1
|
Zheng Z, Zhang H, Yang J, Liu X, Chen L, Li W, Mi S, Zhou H, Zheng W, Xue W, Lin D, Ding W, Li S, Huang W, Yang L. Recent advances in structural and functional design of electrospun nanofibers for wound healing. J Mater Chem B 2025. [PMID: 40237139 DOI: 10.1039/d4tb02718c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The global prevalence of acute and chronic wounds has surged, escalating healthcare burdens and necessitating advanced therapeutic strategies for effective wound management. Electrospun nanofibers have emerged as promising biomimetic platforms for tissue engineering and drug delivery, due to their structural resemblance to the native extracellular matrix (ECM), high porosity, and tunable surface-to-volume ratio. Recent advances in structural design have expanded their applications from conventional two-dimensional (2D) wound dressings to multifunctional three-dimensional (3D) architectures, enabling enhanced mechanical adaptability, bioactive molecule loading, and spatiotemporal control over wound microenvironments. These innovations leverage nanofibers' customizable topography and composition to recapitulate critical ECM cues, thereby fostering cell proliferation, angiogenesis, and immunomodulation during tissue regeneration. This review systematically evaluates cutting-edge strategies focusing on optimizing 2D arrangements and the structural design of multilayered and functionally patterned 3D electrospun nanofibers in wound healing applications. We further present the advantages and limitations of various nanofiber structures, along with the key challenges and future directions for advancing electrospun nanofibers specifically designed for enhanced wound healing.
Collapse
Affiliation(s)
- Zesen Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Huihui Zhang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Jiaxin Yang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Xiaoyang Liu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Lianglong Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Wenwen Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Siqi Mi
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Hai Zhou
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Weihan Zheng
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, China
| | - Wanting Xue
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Dongxin Lin
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Wanting Ding
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Shiyu Li
- Department of Microbiology and Immunology, College of Basic Medicine and Public Hygiene, Jinan University, Guangzhou, 510632, China.
| | - Wenhua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Bhoopathy J, Vedakumari Sathyaraj W, Yesudhason BV, Rajendran S, Dharmalingam S, Seetharaman J, Muthu R, Murugesan R, Raghunandhakumar S, Anandasadagopan SK. Haemostatic potency of sodium alginate/aloe vera/sericin composite scaffolds - preparation, characterisation, and evaluation. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:35-45. [PMID: 38112317 DOI: 10.1080/21691401.2023.2293784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
Fabrication of haemostatic materials with excellent antimicrobial, biocompatible and biodegradable properties remains as a major challenge in the field of medicine. Haemostatic agents play vital role in protecting patients and military individuals during emergency situations. Natural polymers serve as promising materials for fabricating haemostatic compounds due to their efficacy in promoting hemostasis and wound healing. In the present work, sodium alginate/aloe vera/sericin (SA/AV/S) scaffold has been fabricated using a simple cost-effective casting method. The prepared SA/AV/S scaffolds were characterised for their physicochemical properties such as scanning electron microscope, UV-visible spectroscopy and Fourier transform infra-red spectroscopy. SA/AV/S scaffold showed good mechanical strength, swelling behaviour and antibacterial activity. In vitro experiments using erythrocytes proved the hemocompatible and biocompatible features of SA/AV/S scaffold. In vitro blood clotting assay performed using human blood demonstrated the haemostatic and blood absorption properties of SA/AV/S scaffold. Scratch wound assay was performed to study the wound healing efficacy of prepared scaffolds. Chick embryo chorioallantoic membrane assay carried out using fertilised embryos proved the angiogenic property of SA/AV/S scaffold. Thus, SA/AV/S scaffold could serve as a potential haemostatic healthcare product due to its outstanding haemostatic, antimicrobial, hemocompatible, biocompatible and angiogenic properties.
Collapse
Affiliation(s)
- Jayavardhini Bhoopathy
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Weslen Vedakumari Sathyaraj
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Beryl Vedha Yesudhason
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Selvarajan Rajendran
- Centre for Nano Science and Technology, Alagappa College of Technology Campus, Anna University, Chennai 600025, Tamil Nadu, India
| | - Sankari Dharmalingam
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Jayashri Seetharaman
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Ranjitha Muthu
- Department of Research, Karpaga Vinayaga Institute of Medical Science and Research Centre, GST Road, Chinna Kolambakkam, Palayanoor (PO), Tamil Nadu 603308, Tamil Nadu
| | - Ramachandran Murugesan
- Department of Research, Karpaga Vinayaga Institute of Medical Science and Research Centre, GST Road, Chinna Kolambakkam, Palayanoor (PO), Tamil Nadu 603308, Tamil Nadu
| | | | | |
Collapse
|
3
|
Abdel-Rahman R, Abdel-Mohsen AM, Frankova J, Piana F, Kalina L, Gajdosova V, Kapralkova L, Thottappali MA, Jancar J. Self-Assembled Hydrogel Membranes with Structurally Tunable Mechanical and Biological Properties. Biomacromolecules 2024; 25:3449-3463. [PMID: 38739908 PMCID: PMC11170955 DOI: 10.1021/acs.biomac.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024]
Abstract
Using supramolecular self-assembled nanocomposite materials made from protein and polysaccharide components is becoming more popular because of their unique properties, such as biodegradability, hierarchical structures, and tunable multifunctionality. However, the fabrication of these materials in a reproducible way remains a challenge. This study presents a new evaporation-induced self-assembly method producing layered hydrogel membranes (LHMs) using tropocollagen grafted by partially deacetylated chitin nanocrystals (CO-g-ChNCs). ChNCs help stabilize tropocollagen's helical conformation and fibrillar structure by forming a hierarchical microstructure through chemical and physical interactions. The LHMs show improved mechanical properties, cytocompatibility, and the ability to control drug release using octenidine dihydrochloride (OCT) as a drug model. Because of the high synergetic performance between CO and ChNCs, the modulus, strength, and toughness increased significantly compared to native CO. The biocompatibility of LHM was tested using the normal human dermal fibroblast (NHDF) and the human osteosarcoma cell line (Saos-2). Cytocompatibility and cell adhesion improved with the introduction of ChNCs. The extracted ChNCs are used as a reinforcing nanofiller to enhance the performance properties of tropocollagen hydrogel membranes and provide new insights into the design of novel LHMs that could be used for various medical applications, such as control of drug release in the skin and bone tissue regeneration.
