1
|
De A, Kang JH, Sauraj, Lee OH, Ko YT. Optimizing long-term stability of siRNA using thermoassemble ionizable reverse pluronic-Bcl2 micelleplexes. Int J Biol Macromol 2024; 264:130783. [PMID: 38471603 DOI: 10.1016/j.ijbiomac.2024.130783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/26/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Thermosassemble Ionizable Reverse Pluronic (TIRP) platform stands out for its distinctive combination of thermoassemble and ionizable features, effectively overcoming challenges in previous siRNA delivery systems. This study opens up a formation for long-term stabilization, and high loading of siRNA, specifically crafted for targeting oncogenic pathways. TIRP-Bcl2 self-assembles into a unique micelle structure with a nanodiameter of 75.8 ± 5.7 nm, efficiently encapsulating Bcl2 siRNA while maintaining exceptional colloidal stability at 4 °C for 8 months, along with controlled release profiles lasting 180 h. The dual ionizable headgroup enhance the siRNA loading and the revers pluronic unique structural orientation enhance the stability of the siRNA. The thermoassemble of TIRP-Bcl2 facilitates flexi-rigid response to mild hyperthermia, enhancing deep tissue penetration and siRNA release in the tumor microenvironment. This responsive behavior improves intracellular uptake and gene silencing efficacy in cancer cells. TIRP, with its smaller particle size and reverse pluronic nature, efficiently transports siRNA across the blood-brain barrier, holding promise for revolutionizing glioblastoma (GBM) treatment. TIRP-Bcl2 shows significant potential for precise, personalized therapies, promising prolonged siRNA delivery and in vitro/in vivo stability. This research opens avenues for further exploration and clinical translation of this innovative nanocarrier system across different cancers.
Collapse
Affiliation(s)
- Anindita De
- College of Pharmacy, Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21936, South Korea..
| | - Ji Hee Kang
- College of Pharmacy, Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21936, South Korea
| | - Sauraj
- College of Pharmacy, Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21936, South Korea
| | - O Hyun Lee
- College of Pharmacy, Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21936, South Korea
| | - Young Tag Ko
- College of Pharmacy, Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21936, South Korea..
| |
Collapse
|
2
|
Lehot V, Neuberg P, Ripoll M, Daubeuf F, Erb S, Dovgan I, Ursuegui S, Cianférani S, Kichler A, Chaubet G, Wagner A. Targeted Anticancer Agent with Original Mode of Action Prepared by Supramolecular Assembly of Antibody Oligonucleotide Conjugates and Cationic Nanoparticles. Pharmaceutics 2023; 15:1643. [PMID: 37376091 DOI: 10.3390/pharmaceutics15061643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Despite their clinical success, Antibody-Drug Conjugates (ADCs) are still limited to the delivery of a handful of cytotoxic small-molecule payloads. Adaptation of this successful format to the delivery of alternative types of cytotoxic payloads is of high interest in the search for novel anticancer treatments. Herein, we considered that the inherent toxicity of cationic nanoparticles (cNP), which limits their use as oligonucleotide delivery systems, could be turned into an opportunity to access a new family of toxic payloads. We complexed anti-HER2 antibody-oligonucleotide conjugates (AOC) with cytotoxic cationic polydiacetylenic micelles to obtain Antibody-Toxic-Nanoparticles Conjugates (ATNPs) and studied their physicochemical properties, as well as their bioactivity in both in vitro and in vivo HER2 models. After optimising their AOC/cNP ratio, the small (73 nm) HER2-targeting ATNPs were found to selectively kill antigen-positive SKBR-2 cells over antigen-negative MDA-MB-231 cells in serum-containing medium. Further in vivo anti-cancer activity was demonstrated in an SKBR-3 tumour xenograft model in BALB/c mice in which stable 60% tumour regression could be observed just after two injections of 45 pmol of ATNP. These results open interesting prospects in the use of such cationic nanoparticles as payloads for ADC-like strategies.
