1
|
Gao S, Zhang W, Gao X, Ye B, Hu W, Yang H, Chai H, Yang J, Tang Q, Zhao G, Zhu J. Cinnamaldehyde attenuates CCL 4-induced liver fibrosis by inhibiting the CYP2A6/Notch3 pathway. Arab J Gastroenterol 2025:S1687-1979(25)00059-0. [PMID: 40328565 DOI: 10.1016/j.ajg.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 02/08/2025] [Accepted: 04/04/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Hepatic stellate cells (HSCs) activation and hepatocyte injury contribute to liver fibrosis progression and subsequent cirrhosis. Literature showed that cinnamaldehyde (CA) could alleviate fibrosis procession and steatosis. However, its specific role in liver fibrosis remains largely unexplored. MATERIALS AND METHODS Liver fibrosis was induced in vivo, and CA was administered for 4 weeks. Liver inflammation, fibrosis, apoptosis, and proliferation were evaluated using histological, western blotting, and immunohistochemistry. CYP2A6 and Notch3 expression levels were also measured. In vitro, TGF-β stimulated LX2 cell activation was used, and siCYP2A6 was employed to evaluate the anti-fibrosis mechanism of CA. RESULTS CA effectively improved liver function and reduced fibrosis in CCL4-treated rats, significantly decreasing serum ALT, AST, GGT, TBIL, and HAase levels (all p < 0.05), with a notable increase in ALB in the high-dose group. Histologically, CA reduced hepatic disorganization and collagen proliferation, significantly diminishing fibrotic areas in the CA-H group (p < 0.05). CA also downregulated α-SMA and collagen I expression, and suppressed TGF-β activity. In TGF-β1-stimulated LX2 cells, CA treatment led to significant reductions in CYP2A6 and Notch3 expression (p < 0.05), highlighting its regulatory effects on key fibrotic pathways. CONCLUSIONS CA alleviated CCL4-induced liver fibrosis with inhibition of HSCs activation and liver inflammation and reduced hepatocyte apoptosis, potentially linked to the HSCs-mediated CYP2A6/Notch3 modulation.
Collapse
Affiliation(s)
- Sicheng Gao
- Department of Hepatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200083, China.
| | - Wanyi Zhang
- Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China; Shanghai Zhongshan Community Health Center of Songjiang District of Shanghai China
| | - Xiaodi Gao
- Department of Hepatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200083, China.
| | - Baiyang Ye
- Department of Hepatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200083, China.
| | - Weiye Hu
- Department of Hepatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200083, China
| | - Hailin Yang
- Department of Traditional Chinese Medicine, Changzheng Hospital Affiliated to Naval Medical University, Shanghai 200003, China.
| | - Haisheng Chai
- Department of Hepatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200083, China.
| | - Jiangling Yang
- Department of Hepatology, Ningbo Beilun Hospital of Traditional Chinese Medicine, Ningbo 315800, China.
| | - Qinlin Tang
- Department of Hepatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200083, China.
| | - Gang Zhao
- Department of Hepatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200083, China.
| | - Junfeng Zhu
- Department of Hepatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200083, China.
| |
Collapse
|
2
|
Jung E, Kwon S, Song N, Kim N, Jo H, Yang M, Park S, Kim C, Lee D. Tumor-targeted redox-regulating and antiangiogenic phototherapeutics nanoassemblies for self-boosting phototherapy. Biomaterials 2023; 298:122127. [PMID: 37086554 DOI: 10.1016/j.biomaterials.2023.122127] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/24/2023]
Abstract
Cancer cells are equipped with abundant antioxidants such as glutathione (GSH) that eliminate reactive oxygen species (ROS) to deteriorate the therapeutic efficacy of photodynamic therapy (PDT). Another challenge in PDT is circumventing PDT-induced hypoxic condition that provokes upregulation of pro-angiogenic factor such as vascular endothelial growth factor (VEGF). It is therefore reasonable to expect that therapeutic outcomes of PDT could be maximized by concurrent delivery of photosensitizers with GSH depleting agents and VEGF suppressors. To achieve cooperative therapeutic actions of PDT with in situ GSH depletion and VEGF suppression, we developed tumor targeted redox-regulating and antiangiogenic phototherapeutic nanoassemblies (tRAPs) composed of self-assembling disulfide-bridged borylbenzyl carbonate (ssBR), photosensitizer (IR780) and tumor targeting gelatin. As a framework of tRAPs, ssBR was rationally designed to form nanoconstructs that serve as photosensitizer carriers with intrinsic GSH depleting- and VEGF suppressing ability. tRAPs effectively depleted intracellular GSH to render cancer cells more vulnerable to ROS and also provoked immunogenic cell death (ICD) of cancer cells upon near infrared (NIR) laser irradiation. In mouse xenograft models, tRAPs preferentially accumulated in tumors and dramatically eradicated tumors with laser irradiation. The design rationale of tRAPs provides a simple and versatile strategy to develop self-boosting phototherapeutic agents with great potential in targeted cancer therapy.