Collapse
Affiliation(s)
- Rasha
M. Abdel-Rahman
- CEITEC-Central
European Institute of Technology, Brno University
of Technology, Purkyňova 656/123, Brno 61200, Czech Republic
- Institute
of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Praha 162 06, Czech Republic
| | - A. M. Abdel-Mohsen
- CEITEC-Central
European Institute of Technology, Brno University
of Technology, Purkyňova 656/123, Brno 61200, Czech Republic
- Institute
of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Praha 162 06, Czech Republic
- Pretreatment
and Finishing of Cellulosic Based Textiles Department, Textile Industries Research Institute, National Research
Centre, 33 EL Buhouth
Street, Dokki, Giza 12622, Egypt
| | - Jana Frankova
- Department
of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská, 3, 775 15, Olomouc, Czech Republic
| | - Francesco Piana
- Institute
of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Praha 162 06, Czech Republic
| | - Lukas Kalina
- Faculty
of Chemistry, Materials Research Centre, Brno University of Technology, Purkyňova 464/118, Brno 61200, Czech Republic
| | - Veronika Gajdosova
- Institute
of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Praha 162 06, Czech Republic
| | - Ludmila Kapralkova
- Institute
of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Praha 162 06, Czech Republic
| | - Muhammed Arshad Thottappali
- Institute
of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Praha 162 06, Czech Republic
| | - Josef Jancar
- CEITEC-Central
European Institute of Technology, Brno University
of Technology, Purkyňova 656/123, Brno 61200, Czech Republic
- Faculty
of Chemistry, Materials Research Centre, Brno University of Technology, Purkyňova 464/118, Brno 61200, Czech Republic
| |
Collapse
|
4
|
Chelu M, Musuc AM, Popa M, Calderon Moreno J. Aloe vera-Based Hydrogels for Wound Healing: Properties and Therapeutic Effects. Gels 2023; 9:539. [PMID: 37504418 PMCID: PMC10379830 DOI: 10.3390/gels9070539] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023] Open
Abstract
Aloe vera-based hydrogels have emerged as promising platforms for the delivery of therapeutic agents in wound dressings due to their biocompatibility and unique wound-healing properties. The present study provides a comprehensive overview of recent advances in the application of Aloe vera-based hydrogels for wound healing. The synthesis methods, structural characteristics, and properties of Aloe vera-based hydrogels are discussed. Mechanisms of therapeutic agents released from Aloe vera-based hydrogels, including diffusion, swelling, and degradation, are also analyzed. In addition, the therapeutic effects of Aloe vera-based hydrogels on wound healing, as well as the reduction of inflammation, antimicrobial activity, and tissue regeneration, are highlighted. The incorporation of various therapeutic agents, such as antimicrobial and anti-inflammatory ones, into Aloe vera-based hydrogels is reviewed in detail. Furthermore, challenges and future prospects of Aloe vera-based hydrogels for wound dressing applications are considered. This review provides valuable information on the current status of Aloe vera-based hydrogels for the delivery of therapeutic agents in wound dressings and highlights their potential to improve wound healing outcomes.
Collapse
Affiliation(s)
| | - Adina Magdalena Musuc
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania; (M.C.); (M.P.)
| | | | - Jose Calderon Moreno
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania; (M.C.); (M.P.)
| |
Collapse
|
5
|
Fadilah NIM, Riha SM, Mazlan Z, Wen APY, Hao LQ, Joseph B, Maarof M, Thomas S, Motta A, Fauzi MB. Functionalised-biomatrix for wound healing and cutaneous regeneration: future impactful medical products in clinical translation and precision medicine. Front Bioeng Biotechnol 2023; 11:1160577. [PMID: 37292094 PMCID: PMC10245056 DOI: 10.3389/fbioe.2023.1160577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
Skin tissue engineering possesses great promise in providing successful wound injury and tissue loss treatments that current methods cannot treat or achieve a satisfactory clinical outcome. A major field direction is exploring bioscaffolds with multifunctional properties to enhance biological performance and expedite complex skin tissue regeneration. Multifunctional bioscaffolds are three-dimensional (3D) constructs manufactured from natural and synthetic biomaterials using cutting-edge tissue fabrication techniques incorporated with cells, growth factors, secretomes, antibacterial compounds, and bioactive molecules. It offers a physical, chemical, and biological environment with a biomimetic framework to direct cells toward higher-order tissue regeneration during wound healing. Multifunctional bioscaffolds are a promising possibility for skin regeneration because of the variety of structures they provide and the capacity to customise the chemistry of their surfaces, which allows for the regulated distribution of bioactive chemicals or cells. Meanwhile, the current gap is through advanced fabrication techniques such as computational designing, electrospinning, and 3D bioprinting to fabricate multifunctional scaffolds with long-term safety. This review stipulates the wound healing processes used by commercially available engineered skin replacements (ESS), highlighting the demand for a multifunctional, and next-generation ESS replacement as the goals and significance study in tissue engineering and regenerative medicine (TERM). This work also scrutinise the use of multifunctional bioscaffolds in wound healing applications, demonstrating successful biological performance in the in vitro and in vivo animal models. Further, we also provided a comprehensive review in requiring new viewpoints and technological innovations for the clinical application of multifunctional bioscaffolds for wound healing that have been found in the literature in the last 5 years.