Collapse
Affiliation(s)
- Victor Lehot
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Patrick Neuberg
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Manon Ripoll
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - François Daubeuf
- UAR3286, Plate-Forme de Chimie Biologique Intégrative de Strasbourg, ESBS, CNRS-Strasbourg University, 67400 Illkirch-Graffenstaden, France
| | - Stéphane Erb
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Institut du Médicament de Strasbourg, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Igor Dovgan
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Sylvain Ursuegui
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Institut du Médicament de Strasbourg, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Antoine Kichler
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Guilhem Chaubet
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
3
|
Dzhuzha A, Gandalipov E, Korzhikov-Vlakh V, Katernyuk E, Zakharova N, Silonov S, Tennikova T, Korzhikova-Vlakh E. Amphiphilic Polypeptides Obtained by Post-Polymerization Modification of Poly-l-Lysine as Systems for Combined Delivery of Paclitaxel and siRNA. Pharmaceutics 2023; 15:pharmaceutics15041308. [PMID: 37111793 PMCID: PMC10143851 DOI: 10.3390/pharmaceutics15041308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
The development of effective anti-cancer therapeutics remains one of the current pharmaceutical challenges. The joint delivery of chemotherapeutic agents and biopharmaceuticals is a cutting-edge approach to creating therapeutic agents of enhanced efficacy. In this study, amphiphilic polypeptide delivery systems capable of loading both hydrophobic drug and small interfering RNA (siRNA) were developed. The synthesis of amphiphilic polypeptides included two steps: (i) synthesis of poly-αl-lysine by ring-opening polymerization and (ii) its post-polymerization modification with hydrophobic l-amino acid and l-arginine/l-histidine. The obtained polymers were used for the preparation of single and dual delivery systems of PTX and short double-stranded nucleic acid. The obtained double component systems were quite compact and had a hydrodynamic diameter in the range of 90-200 nm depending on the polypeptide. The release of PTX from the formulations was studied, and the release profiles were approximated using a number of mathematical dissolution models to establish the most probable release mechanism. A determination of the cytotoxicity in normal (HEK 293T) and cancer (HeLa and A549) cells revealed the higher toxicity of the polypeptide particles to cancer cells. The separate evaluation of the biological activity of PTX and anti-GFP siRNA formulations testified the inhibitory efficiency of PTX formulations based on all polypeptides (IC50 4.5-6.2 ng/mL), while gene silencing was effective only for the Tyr-Arg-containing polypeptide (56-70% GFP knockdown).
Collapse
Affiliation(s)
- Apollinariia Dzhuzha
- Institute of Chemistry, Saint-Petersburg State University, Universitetsky Pr. 26, St. Petersburg 198504, Russia
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy Pr. 31, St. Petersburg 199004, Russia
| | - Erik Gandalipov
- International Institute of Solution Chemistry and Advanced Materials Technologies, ITMO University, Lomonosov Street 9, St. Petersburg 191002, Russia
| | - Viktor Korzhikov-Vlakh
- Institute of Chemistry, Saint-Petersburg State University, Universitetsky Pr. 26, St. Petersburg 198504, Russia
| | - Elena Katernyuk
- Institute of Chemistry, Saint-Petersburg State University, Universitetsky Pr. 26, St. Petersburg 198504, Russia
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy Pr. 31, St. Petersburg 199004, Russia
| | - Natalia Zakharova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy Pr. 31, St. Petersburg 199004, Russia
| | - Sergey Silonov
- Institute of Chemistry, Saint-Petersburg State University, Universitetsky Pr. 26, St. Petersburg 198504, Russia
- Institute of Cytology, Russian Academy of Sciences, Tihkorezky Pr. 4, St. Petersburg 194064, Russia
| | - Tatiana Tennikova
- Institute of Chemistry, Saint-Petersburg State University, Universitetsky Pr. 26, St. Petersburg 198504, Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Chemistry, Saint-Petersburg State University, Universitetsky Pr. 26, St. Petersburg 198504, Russia
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy Pr. 31, St. Petersburg 199004, Russia
| |
Collapse
|
4
|
Wu D, Lei J, Zhang Z, Huang F, Buljan M, Yu G. Polymerization in living organisms. Chem Soc Rev 2023; 52:2911-2945. [PMID: 36987988 DOI: 10.1039/d2cs00759b] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Vital biomacromolecules, such as RNA, DNA, polysaccharides and proteins, are synthesized inside cells via the polymerization of small biomolecules to support and multiply life. The study of polymerization reactions in living organisms is an emerging field in which the high diversity and efficiency of chemistry as well as the flexibility and ingeniousness of physiological environment are incisively and vividly embodied. Efforts have been made to design and develop in situ intra/extracellular polymerization reactions. Many important research areas, including cell surface engineering, biocompatible polymerization, cell behavior regulation, living cell imaging, targeted bacteriostasis and precise tumor therapy, have witnessed the elegant demeanour of polymerization reactions in living organisms. In this review, recent advances in polymerization in living organisms are summarized and presented according to different polymerization methods. The inspiration from biomacromolecule synthesis in nature highlights the feasibility and uniqueness of triggering living polymerization for cell-based biological applications. A series of examples of polymerization reactions in living organisms are discussed, along with their designs, mechanisms of action, and corresponding applications. The current challenges and prospects in this lifeful field are also proposed.
