1
|
Fuchigami T, Shimo K, Hiwatashi T, Andoh Y, Munekane M, Mishiro K, Echigo H, Wakabayashi H, Kitamura Y, Kinuya S, Ogawa K. Development of a Radiogallium-Labeled Heterodivalent Imaging Probe Targeting Negative Charges and Integrin on the Surface of Cancer Cell Membranes. Mol Pharm 2025; 22:2053-2064. [PMID: 40066788 DOI: 10.1021/acs.molpharmaceut.4c01263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2025]
Abstract
Radiopharmaceuticals targeting tumor-specific environments are powerful tools for cancer diagnosis and treatment. We previously demonstrated the considerable high tumor uptake of the cationic amphiphilic peptide, 67Ga-NOTA-KV6, in vivo. However, because this radioligand shows a relatively rapid clearance from the tumor over time, further structural optimization is necessary. In this study, to enhance tumor accumulation and retention, we synthesized and evaluated a heterobivalent radiogallium-labeled radiotracer, [67Ga]Ga-DOTA-KV6-Mal-c(RGDyK) ([67Ga]6a), fusing the KV6 peptide targeting negatively charged sites on the cancer cell membrane and cyclic RGD peptide targeting integrin αvβ3 on the cancer cell membrane. Cellular uptake study revealed high accumulation of [67Ga]6a in integrin αvβ3-expressing U-87MG cancer cells, but uptake was significantly inhibited in the presence of an excess of the cyclic RGD peptide, c(RGDyK) (1). Peptide 6a exhibited integrin αvβ3-binding affinity comparable to those of RGD peptides 1 and DOTA-Mal-c(RGDyK) (8). In vivo biodistribution studies of U-87MG tumor-bearing mice revealed that [67Ga]6a exhibited better accumulation and retention in tumor tissues than [67Ga]Ga-DOTA-KV6-Mal-Et ([67Ga]6b; without the RGD peptide motif) and [67Ga]Ga-DOTA-Mal-c(RGDyK) ([67Ga]9; without the KV6 peptide motif). Single-photon emission computed tomography analysis also revealed high signals of [67Ga]6a in tumor tissues, which were significantly blocked in the presence of excess peptide 1. Although reducing radiotracer accumulation in nontumor tissues, such as the kidneys, remains a challenge, our developed approach exhibits potential to enhance the selectivity and retention of radiopharmaceuticals in tumor tissues.
Collapse
Affiliation(s)
- Takeshi Fuchigami
- Laboratory of Clinical Analytical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kohei Shimo
- Laboratory of Clinical Analytical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Toya Hiwatashi
- Laboratory of Clinical Analytical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Yuka Andoh
- Laboratory of Clinical Analytical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Masayuki Munekane
- Laboratory of Clinical Analytical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hiroaki Echigo
- Laboratory of Clinical Analytical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroshi Wakabayashi
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa University, Takara-machi 13-1, Kanazawa, Ishikawa 920-8641, Japan
| | - Yoji Kitamura
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Takara-machi 13-1, Kanazawa, Ishikawa 920-8640, Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa University, Takara-machi 13-1, Kanazawa, Ishikawa 920-8641, Japan
| | - Kazuma Ogawa
- Laboratory of Clinical Analytical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
2
|
Peng C, Xu Y, Wu J, Wu D, Zhou L, Xia X. TME-Related Biomimetic Strategies Against Cancer. Int J Nanomedicine 2024; 19:109-135. [PMID: 38192633 PMCID: PMC10773252 DOI: 10.2147/ijn.s441135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024] Open
Abstract
The tumor microenvironment (TME) plays an important role in various stages of tumor generation, metastasis, and evasion of immune monitoring and treatment. TME targeted therapy is based on TME components, related pathways or active molecules as therapeutic targets. Therefore, TME targeted therapy based on environmental differences between TME and normal cells has been widely studied. Biomimetic nanocarriers with low clearance, low immunogenicity, and high targeting have enormous potential in tumor treatment. This review introduces the composition and characteristics of TME, including cancer‑associated fibroblasts (CAFs), extracellular matrix (ECM), tumor blood vessels, non-tumor cells, and the latest research progress of biomimetic nanoparticles (NPs) based on TME. It also discusses the opportunities and challenges of clinical transformation of biomimetic nanoparticles.