Collapse
Affiliation(s)
- Nur Izzah Md Fadilah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shaima Maliha Riha
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Zawani Mazlan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Adzim Poh Yuen Wen
- Department of Surgery, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Looi Qi Hao
- My Cytohealth Sdn Bhd Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Blessy Joseph
- Business Innovation and Incubation Centre, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sabu Thomas
- International and Inter University Centre for Nanosciences and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, Trento, Italy
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Fadilah NIM, Phang SJ, Kamaruzaman N, Salleh A, Zawani M, Sanyal A, Maarof M, Fauzi MB. Antioxidant Biomaterials in Cutaneous Wound Healing and Tissue Regeneration: A Critical Review. Antioxidants (Basel) 2023; 12:antiox12040787. [PMID: 37107164 DOI: 10.3390/antiox12040787] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/21/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Natural-based biomaterials play an important role in developing new products for medical applications, primarily in cutaneous injuries. A large panel of biomaterials with antioxidant properties has revealed an advancement in supporting and expediting tissue regeneration. However, their low bioavailability in preventing cellular oxidative stress through the delivery system limits their therapeutic activity at the injury site. The integration of antioxidant compounds in the implanted biomaterial should be able to maintain their antioxidant activity while facilitating skin tissue recovery. This review summarises the recent literature that reported the role of natural antioxidant-incorporated biomaterials in promoting skin wound healing and tissue regeneration, which is supported by evidence from in vitro, in vivo, and clinical studies. Antioxidant-based therapies for wound healing have shown promising evidence in numerous animal studies, even though clinical studies remain very limited. We also described the underlying mechanism of reactive oxygen species (ROS) generation and provided a comprehensive review of ROS-scavenging biomaterials found in the literature in the last six years.
Collapse
|
7
|
Biopolymers in diabetic wound care management: a potential substitute to traditional dressings. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
8
|
Nguyen HM, Ngoc Le TT, Nguyen AT, Thien Le HN, Pham TT. Biomedical materials for wound dressing: recent advances and applications. RSC Adv 2023; 13:5509-5528. [PMID: 36793301 PMCID: PMC9924226 DOI: 10.1039/d2ra07673j] [Citation(s) in RCA: 129] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Wound healing is vital to maintain the physiological functions of the skin. The most common treatment is the use of a dressing to cover the wound and reduce infection risk and the rate of secondary injuries. Modern wound dressings have been the top priority choice for healing various types of wounds owing to their outstanding biocompatibility and biodegradability. In addition, they also maintain temperature and a moist environment, aid in pain relief, and improve hypoxic environments to stimulate wound healing. Due to the different types of wounds, as well as the variety of advanced wound dressing products, this review will provide information on the clinical characteristics of the wound, the properties of common modern dressings, and the in vitro, in vivo as well as the clinical trials on their effectiveness. The most popular types commonly used in producing modern dressings are hydrogels, hydrocolloids, alginates, foams, and films. In addition, the review also presents the polymer materials for dressing applications as well as the trend of developing these current modern dressings to maximize their function and create ideal dressings. The last is the discussion about dressing selection in wound treatment and an estimate of the current development tendency of new materials for wound healing dressings.
Collapse
Affiliation(s)
- Hien Minh Nguyen
- School of Medicine, Vietnam National University Ho Chi Minh City Ho Chi Minh City Vietnam
| | - Tam Thi Ngoc Le
- School of Medicine, Vietnam National University Ho Chi Minh City Ho Chi Minh City Vietnam
| | - An Thanh Nguyen
- Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh City Ho Chi Minh City Vietnam
| | - Han Nguyen Thien Le
- School of Medicine, Vietnam National University Ho Chi Minh City Ho Chi Minh City Vietnam
| | - Thi Tan Pham
- Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh City Ho Chi Minh City Vietnam
| |
Collapse
|
9
|
Jin F, Liao S, Li W, Jiang C, Wei Q, Xia X, Wang Q. Amphiphilic sodium alginate-polylysine hydrogel with high antibacterial efficiency in a wide pH range. Carbohydr Polym 2023; 299:120195. [PMID: 36876766 DOI: 10.1016/j.carbpol.2022.120195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Bacterial infection is a major pathological factor leading to persistent wounds. With the aging of population, wound infection has gradually become a global health-issue. The wound site environment is complicated, and the pH changes dynamically during healing. Therefore, there is an urgent need for new antibacterial materials that can adapt to a wide pH range. To achieve this goal, we developed a thymol-oligomeric tannic acid/amphiphilic sodium alginate-polylysine hydrogel film, which exhibited excellent antibacterial efficacy in the pH range from 4 to 9, achieving the highest achievable 99.993 % (4.2 log units) and 99.62 % (2.4 log units) against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, respectively. The hydrogel films exhibited excellent cytocompatibility, suggesting that the materials are promising as a novel wound healing material without the concern of biosafety.
Collapse
Affiliation(s)
- Fangyu Jin
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Shiqin Liao
- Jiangxi Centre for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, PR China
| | - Wei Li
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Chenyu Jiang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Qufu Wei
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Xin Xia
- College of Textile and Clothing, Xinjiang University, Urumqi 830046, PR China
| | - Qingqing Wang
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; Jiangxi Centre for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, PR China.
| |
Collapse
|
10
|
Bacterial Cellulose as a Versatile Biomaterial for Wound Dressing Application. Molecules 2022; 27:molecules27175580. [PMID: 36080341 PMCID: PMC9458019 DOI: 10.3390/molecules27175580] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic ulcers are among the main causes of morbidity and mortality due to the high probability of infection and sepsis and therefore exert a significant impact on public health resources. Numerous types of dressings are used for the treatment of skin ulcers-each with different advantages and disadvantages. Bacterial cellulose (BC) has received enormous interest in the cosmetic, pharmaceutical, and medical fields due to its biological, physical, and mechanical characteristics, which enable the creation of polymer composites and blends with broad applications. In the medical field, BC was at first used in wound dressings, tissue regeneration, and artificial blood vessels. This material is suitable for treating various skin diseases due its considerable fluid retention and medication loading properties. BC membranes are used as a temporary dressing for skin treatments due to their excellent fit to the body, reduction in pain, and acceleration of epithelial regeneration. BC-based composites and blends have been evaluated and synthesized both in vitro and in vivo to create an ideal microenvironment for wound healing. This review describes different methods of producing and handling BC for use in the medical field and highlights the qualities of BC in detail with emphasis on biomedical reports that demonstrate its utility. Moreover, it gives an account of biomedical applications, especially for tissue engineering and wound dressing materials reported until date. This review also includes patents of BC applied as a wound dressing material.
