1
|
Yang J, Jin L, Li Y, Deng D, Miao Y. Advances in Drug Delivery Systems for Atopic Dermatitis Treatment. Chembiochem 2025; 26:e202400968. [PMID: 39740342 DOI: 10.1002/cbic.202400968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/02/2025]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disorder characterized by pruritus and impaired skin barrier function. Advances in drug delivery systems have transformed AD treatment by enhancing drug stability, bioavailability, and targeted delivery. Drug delivery systems such as liposomes, hydrogels, and microneedles enable deeper skin penetration, prolonged drug retention, and controlled release, reducing side effects and treatment frequency. Liposomes improve drug absorption and stability, while hydrogels offer high water content and responsive drug release. Microneedles facilitate painless, localized drug delivery, enhancing patient compliance. These systems address the limitations of traditional therapies like topical corticosteroids and systemic immunosuppressants, which are associated with adverse effects and poor patient adherence. Recent innovations include Janus kinase (JAK) inhibitors and biologics targeting immune pathways, demonstrating significant efficacy in reducing inflammation and symptoms. Drug delivery systems offer a safer, more efficient alternative for delivering these advanced therapies. By improving therapeutic outcomes and patient experience, drug delivery systems represent a crucial advancement in AD management.
Collapse
Affiliation(s)
- Jingyi Yang
- Department of Dermatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, No.1678, Dongfang Road, Shanghai, 200127, China
| | - Ling Jin
- Department of Dermatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, No.1678, Dongfang Road, Shanghai, 200127, China
| | - Yuhao Li
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, No. 516 Jungong Road Road, Shanghai, 200093, China
| | - Dan Deng
- Department of Dermatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, No.1678, Dongfang Road, Shanghai, 200127, China
| | - Yuqing Miao
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, No. 516 Jungong Road Road, Shanghai, 200093, China
| |
Collapse
|
2
|
Yadav P, Wairkar S. Tofacitinib in focus: Fascinating voyage from conventional formulations to novel delivery systems. Int J Pharm 2025; 671:125253. [PMID: 39842741 DOI: 10.1016/j.ijpharm.2025.125253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/11/2025] [Accepted: 01/19/2025] [Indexed: 01/24/2025]
Abstract
Tofacitinib, a Janus kinase (JAK) inhibitor, has emerged as a primary therapeutic agent for managing autoimmune diseases such as rheumatoid arthritis, psoriatic arthritis, dermatitis and ulcerative colitis. By inhibiting the phosphorylation of JAK enzymes, tofacitinib prevents their activation within the JAK-STAT signaling pathway, which is vital for inflammatory responses. However, the tofacitinib delivery presents significant challenges, including pH-dependent solubility, poor permeability and susceptibility to oral degradation. This review provides an in-depth analysis of current and emerging formulations to enhance the delivery and efficiency of tofacitinib. This review highlights the physicochemical, pharmacodynamic and pharmacokinetic properties of tofacitinib. Additionally, it discusses various strategies, including oral modified release formulations, topical/transdermal delivery utilizing lipid-based and polymeric systems, and parenteral delivery systems. Recent advancements in nanotechnology, such as liposomes, micelles, keratinocyte exosomes, proposomes, proglycosomes, transethosomes, squalenyl nanoparticles and lyotropic liquid crystalline nanoparticles, are explored as potential nanocarriers to existing delivery constraints. The development of advanced tofacitinib delivery systems can address the challenges in its delivery and improve therapeutic outcomes and patient compliance, paving the way for enhanced treatment strategies in autoimmune and inflammatory conditions.
Collapse
Affiliation(s)
- Priti Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India.