Collapse
Affiliation(s)
- Cheng Peng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Yilin Xu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Jing Wu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Donghai Wu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Lili Zhou
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Xinhua Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| |
Collapse
|
3
|
Tang Y, Yu Z, Lu X, Fan Q, Huang W. Overcoming Vascular Barriers to Improve the Theranostic Outcomes of Nanomedicines. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103148. [PMID: 35246962 PMCID: PMC9069202 DOI: 10.1002/advs.202103148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/16/2022] [Indexed: 05/04/2023]
Abstract
Nanotheranostics aims to utilize nanomaterials to prevent, diagnose, and treat diseases to improve the quality of patients' lives. Blood vessels are responsible to deliver nutrients and oxygen to the whole body, eliminate waste, and provide access for patrolling immune cells for healthy tissues. Meanwhile, they can also nourish disease tissues, spread disease factors or cells into other healthy tissues, and deliver nanotheranostic agents to cover all the regions of a disease tissue. Thus, blood vessels are the first and the most important barrier for highly efficient nanotheranostics. Here, the structure and function of blood vessels are explored and how these characteristics affect nanotheranostics is discussed. Moreover, new mechanisms and related strategies about overcoming vascular obstacles for improved nanotheranostic outcomes are critically summarized, and their merits and demerits of each strategy are analyzed. Moreover, the present challenges to completely exhibit the potential of overcoming vascular barriers to improve the theranostic outcomes of nanomedicines in life science are also discussed. Finally, the future perspective is further discussed.
Collapse
Affiliation(s)
- Yufu Tang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211800P. R. China
| | - Zhongzheng Yu
- School of Chemical and Biomedical EngineeringNanyang Technological UniversitySingapore637459Singapore
| | - Xiaomei Lu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211800P. R. China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
- Shaanxi Institute of Flexible Electronics (SIFE)Northwestern Polytechnical University (NPU)Xi'an710072China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211800P. R. China
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
- Shaanxi Institute of Flexible Electronics (SIFE)Northwestern Polytechnical University (NPU)Xi'an710072China
| |
Collapse
|
4
|
Concurrent impairment of nucleus and mitochondria for synergistic inhibition of cancer metastasis. Int J Pharm 2021; 608:121077. [PMID: 34487811 DOI: 10.1016/j.ijpharm.2021.121077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 12/22/2022]
Abstract
Cancer metastasis, which increases the mortality in a short period of time, has been considered as the main challenge in tumor treatment. However, tumor growth suppression also should not be ignored in cancer metastasis treatment. Recently, accumulating evidences have suggested that mitochondria play an important role in mitigating caner metastasis. Nucleus, as the repository of genetic information, plays a key role in cell proliferation. However, it remains elusive that the concurrent impairment of nucleus and mitochondria may achieve better anti-tumor and anti-metastatic effects. Here, we designed a mitochondria-penetrating peptide modified doxorubicin (MPP-Dox) loaded N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer conjugates (PM), as well as a nuclear accumulating HPMA copolymer Dox conjugates (PN) by the nuclear tendency of Dox. After co-delivering the two copolymers (abbreviation for PMN), PM promoted cell apoptosis and inhibited tumor metastasis by damaging mitochondria, whereas PN suppressed cell proliferation and promoted apoptosis by destroying nucleus. Importantly, PM and PN complemented each other as expected. The mitochondrial dysfunction and tumor metastasis inhibition of PM was improved by PN, while cell proliferation suppression and apoptosis by nucleus destroying of PN was enhanced by PM. As a result, tumor growth of breast cancer 4T1 cells in vivo was significantly restrained and lung metastasis was potently decreased and almost eradicated, fully reflecting the advantages of organelle targeting combination therapy. As a consequence, our work showed that concurrent impairment of nucleus and mitochondria was feasible and beneficial to metastatic cancer treatment.