Collapse
|
11
|
Zhou J, Dong C, Shu Q, Chen Y, Wang Q, Wang D, Ma G. Deciphering the focuses and trends in skin regeneration research through bibliometric analyses. Front Med (Lausanne) 2022; 9:947649. [PMID: 35935762 PMCID: PMC9355679 DOI: 10.3389/fmed.2022.947649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/07/2022] [Indexed: 01/03/2023] Open
Abstract
Increasing attention to skin regeneration has rapidly broadened research on the topic. However, no bibliometric analysis of the field’s research trends has yet been conducted. In response to this research gap, this study analyzed the publication patterns and progress of skin regeneration research worldwide using a bibliometric analysis of 1,471 papers comprising 1,227 (83.4%) original articles and 244 (16.6%) reviews sourced from a Web of Science search. Publication distribution was analyzed by country/region, institution, journal, and author. The frequency of keywords was assessed to prepare a bibliometric map of the development trends in skin regeneration research. China and the United States were the most productive countries in the field: China had the greatest number of publications at 433 (29.4%) and the United States had the highest H-index ranking (59 with 15,373 citations or 31.9%). Author keywords were classified into four clusters: stem cell, biomaterial, tissue engineering, and wound dressing. “Stem cells,” “chitosan,” “tissue engineering,” and “wound dressings” were the most frequent keywords in each cluster; therefore, they reflected the field’s current focus areas. “Immunomodulation,” “aloe vera,” “extracellular vesicles,” “injectable hydrogel,” and “three-dimensional (3D) bioprinting” were relatively new keywords, indicating that biomaterials for skin regeneration and 3D bioprinting are promising research hotspots in the field. Moreover, clinical studies on new dressings and techniques to accelerate skin regeneration deserve more attention. By uncovering current and future research hotspots, this analysis offers insights that may be useful for both new and experienced scholars striving to expand research and innovation in the field of skin regeneration.
Collapse
Affiliation(s)
- Jian Zhou
- Savaid Stomatology School, Hangzhou Medical College, Hangzhou, China
- Department of Prosthodontics, Xi’an Savaid Stomatology Hospital, Xi’an, China
| | - Chen Dong
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Qiuju Shu
- Department of Prosthodontics, Xi’an Savaid Stomatology Hospital, Xi’an, China
| | - Yang Chen
- Clinic of Dental Experts, Xi’an Savaid Stomatology Hospital, Xi’an, China
| | - Qing Wang
- Department of Prosthodontics, Xi’an Savaid Stomatology Hospital, Xi’an, China
| | - Dandan Wang
- Department of Prosthodontics, Xi’an Savaid Stomatology Hospital, Xi’an, China
| | - Ge Ma
- Department of Oral and Maxillofacial Surgery, Xi’an Daxing Hospital, Xi’an, China
- *Correspondence: Ge Ma,
| |
Collapse
|
12
|
Deng X, Gould M, Ali MA. A review of current advancements for wound healing: Biomaterial applications and medical devices. J Biomed Mater Res B Appl Biomater 2022; 110:2542-2573. [PMID: 35579269 PMCID: PMC9544096 DOI: 10.1002/jbm.b.35086] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 12/12/2022]
Abstract
Wound healing is a complex process that is critical in restoring the skin's barrier function. This process can be interrupted by numerous diseases resulting in chronic wounds that represent a major medical burden. Such wounds fail to follow the stages of healing and are often complicated by a pro‐inflammatory milieu attributed to increased proteinases, hypoxia, and bacterial accumulation. The comprehensive treatment of chronic wounds is still regarded as a significant unmet medical need due to the complex symptoms caused by the metabolic disorder of the wound microenvironment. As a result, several advanced medical devices, such as wound dressings, wearable wound monitors, negative pressure wound therapy devices, and surgical sutures, have been developed to correct the chronic wound environment and achieve skin tissue regeneration. Most medical devices encompass a wide range of products containing natural (e.g., chitosan, keratin, casein, collagen, hyaluronic acid, alginate, and silk fibroin) and synthetic (e.g., polyvinyl alcohol, polyethylene glycol, poly[lactic‐co‐glycolic acid], polycaprolactone, polylactic acid) polymers, as well as bioactive molecules (e.g., chemical drugs, silver, growth factors, stem cells, and plant compounds). This review addresses these medical devices with a focus on biomaterials and applications, aiming to deliver a critical theoretical reference for further research on chronic wound healing.
Collapse
Affiliation(s)
- Xiaoxuan Deng
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Maree Gould
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - M Azam Ali
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
13
|
Abdel-Rahman RM, Vishakha V, Kelnar I, Jancar J, Abdel-Mohsen AM. Synergistic performance of collagen-g-chitosan-glucan fiber biohybrid scaffold with tunable properties. Int J Biol Macromol 2022; 202:671-680. [PMID: 35007634 DOI: 10.1016/j.ijbiomac.2022.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/22/2021] [Accepted: 01/01/2022] [Indexed: 02/07/2023]
Abstract
Hybrid biocomposite scaffolds (HBS) that serve as a carrier for cell proliferation and differentiation are increasingly used for tissue regeneration. 3D hybrid scaffold based on collagen-grafted-chitosan-glucan fiber (CO-g-CGF-HBS) was prepared by freeze-drying technique. The swelling percentage, hydrolytic stability, and modulus of elasticity of HBS were enhanced after the chemical modification of CO with CGF. Pore size and porosity of HBS were decreased with an increased CGF ratio. HBS exhibits a higher reduction rate against different types of bacteria compared with a control sample. Thus, chemical modification of CO with different ratios of CGF significantly improved the physicochemical, antibacterial properties of HBS.