Collapse
Affiliation(s)
- Eunkyeong Jung
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Chonbuk, 54896, Republic of Korea; Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Soonyoung Kwon
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Chonbuk, 54896, Republic of Korea
| | - Nanhee Song
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Chonbuk, 54896, Republic of Korea
| | - Nuri Kim
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Chonbuk, 54896, Republic of Korea
| | - Hanui Jo
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Chonbuk, 54896, Republic of Korea
| | - Manseok Yang
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Chonbuk, 54896, Republic of Korea
| | - Sangjun Park
- Research Institute of Radiological & Medical Sciences, Korea Institute of Radiological & Medical Sciences, Nowongu, Seoul, 01812, Republic of Korea
| | - Chunho Kim
- Research Institute of Radiological & Medical Sciences, Korea Institute of Radiological & Medical Sciences, Nowongu, Seoul, 01812, Republic of Korea
| | - Dongwon Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Chonbuk, 54896, Republic of Korea; Department of Polymer⋅Nano Science and Technology, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea.
| |
Collapse
|
3
|
Zhang G, Li T, Liu J, Wu X, Yi H. Cinnamaldehyde-Contained Polymers and Their Biomedical Applications. Polymers (Basel) 2023; 15:polym15061517. [PMID: 36987298 PMCID: PMC10051895 DOI: 10.3390/polym15061517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/03/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Cinnamaldehyde, a natural product that can be extracted from a variety of plants of the genus Cinnamomum, exhibits excellent biological activities including antibacterial, antifungal, anti-inflammatory, and anticancer properties. To overcome the disadvantages (e.g., poor water solubility and sensitivity to light) or enhance the advantages (e.g., high reactivity and promoting cellular reactive oxygen species production) of cinnamaldehyde, cinnamaldehyde can be loaded into or conjugated with polymers for sustained or controlled release, thereby prolonging the effective action time of its biological activities. Moreover, when cinnamaldehyde is conjugated with a polymer, it can also introduce environmental responsiveness to the polymer through the form of stimuli-sensitive linkages between its aldehyde group and various functional groups of polymers. The environmental responsiveness provides the great potential of cinnamaldehyde-conjugated polymers for applications in the biomedical field. In this review, the strategies for preparing cinnamaldehyde-contained polymers are summarized and their biomedical applications are also reviewed.
Collapse
Affiliation(s)
- Guangyan Zhang
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
- Correspondence: (G.Z.); (J.L.)
| | - Tianlong Li
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Jia Liu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence: (G.Z.); (J.L.)
| | - Xinran Wu
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Hui Yi
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
4
|
Zhang D, Jiang L, Liu C. A convergent synthetic platform for polymeric nanoparticle for the treatment of combination colorectal cancer therapy. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1835-1848. [PMID: 34121628 DOI: 10.1080/09205063.2021.1941556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In biomaterials and drug delivery, the development of polymeric therapies capable of the synchronized release of several therapeutic agents remains an important challenge. In this article, we describe the development of polymeric nanoparticles (PNPs) with precise molar ratios of Curcumin (CUR) and Methotrexate (MEX). The highly symmetric synthetic approach allows for the development of novel NPs-based combination therapeutic strategies for colorectal cancer. The fabricated CUR/MEX@PNPs were confirmed by transmission microscopy (TEM) and the size and polydispersity index were assessed through the dynamic light scattering (DLS). CUR and MEX were released slowly from the drug delivery without any burst impact. Furthermore, CUR/MEX@PNPs exhibited dose-responsive cytotoxic effects in CL40 and SW1417 cells, with a greater cell death ratio than that of free drugs. The drugs-loaded polymeric nanomaterials were more easily taken up by cancer cells in vitro, according to the cellular uptake analysis. The apoptotic features were confirmed by various fluorescence staining assay. The results of the fluorescent assay reveal that the nanomaterials remarkably induce apoptosis in colorectal cancer cells. Further, the apoptosis cell death mechanism was displayed that these nanomaterials significantly induce apoptosis in the targeted cancer cells. Overall, the current investigation confirmed that CUR/MEX@PNPs could be used to successfully combat colorectal cancers in the immediate future.HighlightsWe have developed the Curcumin (CUR) and Methotrexate (MEX) encapsulated polymeric nanoparticles (CUR/MEX@PNPs).CUR/MEX@PNPs confirmed by the various analytical methods.CUR/MEX@PNPs enhanced the in vitro proliferation against the colorectal cancer cells.Biochemical analysis results reveals that CUR/MEX@PNPs induce apoptosis.The apoptosis was confirmed by Annexin-V-FITC and PI for flow cytometry.