Collapse
Affiliation(s)
- Dan Wu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou, 310014, P. R. China
| | - Jiaqi Lei
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | - Zhankui Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou, 310014, P. R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P. R. China
| | - Marija Buljan
- Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
- School of Medicine, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
5
|
Yan Y, Zhang G, Wu C, Ren Q, Liu X, Huang F, Cao Y, Ye W. Structural Exploration of Polycationic Nanoparticles for siRNA Delivery. ACS Biomater Sci Eng 2022; 8:1964-1974. [PMID: 35380797 DOI: 10.1021/acsbiomaterials.2c00196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RNA interference (RNAi) is a promising approach to the treatment of genetic diseases by the specific knockdown of target genes. Functional polymers are potential vehicles for the effective delivery of vulnerable small interfering RNA (siRNA), which is required for the broad application of RNAi-based therapeutics. The development of methods for the facile modulation of chemical structures of polymeric carriers and an elucidation of detailed delivery mechanisms remain important areas of research. In this paper, we synthesized a series of methacrylate-based polymers with controllable structures and narrow distributions by atom transfer radical polymerization using various combinations of cationic monomers (2-dimethylaminoethyl methacrylate, 2-diethylaminoethyl methacrylate, and 2-dibutylaminoethyl methacrylate) and hydrophobic monomers (2-butyl methacrylate (BMA), cyclohexyl methacrylate, and 2-ethylhexyl methacrylate). These polymers exhibited varying hydrophobicities, charge densities, and pKa values, enabling the discovery of effective carriers for siRNA by in vitro delivery assays. For the polymers with BMA segments, 50% of cationic segments were beneficial to the formation of siRNA nanoparticles (NPs) and the in vitro delivery of siRNA. The optimal ratio varied for different combinations of cationic and hydrophobic segments. In particular, 20k PMB 0.5, PME 0.5, and PEB 1.0 showed >75% luciferase knockdown. Efficacious delivery was dependent on high siRNA binding, the small size of NPs, and balanced hydrophobicity and charge density. Cellular uptake and endosomal escape experiments indicated that carboxybetaine modification of 20k PMB 0.5 did not remarkably affect the internalization of corresponding NPs after incubation for 6 h but significantly reduced the endosomal escape of NPs, which leads to the notable decrease in delivery efficacy of polymers. These results provide insights into the mechanism of polymer-based siRNA delivery and may inspire the development of novel polymeric carriers.