Collapse
Affiliation(s)
- R M Abdel-Rahman
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Praha 162 06, Czech Republic
| | - V Vishakha
- CEITEC-Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno 61200, Czech Republic
| | - I Kelnar
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Praha 162 06, Czech Republic
| | - J Jancar
- CEITEC-Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno 61200, Czech Republic
| | - A M Abdel-Mohsen
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Praha 162 06, Czech Republic; CEITEC-Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno 61200, Czech Republic; Department of Pretreatment and Finishing of Cellulosic Fibers, Textile Research Division, National Research Centre, 33 EL Buhouth St., Dokki, Giza 12622, Egypt.
| |
Collapse
|
14
|
Malinkina ON, Zhuravleva YY, Shipovskaya AB. In Vivo Wound-Healing Activity of Glycerohydrogel Plates Based on Ascorbate Chitosan, Aloe vera, and Silicon Polyolate. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Massoud D, Alrashdi BM, Fouda MMA, El-kott A, Soliman SA, Abd-Elhafeez HH. Aloe vera and wound healing: a brief review. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Diaa Massoud
- Jouf University, Saudi Arabia; Fayoum University, Egypt
| | | | | | - Attalla El-kott
- King Khalid University, Saudi Arabia; Damanhour University, Egypt
| | | | | |
Collapse
|
16
|
Characterization and Topical Study of Aloe Vera Hydrogel on Wound-Healing Process. Polymers (Basel) 2021; 13:polym13223958. [PMID: 34833257 PMCID: PMC8623201 DOI: 10.3390/polym13223958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/25/2022] Open
Abstract
Wound healing is fundamental to restore the tissue integrity. A topical study of the influence of Aloe vera hydrogel, formulated with 1,2-propanediol (propanediol) and triethanolamine (TEA), on the skin wound-healing process was investigated in female Wistar rats. FTIR spectroscopy confirms the presence of carboxylic acid and methyl ester carboxylate groups related with important compounds that confer the hydrogel a good interaction with proteins and growth factors. SEM images show a microstructure and micro-roughness that promote a good adhesion to the wound. Therefore, the swelling kinetics and the contact angle response contribute to the understanding of the in vivo results of the animal test. The results indicated that the Aloe vera hydrogel, prepared with propanediol and TEA, together with its superficial characteristics, improve its rapid penetration without drying out the treated tissue. This produced a positive influence on inflammation, angiogenesis, and wound contraction, reducing 29% the total healing time, reaching the total closure of the wound in 15 days.
Collapse
|
17
|
Thao NTT, Wijerathna HMSM, Kumar RS, Choi D, Dananjaya SHS, Attanayake AP. Preparation and characterization of succinyl chitosan and succinyl chitosan nanoparticle film: In vitro and in vivo evaluation of wound healing activity. Int J Biol Macromol 2021; 193:1823-1834. [PMID: 34785202 DOI: 10.1016/j.ijbiomac.2021.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/22/2021] [Accepted: 11/02/2021] [Indexed: 01/09/2023]
Abstract
Development of novel wound dressing materials having the ability to prevent bacterial infections and capable of accelerating the tissue regeneration process is utmost important, since the wounds in patients can cause severe health issues. In the present work, we synthesized novel N-succinyl chitosan nanoparticles (N-SuC NPs) films and tested their antimicrobial, cytotoxicity, and in vitro and in vivo wound healing activity. N-SuC NPs were synthesized by ionic gelation method, and subsequently N-SuC NPs films were prepared by solution casting method using synthesized N-SuC NPs. The prepared N-SuC NPs films showed significant antimicrobial activity against Escherichia coli and Staphylococcus aureus with a minimum inhibitory concentration of 6 mg/mL and <8 mg/mL, respectively. The biocompatibility and the in vitro wound healing activity of N-SuC NPs films were analyzed using human dermal fibroblast (HDF) cells. In vivo cutaneous wound healing of the N-SuC NPs film was investigated using the Wister rat model, and the studies showed that the N-SuC NPs film significantly accelerated the wound healing process by inducing more blood vessels formation and tissue granulation. The experimental results showed that synthesized N-SuC NPs film had excellent antimicrobial, cytotoxicity and wound healing activity, indicating that it could be used in biomedical applications.
Collapse
Affiliation(s)
- N T Thu Thao
- Zerone Bio Inc., Dankook University, 3(rd) Floor, Sanhak Building, Dandae-ro 119, Dongnam-gu, Cheonan Si, Chungcheongnam-do 31116, Republic of Korea
| | - H M S M Wijerathna
- Department of Aquaculture and Aquatic Resources Management, University College of Anuradhapura, Sri Lanka
| | - R Saravana Kumar
- Department of Physics, Government College of Arts and Science, Idappadi, Salem 637102, Tamil Nadu, India
| | - Dongrack Choi
- Zerone Bio Inc., Dankook University, 3(rd) Floor, Sanhak Building, Dandae-ro 119, Dongnam-gu, Cheonan Si, Chungcheongnam-do 31116, Republic of Korea
| | - S H S Dananjaya
- Zerone Bio Inc., Dankook University, 3(rd) Floor, Sanhak Building, Dandae-ro 119, Dongnam-gu, Cheonan Si, Chungcheongnam-do 31116, Republic of Korea.
| | - A P Attanayake
- Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka.
| |
Collapse
|
18
|
Dutta J, Devi N. Preparation, optimization, and characterization of chitosan-sepiolite nanocomposite films for wound healing. Int J Biol Macromol 2021; 186:244-254. [PMID: 34245736 DOI: 10.1016/j.ijbiomac.2021.07.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023]
Abstract
In this study, a series of chitosan-sepiolite (CS-SEP) nanocomposites films were prepared by using a conventional solution casting method. The effect of sepiolite on physicochemical and biological properties of the prepared nanocomposite films was studied by various techniques such as Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and x-ray diffraction (XRD) to name a few. In WCA measurements, the decrease of contact angle from 78.51° (CS) to 71.29° (CS7SEP3) reaffirms the water holding nature of sepiolite, which enables to create moist environment essentially required for wound healing. Further, addition of sepiolite tremendously increased WVTR, folding endurance, porosity, and blood clotting ability of the prepared nanocomposites. Furthermore, CS-SEP nanocomposite films exhibit better antibacterial activity than that of chitosan against gram positive (B. subtilis) and gram negative bacteria (E. coli). Moreover, the percentage of hemolysis and degradation study indicated that the prepared nanocomposite films were non-hemolytic in nature and decomposed nearly 40% in four weeks. In addition, cytotoxicity assay showed that the prepared nanocomposite film i.e. CS7SEP3 exhibited better cell viability and cell proliferation rate against L929 mouse fibroblast cells as compared to CS and hence, the prepared nanocomposite film can be used as a promising candidate for wound management.