Collapse
Affiliation(s)
- Donghui Zhang
- Department of Anorectal, Xi'an Central Hospital, Xi'an, Shaanxi Province, P.R.China
| | - Ling Jiang
- Medical Clinical Laboratory, Rongcheng People's Hospital, Weihai, Shandong Province, P.R.China
| | - Chao Liu
- Department of Spleen and Stomach Diseases, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi Province, P.R.China
| |
Collapse
|
5
|
Abstract
IR780, a small molecule with a strong optical property and excellent photoconversion efficiency following near infrared (NIR) irradiation, has attracted increasing attention in the field of cancer treatment and imaging. This review is focused on different IR780-based nanoplatforms and the application of IR780-based nanomaterials for cancer bioimaging and therapy. Thus, this review summarizes the overall aspects of IR780-based nanomaterials that positively impact cancer biomedical applications.
Collapse
Affiliation(s)
- Long Wang
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China. and Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Chengcheng Niu
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China. and Department of Ultrasound Diagnosis and Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
6
|
Xu C, Han R, Liu H, Zhu Y, Zhang J, Xu L. Construction of Polymeric Micelles for Improving Cancer Chemotherapy by Promoting the Production of Intracellular Reactive Oxygen Species and Self‐Accelerating Drug Release. ChemistrySelect 2021. [DOI: 10.1002/slct.202100480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Caidie Xu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering Ningbo University Ningbo 315211 China
| | - Renlu Han
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering Ningbo University Ningbo 315211 China
| | - Hongxin Liu
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325027 China
| | - Yabin Zhu
- Medical School of Ningbo University Ningbo 315211 China
| | - Jianfeng Zhang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering Ningbo University Ningbo 315211 China
| | - Long Xu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering Ningbo University Ningbo 315211 China
| |
Collapse
|
7
|
Taneja P, Sharma S, Sinha VB, Yadav AK. Advancement of nanoscience in development of conjugated drugs for enhanced disease prevention. Life Sci 2021; 268:118859. [PMID: 33358907 DOI: 10.1016/j.lfs.2020.118859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/28/2020] [Accepted: 12/04/2020] [Indexed: 12/26/2022]
Abstract
Nanoscience and nanotechnology is a recently emerging and rapid developing field of science and has also been explored in the fields of Biotechnology and Medicine. Nanoparticles are being used as tools for diagnostic purposes and as a medium for the delivery of therapeutic agents to the specific targeted sites under controlled conditions. The physicochemical properties of these nanoparticles give them the ability to treat various chronic human diseases by site specific drug delivery and to use in diagnosis, biosensing and bioimaging devices, and implants. According to the type of materials used nanoparticles can be classified as organic (micelles, liposomes, nanogels and dendrimers) and inorganic (including gold nanoparticles (GNPs), super-paramagnetic iron oxide nanomaterials (SPIONs), quantum dots (QDs), and paramagnetic lanthanide ions). Different types of nanoparticle are being used in conjugation with various types of biomoities (such as peptide, lipids, antibodies, nucleotides, plasmids, ligands and polysaccharides) to form nanoparticle-drug conjugates which has enhanced capacity of drug delivery at targeted sites and hence improved disease treatment and diagnosis. In this study, the summary of various types of nanoparticle-drug conjugates that are being used along with their mechanism and applications are included. In addition, the various nanoparticle-drug conjugates which are being used and which are under clinical studies along with their future opportunities and challenges are also discussed in this review.
Collapse
Affiliation(s)
- Pankaj Taneja
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India.
| | - Sonali Sharma
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Vimlendu Bhushan Sinha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Ajay Kumar Yadav
- BR Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| |
Collapse
|
8
|
Gannimani R, Walvekar P, Naidu VR, Aminabhavi TM, Govender T. Acetal containing polymers as pH-responsive nano-drug delivery systems. J Control Release 2020; 328:736-761. [DOI: 10.1016/j.jconrel.2020.09.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 01/04/2023]
|