| |
Collapse
|
3
|
Ehsan I, Shahid M, Natesan S, Faruk A, Sood AK, Khan T. Hansen Solubility Parameters, Computational, and Thermodynamic Models for Tofacitinib Citrate Solubility in Neat Mono Solvents, and GastroPlus Based Predicted In Vivo Performance of Subcutaneous Solution in Humans. AAPS PharmSciTech 2025; 26:64. [PMID: 39966280 DOI: 10.1208/s12249-025-03048-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/19/2025] [Indexed: 02/20/2025] Open
Abstract
We investigated the experimental solubility of tofacitinib citrate (TNF) in HSPiP predicted mono solvents at varied temperature points, followed by validation with various models (computational and thermodynamic) and GastroPlus based predicted in-vivo performance in individuals (adult humans). HSPiP (Hansen software) predicted five mono solvents (N-methyl-2-pyrrolidone as NMP, ethanol, polyethylene glycol 400 as PEG400, chloroform, and water). The thermally stable drug was solubilized in these solvents. Computational (Van't Hoff and Apelblat) models were applied to validate the experimental solubility data (mole fraction solubility, Xe). The selected solvent (NMP) was used as a vehicle for subcutaneous (sub-Q) formulation development and compared against conventional tablet for high effectiveness in terms of pharmacokinetic parameters (PK) in humans. Results showed that the drug solubility in NMP was "endothermic and entropy" driven as evidenced with the applied models (computational and thermodynamic). The optimized components for sub-Q delivery were NMP (21.5% v/v), PEG400 (10.0% v/v), and PBS (phosphate buffer solution at pH 7.4). GastroPlus predicted 0.036 µg/mL and 0.042 µg/mL values of Cmax (maximum drug reached in the blood) in the blood after sub-Q and oral delivery, respectively. In vivo access of the drug was maximally extended in sub-Q delivery as compared to tablets as predicted in GastroPlus considering humans (fast condition). Conclusively, the sub-Q administration of TNF can be a promising alternative to the conventional tablets.
Collapse
Affiliation(s)
- Iman Ehsan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Kolkata, Chunilal Bhawan, 168, Maniktala Main Road Kolkata, Kolkata, 700054, West Bengal, India
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Subramanian Natesan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Kolkata, Chunilal Bhawan, 168, Maniktala Main Road Kolkata, Kolkata, 700054, West Bengal, India
| | - Abdul Faruk
- Department of Pharmaceutical Sciences, HNB Garhwal University (A Central University), Garhwal, Srinagar, 246174, Uttarakhand, India
| | - Ashwani Kumar Sood
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Tasneem Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
4
|
Chiang CC, Cheng WJ, Dela Cruz JRMS, Raviraj T, Wu NL, Korinek M, Hwang TL. Neutrophils in Atopic Dermatitis. Clin Rev Allergy Immunol 2024; 67:21-39. [PMID: 39294505 PMCID: PMC11638293 DOI: 10.1007/s12016-024-09004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 09/20/2024]
Abstract
Neutrophils have a critical role in inflammation. Recent studies have identified their distinctive presence in certain types of atopic dermatitis (AD), yet their exact function remains unclear. This review aims to compile studies elucidating the role of neutrophils in AD pathophysiology. Proteins released by neutrophils, including myeloperoxidase, elastase, and lipocalin, contribute to pruritus progression in AD. Neutrophilic oxidative stress and the formation of neutrophil extracellular traps may further worsen AD. Elevated neutrophil elastase and high-mobility group box 1 protein expression in AD patients' skin exacerbates epidermal barrier defects. Neutrophil-mast cell interactions in allergic inflammation steer the immunological response toward Th2 imbalance and activate the Th17 pathway, particularly in response to allergens or infections linked to AD. Notably, drugs alleviating pruritic symptoms in AD inhibit neutrophilic inflammation. In conclusion, these findings underscore that neutrophils may be therapeutic targets for AD symptoms, emphasizing their inclusion in AD treatment strategies.
Collapse
Affiliation(s)
- Chih-Chao Chiang
- Department of Nutrition and Health Sciences, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Puxin Fengze Chinese Medicine Clinic, Taoyuan, Taiwan
| | - Wei-Jen Cheng
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Joseph Renz Marion Santiago Dela Cruz
- Graduate Institute of Health Industry Technology and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Thiyagarajan Raviraj
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Nan-Lin Wu
- Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan.
- Institute of Biomedical Sciences and Department of Medicine, Mackay Medical College, New Taipei, Taiwan.
| | - Michal Korinek
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Tsong-Long Hwang
- Graduate Institute of Health Industry Technology and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan.
| |
Collapse
|
5
|
Mahajan A, Sharma G, Thakur A, Singh B, Mehta H, Mittal N, Dogra S, Katare OP. Tofacitinib in dermatology: a potential opportunity for topical applicability through novel drug-delivery systems. Nanomedicine (Lond) 2024; 19:79-101. [PMID: 38197372 DOI: 10.2217/nnm-2023-0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Tofacitinib is a first-generation JAK inhibitor approved by the US FDA for treating rheumatoid arthritis. It exhibits a broad-spectrum inhibitory effect with abilities to block JAK-STAT signalling. The primary objective of this review is to obtain knowledge about cutting-edge methods for effectively treating a variety of skin problems by including tofacitinib into formulations that are based on nanocarriers. The review also highlights clinical trials and offers an update on published clinical patents. Nanocarriers provide superior performance compared to conventional treatments in terms of efficacy, stability, drug bioavailability, target selectivity and sustained drug release. Current review has the potential to make significant contributions to the ongoing discussion involving dermatological treatments and the prospective impact of nanotechnology on transforming healthcare within this field.