Collapse
Affiliation(s)
- Joydeep Dutta
- Department of Chemistry, Amity School of Applied Sciences, Amity University Haryana, Gurgaon 122413, Haryana, India.
| | - Nirmla Devi
- Department of Chemistry, Amity School of Applied Sciences, Amity University Haryana, Gurgaon 122413, Haryana, India
| |
Collapse
|
19
|
Su X, Xian C, Gao M, Liu G, Wu J. Edible Materials in Tissue Regeneration. Macromol Biosci 2021; 21:e2100114. [PMID: 34117831 DOI: 10.1002/mabi.202100114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/28/2021] [Indexed: 11/07/2022]
Abstract
Edible materials have attracted increasing attention because of their excellent properties including availability, biocompatibility, biological activity, and biodegradability. Natural polysaccharides, phenolic compounds, and proteins are widely used in tissue regeneration. To better characterize their healing effect, this review article describes the applications of edible materials in tissue regeneration including wound healing and bone tissue regeneration. As an introduction to the topic, their sources and main bioactive properties are discussed. Then, the mechanism by which they facilitate wound healing based on their hemostasis, antibacterial, anti-inflammatory, and antioxidant properties is systematically investigated. Moreover, a more comprehensive discussion is presented on the approaches by which edible materials can be used as scaffolds or agents for the provision of the components of natural bones for regulating the level of osteogenesis-related cytokines to enhance bone repair. Finally, the prospects of edible materials for tissue regeneration are discussed.
Collapse
Affiliation(s)
- Xiaohan Su
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518057, China
| | - Caihong Xian
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518057, China
| | - Ming Gao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Guiting Liu
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518057, China
| |
Collapse
|
20
|
Zarandona I, Minh NC, Trung TS, de la Caba K, Guerrero P. Evaluation of bioactive release kinetics from crosslinked chitosan films with Aloe vera. Int J Biol Macromol 2021; 182:1331-1338. [PMID: 34000309 DOI: 10.1016/j.ijbiomac.2021.05.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 11/30/2022]
Abstract
Thermocompression was employed to prepare citric acid-crosslinked chitosan films with Aloe vera (AV) as bioactive compound. Films were easy to handle and mechanical properties did not change with the addition of AV up to 10 wt%, although both TS and EAB decreased for the films with 15 wt% AV, indicating that high AV contents would hinder intermolecular interactions among the formulation components. Maillard reaction occurred between chitosan and citric acid at the processing temperature used (115 °C), while physical interactions took place with AV, as shown by FTIR analysis. All films were insoluble but displayed hydration and limited swelling due to both physical and chemical interactions promoted by AV and citric acid, respectively. A slow AV release, governed by a Fickian diffusion controlled mechanism, and an increase of surface hydrophilicity, which favors cell adhesion, were observed.
Collapse
Affiliation(s)
- Iratxe Zarandona
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Nguyen Cong Minh
- Faculty of Food Technology, Nha Trang University, 02 Nguyen Dinh Chieu Street, Nha Trang City 650000, Viet Nam
| | - Trang Si Trung
- Faculty of Food Technology, Nha Trang University, 02 Nguyen Dinh Chieu Street, Nha Trang City 650000, Viet Nam
| | - Koro de la Caba
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.
| | - Pedro Guerrero
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.
| |
Collapse
|
21
|
A review on the applications of electrospun chitosan nanofibers for the cancer treatment. Int J Biol Macromol 2021; 183:790-810. [PMID: 33965480 DOI: 10.1016/j.ijbiomac.2021.05.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/24/2021] [Accepted: 05/01/2021] [Indexed: 01/20/2023]
Abstract
In recent years, the incidence of cancer is increasing every day due to poor quality of life (industrialization of life). Therefore, the treatment of cancer has received much attention from therapists. So far, many anticancer drugs have been used to treat cancer patents. However, the direct use of the anticancer drugs has the adverse side effects for patents and several limitations to treat process. Natural chitosan nanofibers prepared by electrospinning method have unique properties such as high surface area, high porosity, suitable mechanical properties, nontoxicity, biocompatibility, biodegradability, biorenewable, low immunogenicity, better clinical functionality, analogue to extracellular model, and easy production in large scale. Therefore, this bio-polymer is a very suitable case to deliver of the anti-cancer drugs to treat cancer patents. In this review summarizes the electrospinning synthesis of chitosan and its therapeutic application for the various cancer treatment.
Collapse
|
22
|
Baniasadi H, Ajdary R, Trifol J, Rojas OJ, Seppälä J. Direct ink writing of aloe vera/cellulose nanofibrils bio-hydrogels. Carbohydr Polym 2021; 266:118114. [PMID: 34044931 DOI: 10.1016/j.carbpol.2021.118114] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023]
Abstract
Direct-ink-writing (DIW) of hydrogels has become an attractive research area due to its capability to fabricate intricate, complex, and highly customizable structures at ambient conditions for various applications, including biomedical purposes. In the current study, cellulose nanofibrils reinforced aloe vera bio-hydrogels were utilized to develop 3D geometries through the DIW technique. The hydrogels revealed excellent viscoelastic properties enabled extruding thin filaments through a nozzle with a diameter of 630 μm. Accordingly, the lattice structures were printed precisely with a suitable resolution. The 3D-printed structures demonstrated significant wet stability due to the high aspect ratio of the nano- and microfibrils cellulose, reinforced the hydrogels, and protected the shape from extensive shrinkage upon drying. Furthermore, all printed samples had a porosity higher than 80% and a high-water uptake capacity of up to 46 g/g. Altogether, these fully bio-based, porous, and wet stable 3D structures might have an opportunity in biomedical fields.
