s)
- Yaqi Lyu
- Department of Pharmaceutics School of Pharmacy, China Pharmaceutical University Nanjing China
| | - Qingqing Xiao
- Department of Pharmaceutics School of Pharmacy, China Pharmaceutical University Nanjing China
| | - Yi Li
- Department of Pharmaceutics School of Pharmacy, China Pharmaceutical University Nanjing China
| | - Yubing Wu
- Department of Pharmaceutics School of Pharmacy, China Pharmaceutical University Nanjing China
| | - Wei He
- Department of Pharmaceutics School of Pharmacy, China Pharmaceutical University Nanjing China
| | - Lifang Yin
- Department of Pharmaceutics School of Pharmacy, China Pharmaceutical University Nanjing China
| |
Collapse
|
17
|
Kuznetsova DA, Gabdrakhmanov DR, Lukashenko SS, Ahtamyanova LR, Nizameev IR, Kadirov MK, Zakharova LY. Novel hybrid liposomal formulations based on imidazolium-containing amphiphiles for drug encapsulation. Colloids Surf B Biointerfaces 2019; 178:352-357. [PMID: 30901595 DOI: 10.1016/j.colsurfb.2019.03.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/05/2019] [Accepted: 03/13/2019] [Indexed: 11/30/2022]
Abstract
Novel liposomes based on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and imidazolium-containing amphiphiles with various length of hydrophobic tail at various molar ratio of components have been fabricated. Obtained formulations were characterized using dynamic and electrophoretic light scattering as well as transmission electron microscopy techniques. It has been established, that DPPC liposomes modification by these cationic amphiphiles resulted in zeta potential increase from +3 mV to +45-70 mV and improve its stability for a long time (more than 6 months, whereas unmodified liposomes have been destructed after 2 weeks of storage). Hydrodynamic diameter of prepared hybrid liposomes was in the range of 70-100 nm depending on its composition. Fabricated hybrid carriers have been used for drug (metronidazole) encapsulation. It has been shown, that superior encapsulation characteristics (encapsulation efficiency was 75%) exhibited hybrid liposomes composed from octadecyl derivative. Increase of the time of total release of encapsulated drug from hybrid liposomes in comparison with unencapsulated drug by 1.7 times has been demonstrated.
Collapse
Affiliation(s)
- Darya A Kuznetsova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, Kazan, Russian Federation
| | - Dinar R Gabdrakhmanov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, Kazan, Russian Federation.
| | - Svetlana S Lukashenko
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, Kazan, Russian Federation
| | - Landysh R Ahtamyanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, Kazan, Russian Federation
| | - Irek R Nizameev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, Kazan, Russian Federation
| | - Marsil K Kadirov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, Kazan, Russian Federation
| | - Lucia Ya Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, Kazan, Russian Federation
| |
Collapse
|
18
|
Prathap A, Ravi A, Pathan JR, Sureshan KM. Halobenzyl alcohols as structurally simple organogelators. CrystEngComm 2019. [DOI: 10.1039/c9ce01008d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report 11 simple halobenzyl alcohols, each comprising of only 16 atoms, as organogelators for aliphatic hydrocarbon solvents. Their self-assembly is similar in both gel and crystal states and involve OH⋯O, CH⋯O, CH⋯π, O⋯X, CH⋯X and X⋯X interactions.
Collapse
Affiliation(s)
- Annamalai Prathap
- School of Chemistry
- Indian Institute of Science Education and Research Thiruvananthapuram
- Vithura
- India
| | - Arthi Ravi
- School of Chemistry
- Indian Institute of Science Education and Research Thiruvananthapuram
- Vithura
- India
| | - Javed R. Pathan
- School of Chemistry
- Indian Institute of Science Education and Research Thiruvananthapuram
- Vithura
- India
| | - Kana M. Sureshan
- School of Chemistry
- Indian Institute of Science Education and Research Thiruvananthapuram
- Vithura
- India
| |
Collapse
|