Collapse
Affiliation(s)
- Akanksha Mahajan
- University Institute of Pharmaceutical Sciences, UGC-centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Gajanand Sharma
- University Institute of Pharmaceutical Sciences, UGC-centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Anil Thakur
- University Institute of Pharmaceutical Sciences, UGC-centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Bhupinder Singh
- University Institute of Pharmaceutical Sciences, UGC-centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Hitaishi Mehta
- Department of Dermatology, Venereology & Leprology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Neeraj Mittal
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Sunil Dogra
- Department of Dermatology, Venereology & Leprology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - O P Katare
- University Institute of Pharmaceutical Sciences, UGC-centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
6
|
Marto J, Simões S. New Horizons in Dermal and Transdermal Drug Delivery Systems. Pharmaceuticals (Basel) 2023; 16:1654. [PMID: 38139781 PMCID: PMC10748041 DOI: 10.3390/ph16121654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Dermal and transdermal drug delivery represents an important strategy to target drugs towards the site of action or to noninvasively enhance treatment activity, circumventing the hepatic first passage and reducing toxicity [...].
Collapse
Affiliation(s)
- Joana Marto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Sandra Simões
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
7
|
Wu X, Du YZ. Nanodrug Delivery Strategies to Signaling Pathways in Alopecia. Mol Pharm 2023; 20:5396-5415. [PMID: 37817669 DOI: 10.1021/acs.molpharmaceut.3c00620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Over 50% of the global population suffers from hair loss. The mixed results in the treatment of hair loss reveal the limitations of conventional commercial topical drugs. One the one hand, the definite pathogenesis of hair loss is still an enigma. On the other hand, targeted drug carriers ensure the drug therapeutic effect and low side effects. This review highlights the organization and overview of nine crucial signaling pathways associated with hair loss, as well as the development of nanobased topical delivery systems loading the clinical drugs, which will fuel emerging hair loss treatment strategies.
Collapse
Affiliation(s)
- Xiaochuan Wu
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321299, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yong-Zhong Du
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321299, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
8
|
Dhule KD, Nandgude TD. Lipid Nano-System Based Topical Drug Delivery for Management of Rheumatoid Arthritis: An Overview. Adv Pharm Bull 2023; 13:663-677. [PMID: 38022817 PMCID: PMC10676558 DOI: 10.34172/apb.2023.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 02/03/2023] [Accepted: 04/24/2023] [Indexed: 12/01/2023] Open
Abstract
The overall purpose of rheumatoid arthritis (RA) treatment is to give symptomatic alleviation; there is no recognized cure for RA. Frequent use of potent drugs like non-steroidal anti-inflammatory drugs (NSAIDs) and disease-modifying antirheumatic drugs (DMARDs), lead to various adverse effects and patient compliance suffers. On the other hand, there are many drawbacks associated with traditional methods, such as high first pass, high clearance rate, and low bioavailability. Drug administration through the skin can be a promising alternative to cope with these drawbacks, increasing patient compliance and providing site-specific action. The stratum corneum, the uppermost non-viable epidermal layer, is one of the primary limiting barriers to skin penetration. Various nanocarrier technologies come into play as drug vehicles to help overcome these barriers. The nanocarrier systems are biocompatible, stable, and have a lower cytotoxic impact. The review discusses several lipid-based nanocarrier systems for anti-rheumatic medicines for topical administration it also discusses in-vivo animal models for RA and provides information on patents granted.