Collapse
Affiliation(s)
- Hossein Baniasadi
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Rubina Ajdary
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Aalto, Espoo, Finland
| | - Jon Trifol
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Aalto, Espoo, Finland; Bioproducts Institute, Departments of Chemical and Biological Engineering, Chemistry and Wood Science, University of British Columbia, 2360 East Mall, Vancouver, BC Canada V6T 1Z3
| | - Jukka Seppälä
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland.
| |
Collapse
|
23
|
Mirmajidi T, Chogan F, Rezayan AH, Sharifi AM. In vitro and in vivo evaluation of a nanofiber wound dressing loaded with melatonin. Int J Pharm 2021; 596:120213. [PMID: 33493599 DOI: 10.1016/j.ijpharm.2021.120213] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/19/2020] [Accepted: 12/25/2020] [Indexed: 12/12/2022]
Abstract
Wound healing is a complicated process that takes a long time to complete. The three-layer nanofiber wound dressing containing melatonin is highly expected to show remarkable wound repair by reducing the wound healing time. In this study, chitosan (Cs)-polycaprolactone (PCL)/ polyvinylalcohol (PVA)-melatonin (MEL)/ chitosan-polycaprolactone three-layer nanofiber wound dressing was prepared by electrospinning for melatonin sustained release. The characteristics of the wound dressing were further evaluated. The wound dressing had a high water uptake after 24 h (401%), and the water contact angle results showed that it had hydrophilicity effect that supported the cell attachment. The wound healing effect of wound dressing was examined using a full-thickness excisional model of rat skin by the local administration of MEL. The gene expressions of transforming growth factor-beta (TGF-β1), alpha-smooth muscle actin (α-SMA), collagen type I (COL1A1), and collagen type III (COL3A1) were further studied. The histopathological evaluation showed the complete regeneration of the epithelial layer, remodeling of wounds, collagen synthesis, and reduction in inflammatory cells. The NF + 20% MEL significantly increased TGF-β1, COL1A1, COL3A1, and α-SMA mRNA expressions. This wound dressing may have a considerable potential as a wound dressing to accelerate the wound healing.
Collapse
Affiliation(s)
- Tahereh Mirmajidi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran, Iran
| | - Faraz Chogan
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran, Iran
| | - Ali Hossein Rezayan
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran, Iran.
| | - Ali Mohammad Sharifi
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Razi Drug Research Center, Department of Pharmacology, Iran University of Medical Sciences, Tehran, Iran; Tissue Engineering Group (NOCERAL), Department of Orthopedics Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
24
|
Maaz Arif M, Khan SM, Gull N, Tabish TA, Zia S, Ullah Khan R, Awais SM, Arif Butt M. Polymer-based biomaterials for chronic wound management: Promises and challenges. Int J Pharm 2021; 598:120270. [PMID: 33486030 DOI: 10.1016/j.ijpharm.2021.120270] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/10/2020] [Accepted: 12/24/2020] [Indexed: 01/13/2023]
Abstract
Chronic non-healing wounds tender a great challenge to patients, physicians, and wound care professionals. In view of the increasing prevalence of chronic wounds due to ischemia, diabetic foot, venous, and pressure ulcers, their appropriate management requires significant attention. Along with the basic techniques of medical and surgical treatments; an ideal dressing is essential for a speedy recovery and rapid healing of such wounds. Mechanistic understanding of chronic wound pathology will not only help towards future directions for an ideal dressing model but also to resonant advance research related to specific dressings for various wound types. This review provides key insights into causes, pathophysiology, and critical issues pertaining to chronic wounds and their management. It also summarizes the challenges faced for chronic wound treatment and specified factors responsible for delayed healing. Moreover, this review delivers a detailed discussion on available polymeric materials (alginate, chitosan, hyaluronic acid, collagen, polyurethane, cellulose, dextran, gelatin, silk, and polyaniline), their functional characteristics, and usage as chronic wound healing agents for polymeric wound dressing development. Incorporation and comparison of the research studies for their thermal behavior, structural analysis, and microscopic studies by Fourier transform infrared spectroscopy, thermogravimetric analysis and scanning electron microscopy, respectively and swelling studies of different polymeric materials are discussed. Additionally, studies of anatomy cum physiology of wound healing, pathophysiology, tissue engineering and advance healing management approaches makes the content of this review a significant tool for future studies on chronic wounds healing by polymeric wound dressings. In this review, polymeric wound dressings have been explained in terms of their structures, function, chemistry, and key characteristics. These features are directly linked to the polymeric systems' potential in the management of chronic wounds. These polymeric systems have gained promising success in solving real word global health problems. More recently, innovative approaches to fabricate the polymer dressings have been introduced, but their commercial, sustainable, and high-scale production largely remains unexplored. This review also summarizes the promises of polymeric wound dressings and provides a future perspective on how the clinical and commercial landscape could potentially be propelled by utilizing polymers in wound care management.