Collapse
Affiliation(s)
- Yunfeng Yan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Guangliang Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Chengfan Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Qidi Ren
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiaomin Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Fangqian Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yi Cao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Wenbo Ye
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
6
|
Lv N, Yin X, Yang Z, Ma T, Qin H, Xiong B, Jiang H, Zhu J. Electrostatically Controlled ex Situ and in Situ Polymerization of Diacetylene-Containing Peptide Amphiphiles in Living Cells. ACS Macro Lett 2022; 11:223-229. [PMID: 35574773 DOI: 10.1021/acsmacrolett.1c00735] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Precise control of diacetylene-containing peptide amphiphile (DPA) based supramolecular architectures is important for their in cellulo polymerization behaviors and biomedical applications. Herein, we reported two DPAs (cationic PA-NH2 and zwitterionic PA-OH) with a similar molecular structure, which exhibited completely opposite polymerization behaviors in aqueous solution and living cells. Specifically, PA-NH2 was unpolymerizable in aqueous solution but underwent in cellulo polymerization to respond to the intracellular microenvironment. On the contrary, zwitterionic PA-OH was polymerized in solution, rather than inside living cells. Based on the results of cell viability and total internal reflection fluorescent microscopy measurement, PA-OH exhibited higher affinity with cell membranes and lower cytotoxicity than those of PA-NH2. Therefore, it is suggested that the in cellulo polymerization of PA-NH2 should be responsive for greater cytotoxicity, rather than the membrane affinity. This study provides an in-depth understanding of the role of charge properties in the polymerization behavior of DPAs and seeks their potential biomedical applications.
Collapse
Affiliation(s)
- Niannian Lv
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Xiaoyan Yin
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Zhuoran Yang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Teng Ma
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Huimin Qin
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Bijin Xiong
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Hao Jiang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jintao Zhu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| |
Collapse
|
7
|
Konate K, Josse E, Tasic M, Redjatti K, Aldrian G, Deshayes S, Boisguérin P, Vivès E. WRAP-based nanoparticles for siRNA delivery: a SAR study and a comparison with lipid-based transfection reagents. J Nanobiotechnology 2021; 19:236. [PMID: 34380479 PMCID: PMC8359084 DOI: 10.1186/s12951-021-00972-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/25/2021] [Indexed: 11/21/2022] Open
Abstract
Recently, we designed novel amphipathic cell-penetrating peptides, called WRAP, able to transfer efficiently siRNA molecules into cells. In order to gain more information about the relationship between amino acid composition, nanoparticle formation and cellular internalization of these peptides composed of only three amino acids (leucine, arginine and tryptophan), we performed a structure–activity relationship (SAR) study. First, we compared our WRAP1 and WRAP5 peptides with the C6M1 peptide also composed of the same three amino acids and showing similar behaviors in siRNA transfection. Afterwards, to further define the main determinants in the WRAP activity, we synthesized 13 new WRAP analogues harboring different modifications like the number and location of leucine and arginine residues, the relative location of tryptophan residues, as well as the role of the α-helix formation upon proline insertions within the native WRAP sequence. After having compared the ability of these peptides to form peptide-based nanoparticles (PBNs) using different biophysical methods and to induce a targeted gene silencing in cells, we established the main sequential requirements of the amino acid composition of the WRAP peptide. In addition, upon measuring the WRAP-based siRNA transfection ability into cells compared to several non-peptide transfection agents available on the markets, we confirmed that WRAP peptides induced an equivalent level of targeted gene silencing but in most of the cases with lower cell toxicity as clearly shown in clonogenic assays. ![]()
Collapse
Affiliation(s)
- Karidia Konate
- PhyMedExp - Université de Montpellier, INSERM U1046, CNRS UMR 9214, CHU Arnaud de Villeneuve, 371 av. doyen Giraud, 34295, Montpellier Cedex 5, France
| | - Emilie Josse
- PhyMedExp - Université de Montpellier, INSERM U1046, CNRS UMR 9214, CHU Arnaud de Villeneuve, 371 av. doyen Giraud, 34295, Montpellier Cedex 5, France
| | - Milana Tasic
- PhyMedExp - Université de Montpellier, INSERM U1046, CNRS UMR 9214, CHU Arnaud de Villeneuve, 371 av. doyen Giraud, 34295, Montpellier Cedex 5, France
| | - Karima Redjatti
- PhyMedExp - Université de Montpellier, INSERM U1046, CNRS UMR 9214, CHU Arnaud de Villeneuve, 371 av. doyen Giraud, 34295, Montpellier Cedex 5, France
| | - Gudrun Aldrian
- Sys2Diag, UMR 9005-CNRS/ALCEDIAG, 1682 Rue de la Valsière, 34184, Montpellier CEDEX 4, France
| | - Sébastien Deshayes
- PhyMedExp - Université de Montpellier, INSERM U1046, CNRS UMR 9214, CHU Arnaud de Villeneuve, 371 av. doyen Giraud, 34295, Montpellier Cedex 5, France
| | - Prisca Boisguérin
- PhyMedExp - Université de Montpellier, INSERM U1046, CNRS UMR 9214, CHU Arnaud de Villeneuve, 371 av. doyen Giraud, 34295, Montpellier Cedex 5, France
| | - Eric Vivès
- PhyMedExp - Université de Montpellier, INSERM U1046, CNRS UMR 9214, CHU Arnaud de Villeneuve, 371 av. doyen Giraud, 34295, Montpellier Cedex 5, France.
