1
|
Ma Y, Cong Z, Gao P, Wang Y. Nanosuspensions technology as a master key for nature products drug delivery and In vivo fate. Eur J Pharm Sci 2023; 185:106425. [PMID: 36934992 DOI: 10.1016/j.ejps.2023.106425] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
The drug nanosuspensions is a universal formulation approach for improved drug delivery of hydrophobic drugs and one the most promising approaches for increasing the biopharmaceutical performance of poorly water-soluble drug substances, especially for nature products. This review aimed to summarize the nanosuspensions preparation approaches and the main technological difficulties encountered in nanosuspensions development, such as guidelines for stabilizers screening, in vivo fate of the intravenously administrated nanosuspensions, and how to realize the intravenously target delivery was reviewed. Furthermore, challenges of nanosuspensions for the nature products delivery also was discussed and commented. Therefore, it hoped to provide reference and assistance for the nanosuspensions production, stabilizers usage, and predictability of in vivo fate and controllability of targeting delivery of the nature products nanosuspensions.
Collapse
Affiliation(s)
- Yingying Ma
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P R China
| | - Zhufeng Cong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Peng Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yancai Wang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P R China
| |
Collapse
|
2
|
Everaerts M, Cools L, Adriaensens P, Reekmans G, Baatsen P, Van den Mooter G. Investigating the Potential of Ethyl Cellulose and a Porosity-Increasing Agent as a Carrier System for the Formulation of Amorphous Solid Dispersions. Mol Pharm 2022; 19:2712-2724. [PMID: 35476407 DOI: 10.1021/acs.molpharmaceut.1c00972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In the present work, an insoluble polymer, i.e., ethyl cellulose (EC), was combined with the water-soluble polyvinylpyrrolidone (PVP) as a carrier system for the formulation of amorphous solid dispersions. The rationale was that by conjoining these two different types of carriers a more gradual drug release could be created with less risk for precipitation. Our initial hypothesis was that upon contact with the dissolution medium, PVP would be released, creating a porous EC matrix through which the model drug indomethacin could diffuse. On the basis of observations of EC as a coating material, the effect of the molecular weight of PVP, and the ratio of EC/PVP on the miscibility of the polymer blend, the solid state of the solid dispersion and the drug release from these solid dispersions were investigated. X-ray powder diffraction, modulated differential scanning calorimetry, and solid-state nuclear magnetic resonance were used to unravel the miscibility and solid-state properties of these blends and solid dispersions. Solid-state nuclear magnetic resonance appeared to be a crucial technique for this aspect as modulated differential scanning calorimetry was not sufficient to grasp the complex phase behavior of these systems. Both EC/PVP K12 and EC/PVP K25 blends were miscible over the entire composition range, and addition of indomethacin did not alter this. Concerning the drug release, it was initially thought that more PVP would lead to faster drug release with a higher probability that all of the drug molecules would be able to diffuse out of the EC network as more pores would be created. However, this view on the release mechanism appeared to be too simplistic as an optimum was observed for both blends. On the basis of this work, it could be concluded that drug release from this complex ternary system was affected not only by the ratio of EC/PVP and the molecular weight of PVP but also by interactions between the three components, the wettability of the formulations, and the viscosity layer that was created around the particles.