Collapse
Affiliation(s)
- Muhammad Maaz Arif
- Department of Community Health Sciences, Fatima Memorial Hospital College of Medicine and Dentistry, Lahore, Pakistan
| | - Shahzad Maqsood Khan
- Department of Polymer Engineering & Technology, University of the Punjab Lahore, Pakistan.
| | - Nafisa Gull
- Department of Polymer Engineering & Technology, University of the Punjab Lahore, Pakistan
| | - Tanveer A Tabish
- UCL Cancer Institute, Paul O'Gorman Building, University College London, London, UK
| | - Saba Zia
- Department of Polymer Engineering & Technology, University of the Punjab Lahore, Pakistan
| | - Rafi Ullah Khan
- Department of Polymer Engineering & Technology, University of the Punjab Lahore, Pakistan
| | | | - Muhammad Arif Butt
- Institute of Chemical Engineering & Technology, University of the Punjab Lahore, Pakistan
| |
Collapse
|
25
|
Geanaliu-Nicolae RE, Andronescu E. Blended Natural Support Materials-Collagen Based Hydrogels Used in Biomedicine. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5641. [PMID: 33321865 PMCID: PMC7764196 DOI: 10.3390/ma13245641] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 01/17/2023]
Abstract
Due to their unique properties-the are biocompatible, easily accessible, and inexpensive with programmable properties-biopolymers are used in pharmaceutical and biomedical research, as well as in cosmetics and food. Collagen is one of the most-used biomaterials in biomedicine, being the most abundant protein in animals with a triple helices structure, biocompatible, biomimetic, biodegradable, and hemostatic. Its disadvantages are its poor mechanical and thermal properties and enzymatic degradation. In order to solve this problem and to use its benefits, collagen can be used blended with other biomaterials such as alginate, chitosan, and cellulose. The purpose of this review article is to offer a brief paper with updated information on blended collagen-based formulations and their potential application in biomedicine.
Collapse
Affiliation(s)
- Ruxandra-Elena Geanaliu-Nicolae
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | | |
Collapse
|
26
|
Liang J, Cui L, Li J, Guan S, Zhang K, Li J. Aloe vera: A Medicinal Plant Used in Skin Wound Healing. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:455-474. [PMID: 33066720 DOI: 10.1089/ten.teb.2020.0236] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Skin injury is a major problem threatening human physical and mental health, and how to promote wound healing has been the focus. Developing new wound dressings is an important strategy in skin regeneration. Aloe vera is a medicinal plant with a long history, complex constituents, and various pharmacological activities. Many studies have shown that A. vera plays an important role in promoting wound healing. Adding A. vera to wound dressing has become an ideal way. This review will describe the process of skin injury and wound healing and analyze the role of A. vera in wound healing. In addition, the types of wound dressing and the applications of A. vera in wound dressing will be discussed.
Collapse
Affiliation(s)
- Jiaheng Liang
- School of Life Science, Zhengzhou University, Zhengzhou, P.R. China
| | - Longlong Cui
- School of Life Science, Zhengzhou University, Zhengzhou, P.R. China
| | - Jiankang Li
- School of Life Science, Zhengzhou University, Zhengzhou, P.R. China
| | - Shuaimeng Guan
- School of Life Science, Zhengzhou University, Zhengzhou, P.R. China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, P.R. China
| | - Jingan Li
- School of Materials Science and Engineering and Henan Key Laboratory of Advanced Magnesium Alloy, Zhengzhou University, Zhengzhou, P.R. China
| |
Collapse
|
27
|
Iacob AT, Drăgan M, Ionescu OM, Profire L, Ficai A, Andronescu E, Confederat LG, Lupașcu D. An Overview of Biopolymeric Electrospun Nanofibers Based on Polysaccharides for Wound Healing Management. Pharmaceutics 2020; 12:E983. [PMID: 33080849 PMCID: PMC7589858 DOI: 10.3390/pharmaceutics12100983] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
Currently, despite the thoroughgoing scientific research carried out in the area of wound healing management, the treatment of skin injuries, regardless of etiology remains a big provocation for health care professionals. An optimal wound dressing should be nontoxic, non-adherent, non-allergenic, should also maintain a humid medium at the wound interfacing, and be easily removed without trauma. For the development of functional and bioactive dressings, they must meet different conditions such as: The ability to remove excess exudates, to allow gaseous interchange, to behave as a barrier to microbes and to external physical or chemical aggressions, and at the same time to have the capacity of promoting the process of healing by stimulating other intricate processes such as differentiation, cell adhesion, and proliferation. Over the past several years, various types of wound dressings including hydrogels, hydrocolloids, films, foams, sponges, and micro/nanofibers have been formulated, and among them, the electrospun nanofibrous mats received an increased interest from researchers due to the numerous advantages and their intrinsic properties. The drug-embedded nanofibers are the potential candidates for wound dressing application by virtue of: Superior surface area-to volume ratio, enormous porosity (can allow oxy-permeability) or reticular nano-porosity (can inhibit the microorganisms'adhesion), structural similitude to the skin extracellular matrix, and progressive electrospinning methodology, which promotes a prolonged drug release. The reason that we chose to review the formulation of electrospun nanofibers based on polysaccharides as dressings useful in wound healing was based on the ever-growing research in this field, research that highlighted many advantages of the nanofibrillary network, but also a marked versatility in terms of numerous active substances that can be incorporated for rapid and infection-free tissue regeneration. In this review, we have extensively discussed the recent advancements performed on electrospun nanofibers (eNFs) formulation methodology as wound dressings, and we focused as well on the entrapment of different active biomolecules that have been incorporated on polysaccharides-based nanofibers, highlighting those bioagents capable of improving the healing process. In addition, in vivo tests performed to support their increased efficacy were also listed, and the advantages of the polysaccharide nanofiber-based wound dressings compared to the traditional ones were emphasized.
Collapse
Affiliation(s)
- Andreea-Teodora Iacob
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania; (A.-T.I.); (M.D.); (O.-M.I.); (D.L.)
| | - Maria Drăgan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania; (A.-T.I.); (M.D.); (O.-M.I.); (D.L.)
| | - Oana-Maria Ionescu
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania; (A.-T.I.); (M.D.); (O.-M.I.); (D.L.)
| | - Lenuța Profire
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania; (A.-T.I.); (M.D.); (O.-M.I.); (D.L.)
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucuresti, Romania;
- Academy of Romanian Scientists, Ilfov st 3, 050085 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucuresti, Romania;
- Academy of Romanian Scientists, Ilfov st 3, 050085 Bucharest, Romania
| | - Luminița Georgeta Confederat
- Department of Preventive Medicine and Interdisciplinarity, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania;
| | - Dan Lupașcu
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania; (A.-T.I.); (M.D.); (O.-M.I.); (D.L.)
| |
Collapse
|