| |
Collapse
|
8
|
Egorova A, Shtykalova S, Selutin A, Shved N, Maretina M, Selkov S, Baranov V, Kiselev A. Development of iRGD-Modified Peptide Carriers for Suicide Gene Therapy of Uterine Leiomyoma. Pharmaceutics 2021; 13:202. [PMID: 33540912 PMCID: PMC7913275 DOI: 10.3390/pharmaceutics13020202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Uterine leiomyoma (UL) is one of the most common benign tumors in women that often leads to many reproductive complications. Suicide genetherapy was suggested as a promising approach for UL treatment. In the present study, we describe iRGD ligand-conjugated cysteine-rich peptide carrier RGD1-R6 for targeted DNA delivery to αvβ3 integrin-expressing primary UL cells. The physico-chemical properties, cytotoxicity, transfection efficiency and specificity of DNA/RGD1-R6 polyplexes were investigated. TheHSV-1thymidine kinase encoding plasmid delivery to PANC-1pancreatic carcinoma cells and primary UL cells resulted in significant suicide gene therapy effects. Subsequent ganciclovir treatment decreased cells proliferative activity, induced of apoptosis and promoted cells death.The obtained results allow us to concludethatthe developed RGD1-R6 carrier can be considered a promising candidate for suicide gene therapy of uterine leiomyoma.
Collapse
Affiliation(s)
- Anna Egorova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.E.); (S.S.); (N.S.); (M.M.); (V.B.)
| | - Sofia Shtykalova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.E.); (S.S.); (N.S.); (M.M.); (V.B.)
| | - Alexander Selutin
- Department of Immunology and Intercellular Interactions, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.S.); (S.S.)
| | - Natalia Shved
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.E.); (S.S.); (N.S.); (M.M.); (V.B.)
| | - Marianna Maretina
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.E.); (S.S.); (N.S.); (M.M.); (V.B.)
| | - Sergei Selkov
- Department of Immunology and Intercellular Interactions, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.S.); (S.S.)
| | - Vladislav Baranov
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.E.); (S.S.); (N.S.); (M.M.); (V.B.)
| | - Anton Kiselev
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.E.); (S.S.); (N.S.); (M.M.); (V.B.)
| |
Collapse
|
9
|
Wang Y, Wagner E. Non-Viral Targeted Nucleic Acid Delivery: Apply Sequences for Optimization. Pharmaceutics 2020; 12:E888. [PMID: 32961908 PMCID: PMC7559072 DOI: 10.3390/pharmaceutics12090888] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
In nature, genomes have been optimized by the evolution of their nucleic acid sequences. The design of peptide-like carriers as synthetic sequences provides a strategy for optimizing multifunctional targeted nucleic acid delivery in an iterative process. The optimization of sequence-defined nanocarriers differs for different nucleic acid cargos as well as their specific applications. Supramolecular self-assembly enriched the development of a virus-inspired non-viral nucleic acid delivery system. Incorporation of DNA barcodes presents a complementary approach of applying sequences for nanocarrier optimization. This strategy may greatly help to identify nucleic acid carriers that can overcome pharmacological barriers and facilitate targeted delivery in vivo. Barcode sequences enable simultaneous evaluation of multiple nucleic acid nanocarriers in a single test organism for in vivo biodistribution as well as in vivo bioactivity.
Collapse
Affiliation(s)
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-based Drug Research, Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, D-81377 Munich, Germany;
| |
Collapse
|