Collapse
Affiliation(s)
- Melissa Everaerts
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Campus Gasthuisberg ON2, Herestraat 49 b921, 3000 Leuven, Belgium
| | - Lennert Cools
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Campus Gasthuisberg ON2, Herestraat 49 b921, 3000 Leuven, Belgium
| | - Peter Adriaensens
- Applied and Analytical Chemistry, Hasselt University, Institute for Materials Research, Campus Diepenbeek Agoralaan 1-Building D, 3590 Diepenbeek, Belgium
| | - Gunter Reekmans
- Applied and Analytical Chemistry, Hasselt University, Institute for Materials Research, Campus Diepenbeek Agoralaan 1-Building D, 3590 Diepenbeek, Belgium
| | - Pieter Baatsen
- Electron Microscopy Platform & Bio Imaging Core, VIB-KU Leuven Center for Brain & Disease Research, Department of Neurosciences, KU Leuven, Campus Gasthuisberg ON4, Herestraat 49 b602, 3000 Leuven, Belgium
| | - Guy Van den Mooter
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Campus Gasthuisberg ON2, Herestraat 49 b921, 3000 Leuven, Belgium
| |
Collapse
|
3
|
Podkościelna B, Klimek K, Karczmarzyk Z, Wysocki W, Brodacka M, Serafin K, Kozyra P, Kowalczuk D, Ginalska G, Pitucha M. Polymer microspheres modified with pyrazole derivatives as potential agents in anticancer therapy – preliminary studies. Bioorg Chem 2022; 123:105765. [DOI: 10.1016/j.bioorg.2022.105765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/28/2022] [Accepted: 03/24/2022] [Indexed: 11/28/2022]
|
4
|
da Silva CF, Almeida T, de Melo Barbosa R, Cardoso JC, Morsink M, Souto EB, Severino P. New Trends in Drug Delivery Systems for Veterinary Applications. Pharm Nanotechnol 2021; 9:15-25. [PMID: 32533821 DOI: 10.2174/2211738508666200613214548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/24/2020] [Accepted: 05/04/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The veterinary pharmaceutical industry has shown significant growth in recent decades. Several factors contribute to this increase as the demand for the improvement of the quality of life of both domestic and wild animals, together with the need to improve the quality, productivity, and safety of foodstuffs of animal origin. METHODS The goal of this work was to identify the most suitable medicines for animals that focus on drug delivery routes as those for humans, although they may have different devices, such as collars and ear tags. RESULTS Recent advances in drug delivery systems for veterinary use are discussed, both from academic research and the global market. The administration routes commonly used for veterinary medicines are also explored, while special attention is given to the latest technological trends to improve the drug performance, reducing the number of doses, animal stress, and side effects. CONCLUSION Drug delivery system in veterinary decreased the number of doses, side effects, and animal stress that are a small fraction of the benefits of veterinary drug delivery systems and represent a significant increase in profit for the industry; also, it demands investments in research regarding the quality, safety, and efficacy of the drug and the drug delivery systems.
Collapse
Affiliation(s)
- Classius Ferreira da Silva
- Instituto de Ciencias Ambientais, Quimicas e Farmaceuticas, Universidade Federal de Sao Paulo, Sao Paulo, Rua Sao Nicolau, 210, Diadema - SP, CEP 09913-030, Brazil
| | - Taline Almeida
- University of Tiradentes (Unit), Av. Murilo Dantas, 300, 49010- 390, Aracaju, Brazil
| | | | | | - Margaretha Morsink
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, Massachusetts, 02139, United States
| | - Eliana Barbosa Souto
- Faculty of Pharmacy, University of Coimbra (FFUC), Polo das Ciências da Saude, Azinhaga de Santa Comba, 3000- 548, Coimbra, Portugal
| | - Patrícia Severino
- University of Tiradentes (Unit), Av. Murilo Dantas, 300, 49010- 390, Aracaju, Brazil
| |
Collapse
|
5
|
Wang J, Zhang H, Xu J, Qian H, Liu R, Xu Z, Zhu H. Sustained‐release ibuprofen prodrug particle: Emulsifier and initiator regulate the diameter and distribution. J Appl Polym Sci 2021. [DOI: 10.1002/app.49779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jia Wang
- School of Chemistry and Molecular Engineering Nanjing Tech University Nanjing China
| | - Haixin Zhang
- School of Chemistry and Molecular Engineering Nanjing Tech University Nanjing China
| | - Jie Xu
- School of Chemistry and Molecular Engineering Nanjing Tech University Nanjing China
| | - Hao Qian
- School of Chemistry and Molecular Engineering Nanjing Tech University Nanjing China
| | - Rui Liu
- School of Chemistry and Molecular Engineering Nanjing Tech University Nanjing China
| | - Zengchang Xu
- Shanghai Institute of Technical Physics Chinese Academy of Sciences Shanghai China
| | - Hongjun Zhu
- School of Chemistry and Molecular Engineering Nanjing Tech University Nanjing China
| |
Collapse
|
6
|
Unravelling the Miscibility of Poly(2-oxazoline)s: A Novel Polymer Class for the Formulation of Amorphous Solid Dispersions. Molecules 2020; 25:molecules25163587. [PMID: 32781768 PMCID: PMC7465563 DOI: 10.3390/molecules25163587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