Collapse
|
5
|
Lin L, Chi J, Yan Y, Luo R, Feng X, Zheng Y, Xian D, Li X, Quan G, Liu D, Wu C, Lu C, Pan X. Membrane-disruptive peptides/peptidomimetics-based therapeutics: Promising systems to combat bacteria and cancer in the drug-resistant era. Acta Pharm Sin B 2021; 11:2609-2644. [PMID: 34589385 PMCID: PMC8463292 DOI: 10.1016/j.apsb.2021.07.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 02/05/2023] Open
Abstract
Membrane-disruptive peptides/peptidomimetics (MDPs) are antimicrobials or anticarcinogens that present a general killing mechanism through the physical disruption of cell membranes, in contrast to conventional chemotherapeutic drugs, which act on precise targets such as DNA or specific enzymes. Owing to their rapid action, broad-spectrum activity, and mechanisms of action that potentially hinder the development of resistance, MDPs have been increasingly considered as future therapeutics in the drug-resistant era. Recently, growing experimental evidence has demonstrated that MDPs can also be utilized as adjuvants to enhance the therapeutic effects of other agents. In this review, we evaluate the literature around the broad-spectrum antimicrobial properties and anticancer activity of MDPs, and summarize the current development and mechanisms of MDPs alone or in combination with other agents. Notably, this review highlights recent advances in the design of various MDP-based drug delivery systems that can improve the therapeutic effect of MDPs, minimize side effects, and promote the co-delivery of multiple chemotherapeutics, for more efficient antimicrobial and anticancer therapy.
Collapse
Affiliation(s)
- Liming Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Jiaying Chi
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Yilang Yan
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Rui Luo
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Xiaoqian Feng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Yuwei Zheng
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Dongyi Xian
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Xin Li
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Daojun Liu
- Shantou University Medical College, Shantou 515041, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
6
|
Wang J, Ni Q, Wang Y, Zhang Y, He H, Gao D, Ma X, Liang XJ. Nanoscale drug delivery systems for controllable drug behaviors by multi-stage barrier penetration. J Control Release 2021; 331:282-295. [DOI: 10.1016/j.jconrel.2020.08.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 12/22/2022]
|
7
|
Yang J, Li Q, Zhou R, Zhou M, Lin X, Xiang Y, Xie D, Huang Y, Zhou Z. Combination of mitochondria targeting doxorubicin with Bcl-2 function-converting peptide NuBCP-9 for synergistic breast cancer metastasis inhibition. J Mater Chem B 2021; 9:1336-1350. [PMID: 33443508 DOI: 10.1039/d0tb02564j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Distant organ metastasis is the main cause of death in breast cancer patients. Evidences have shown that mitochondria also play a crucial role in tumor metastasis, except for as apoptosis center. However, the treatment of tumor growth and metastasis was reported to be limited by mitochondria-associated protein Bcl-2, which are gatekeepers of apoptosis and are found to reside in mitochondria mainly. Herein, we designed a mitochondria-targeting doxorubicin delivery system as well as a mitochondrial distributed Bcl-2 function-converting peptide NuBCP-9 delivery system, which are both based on N-(2-hydroxypropyl)methacrylamide copolymers, to achieve a synergistic effect on tumor regression and metastasis inhibition by combination therapy. After mitochondria were damaged by mitochondria-targeting peptide-modified doxorubicin, apoptosis was effectively enhanced by mitochondrial specifically distributed NuBCP-9 peptides, which converted Bcl-2 function from anti-apoptotic to pro-apoptotic and paved the way for the development of mitochondrial impairment. The combination treatment exhibited significant damage to mitochondria, including excess reactive oxygen species (ROS), the permeabilization of mitochondrial outer membrane (MOMP), and apoptosis initiation on 4T1 breast cancer cells. Meanwhile, besides enhanced tumor growth suppression, the combination treatment also improved the inhibition of 4T1 breast cancer metastasis both in vitro and in vivo. By increasing the expression of cytochrome C and decreasing the expression of Bcl-2, metal matrix protease-9 (MMP-9) as well as vascular endothelial growth factor (VEGF), the combination treatment successfully decreased 84% lung metastasis. Overall, our work provided a promising strategy for metastatic cancer treatment through mitochondria-targeting anti-cancer drug delivery and combination with mitochondrial distributed Bcl-2 function-converting peptide.