Water-soluble polymers are still the most popular carrier for the preparation of amorphous solid dispersions (ASDs). The advantage of this type of carrier is the fast drug release upon dissolution of the water-soluble polymer and thus the initial high degree of supersaturation of the poorly soluble drug. Nevertheless, the risk for precipitation due to fast drug release is a phenomenon that is frequently observed. In this work, we present an alternative carrier system for ASDs where a water-soluble and water-insoluble carrier are combined to delay the drug release and thus prevent this onset of precipitation. Poly(2-alkyl-2-oxazoline)s were selected as a polymer platform since the solution properties of this polymer class depend on the length of the alkyl sidechain. Poly(2-ethyl-2-oxazoline) (PEtOx) behaves as a water-soluble polymer at body temperature, while poly(2-n-propyl-2-oxazoline) (PPrOx) and poly(2-sec-butyl-2-oxazoline) (PsecBuOx) are insoluble at body temperature. Since little was known about the polymer’s miscibility behaviour and especially on how the presence of a poorly-water soluble drug impacted their miscibility, a preformulation study was performed. Formulations were investigated with X-ray powder diffraction, differential scanning calorimetry (DSC) and solid-state nuclear magnetic resonance spectroscopy. PEtOx/PPrOx appeared to form an immiscible blend based on DSC and this was even more pronounced after heating. The six drugs that were tested in this work did not show any preference for one of the two phases. PEtOx/PsecBuOx on the other hand appeared to be miscible forming a homogeneous blend between the two polymers and the drugs.
Collapse
|
7
|
Liu P, Zhou JY, Chang JH, Liu XG, Xue HF, Wang RX, Li ZS, Li CS, Wang J, Liu CZ. Soluplus-Mediated Diosgenin Amorphous Solid Dispersion with High Solubility and High Stability: Development, Characterization and Oral Bioavailability. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2959-2975. [PMID: 32801637 PMCID: PMC7396739 DOI: 10.2147/dddt.s253405] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022]
Abstract
Background and Purpose The traditional Chinese medicine, diosgenin (Dio), has attracted increasing attention because it possesses various therapeutic effects, including anti-tumor, anti-infective and anti-allergic properties. However, the commercial application of Dio is limited by its extremely low aqueous solubility and inferior bioavailability in vivo. Soluplus, a novel excipient, has great solubilization and capacity of crystallization inhibition. The purpose of this study was to prepare Soluplus-mediated Dio amorphous solid dispersions (ASDs) to improve its solubility, bioavailability and stability. Methods The crystallization inhibition studies were firstly carried out to select excipients using a solvent shift method. According to solubility and dissolution results, the preparation methods and the ratios of drug to excipient were further optimized. The interaction between Dio and Soluplus was characterized by differential scanning calorimetry (DSC), fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), powder X-ray diffraction (PXRD) and molecular docking. The pharmacokinetic study was conducted to explore the potential of Dio ASDs for oral administration. Furthermore, the long-term stability of Dio ASDs was also investigated. Results Soluplus was preliminarily selected from various excipients because of its potential to improve solubility and stability. The optimized ASDs significantly improved the aqueous solubility of Dio due to its amorphization and the molecular interactions between Dio and Soluplus, as evidenced by dissolution test in vitro, DSC, FT-IR spectroscopy, SEM, PXRD and molecular docking technique. Furthermore, pharmacokinetic studies in rats revealed that the bioavailability of Dio from ASDs was improved about 5 times. In addition, Dio ASDs were stable when stored at 40°C and 75% humidity for 6 months. Conclusion These results indicated that Dio ASDs, with its high solubility, high bioavailability and high stability, would open a promising way in pharmaceutical applications.
Collapse
Affiliation(s)
- Pei Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.,Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, People's Republic of China
| | - Jian-Yu Zhou
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, People's Republic of China
| | - Jin-Hua Chang
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, People's Republic of China
| | - Xi-Gang Liu
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, People's Republic of China
| | - He-Fei Xue
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, People's Republic of China
| | - Ru-Xing Wang
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, People's Republic of China
| | - Zhong-Si Li
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, People's Republic of China
| | - Chun-Shi Li
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Cui-Zhe Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.,Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, People's Republic of China
| |
Collapse
|