Collapse
Affiliation(s)
- Jiatao Yang
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, P. R. China.
| | - Qiuyi Li
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, P. R. China.
| | - Rui Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, P. R. China.
| | - Minglu Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, P. R. China.
| | - Xi Lin
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, P. R. China.
| | - Yucheng Xiang
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, P. R. China.
| | - Dandan Xie
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, P. R. China.
| | - Yuan Huang
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, P. R. China.
| | - Zhou Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, P. R. China.
| |
Collapse
|
8
|
Rani S, Gupta U. HPMA-based polymeric conjugates in anticancer therapeutics. Drug Discov Today 2020; 25:997-1012. [PMID: 32334073 DOI: 10.1016/j.drudis.2020.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/23/2020] [Accepted: 04/11/2020] [Indexed: 11/17/2022]
Abstract
Polymer therapeutics has gained prominence due to an attractive structural polymer chemistry and its applications in diseases therapy. In this review, we discussed the development and capabilities of N-(2-hydroxypropyl) methacrylamide (HPMA) and HPMA-drug conjugates in cancer therapy. The design, architecture, and structural properties of HPMA make it a versatile system for the synthesis of polymeric conjugations for biomedical applications. Research suggests that HPMA could be a possible alternative for polymers such polyethylene glycol (PEG) in biomedical applications. Although numerous clinical trials of HPMA-drug conjugates are ongoing, yet no product has been successfully brought to the market. Thus, further research is required to develop HPMA-drug conjugates as successful cancer therapeutics.
Collapse
Affiliation(s)
- Sarita Rani
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
9
|
Xie D, Wang F, Xiang Y, Huang Y. Enhanced nuclear delivery of H1-S6A, F8A peptide by NrTP6-modified polymeric platform. Int J Pharm 2020; 580:119224. [PMID: 32173501 DOI: 10.1016/j.ijpharm.2020.119224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 03/05/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022]
Abstract
Nucleus is the central regulator of cell metabolism, growth and differentiation, which is considered as an effective target for the treatment of many diseases. To efficiently deliver drugs into nucleus, delivery systems have to bypass a number of barriers especially crossing the cell membrane and nuclear envelope. Here we report a nucleolar targeting peptide (NrTP6) modified polymeric conjugate platform based on N-(2-hydroxypropyl)-methacrylamide (HPMA) copolymers for enhanced nuclear delivery of H1-S6A, F8A peptide to hinder c-Myc from binding to DNA. On one hand, the modification of NrTP6 would promote cellular uptake and nuclear accumulation of the conjugates, and on the other hand, the conjugates can release smaller molecular weight subunits (H1-NrTP6) via cleavage of lysosomally enzyme-sensitive spacer for facilitating nucleus transport. It was found that NrTP6 modified HPMA copolymer-H1 peptide conjugates could improve internalization and nuclear accumulation of H1 peptide by 2.2 and 37.1-fold, respectively, compared to the non-NrTP6 modified ones, in HeLa cells. Moreover, the same trend was found in MDA-MB-231 cells and 4T1 cells. In addition, we found that the nuclear targeting mechanism of NrTP6 peptide mediation may be associated with the importin α/β pathway. Furthermore, the in vivo investigation revealed that NrTP6-modified polymeric platform exhibited the best therapeutic efficacy with a tumor growth inhibition rate of 77.0%. These results indicated that NrTP6 modification was a promising strategy for simultaneously realizing cellular internalization and nuclear targeting, which might provide a new path for intranuclear drug delivery.
Collapse
Affiliation(s)
- Dandan Xie
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, PR China
| | - Fengling Wang
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, PR China
| | - Yucheng Xiang
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, PR China
| | - Yuan Huang
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, PR China.
| |
Collapse
|