Collapse
Affiliation(s)
| | - Tanaji Dilip Nandgude
- Dr. D. Y. Patil Institute of Pharmaceutical Science and Research, Pimpri, Pune 411018, Department of Pharmaceutics, Pune, Maharashtra, India
| |
Collapse
|
9
|
Xu Y, Zhao M, Cao J, Fang T, Zhang J, Zhen Y, Wu F, Yu X, Liu Y, Li J, Wang D. Applications and recent advances in transdermal drug delivery systems for the treatment of rheumatoid arthritis. Acta Pharm Sin B 2023; 13:4417-4441. [PMID: 37969725 PMCID: PMC10638506 DOI: 10.1016/j.apsb.2023.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/21/2023] [Accepted: 05/10/2023] [Indexed: 11/17/2023] Open
Abstract
Rheumatoid arthritis is a chronic, systemic autoimmune disease predominantly based on joint lesions with an extremely high disability and deformity rate. Several drugs have been used for the treatment of rheumatoid arthritis, but their use is limited by suboptimal bioavailability, serious adverse effects, and nonnegligible first-pass effects. In contrast, transdermal drug delivery systems (TDDSs) can avoid these drawbacks and improve patient compliance, making them a promising option for the treatment of rheumatoid arthritis (RA). Of course, TDDSs also face unique challenges, as the physiological barrier of the skin makes drug delivery somewhat limited. To overcome this barrier and maximize drug delivery efficiency, TDDSs have evolved in terms of the principle of transdermal facilitation and transdermal facilitation technology, and different generations of TDDSs have been derived, which have significantly improved transdermal efficiency and even achieved individualized controlled drug delivery. In this review, we summarize the different generations of transdermal drug delivery systems, the corresponding transdermal strategies, and their applications in the treatment of RA.
Collapse
Affiliation(s)
| | | | - Jinxue Cao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ting Fang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanli Zhen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fangling Wu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaohui Yu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yaming Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ji Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dongkai Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
10
|
Nour EM, El-Habashy SE, Shehat MG, Essawy MM, El-Moslemany RM, Khalafallah NM. Atorvastatin liposomes in a 3D-printed polymer film: a repurposing approach for local treatment of oral candidiasis. Drug Deliv Transl Res 2023; 13:2847-2868. [PMID: 37184748 PMCID: PMC10545585 DOI: 10.1007/s13346-023-01353-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2023] [Indexed: 05/16/2023]
Abstract
Oral candidiasis (OC) is an opportunistic fungal infection, common amongst the elderly and the immunocompromised. Unfortunately, the therapeutic efficacy of common antifungals is imperiled by the rise of antifungal drug resistance. An alternative promising therapeutic option possibly contributing to antifungal therapy is drug repurposing. Herein, we aimed to employ novel pharmaceutical drug delivery for enhancing the emerging antifungal potential of the hypocholesterolemic drug atorvastatin (ATV). ATV-propylene-glycol-liposomes (ATV/PG-Lip) were prepared then integrated in 3D-printed (3DP) mucoadhesive films comprising chitosan, polyvinyl-alcohol and hydroxypropyl methylcellulose, as an innovative blend, for the management of OC. ATV/PG-Lip demonstrated good colloidal properties of particle size (223.3 ± 2.1 nm), PDI (0.12 ± 0.001) and zeta potential (-18.2 ± 0.3 mV) with high entrapment efficiency (81.15 ± 1.88%) and sustained drug release. Also, ATV/PG-Lip showed acceptable three-month colloidal stability and in vitro cytocompatibility on human gingival fibroblasts. The developed 3DP-films exhibited controlled ATV release (79.4 ± 1.4% over 24 h), reasonable swelling and mucoadhesion (2388.4 ± 18.4 dyne/cm2). In vitro antifungal activity of ATV/PG-Lip was confirmed against fluconazole-resistant Candida albicans via minimum inhibitory concentration determination, time-dependent antifungal activity, agar diffusion and scanning electron microscopy. Further, ATV/PG-Lip@3DP-film exceeded ATV@3DP-film in amelioration of infection and associated inflammation in an in vivo oral candidiasis rabbit model. Accordingly, the results confirm the superiority of the fabricated ATV/PG-Lip@3DP-film for the management of oral candidiasis and tackling antifungal resistance.
Collapse
Affiliation(s)
- Eman M Nour
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, P.O. Box 21521, Azarita, Alexandria, Egypt
| | - Salma E El-Habashy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, P.O. Box 21521, Azarita, Alexandria, Egypt.
| | - Michael G Shehat
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Marwa M Essawy
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Riham M El-Moslemany
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, P.O. Box 21521, Azarita, Alexandria, Egypt
| | - Nawal M Khalafallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, P.O. Box 21521, Azarita, Alexandria, Egypt
| |
Collapse
|
11
|
Jiang X, Chen P, Niu W, Fang R, Chen H, An Y, Wang W, Jiang C, Ye J. Preparation and evaluation of dissolving tofacitinib microneedles for effective management of rheumatoid arthritis. Eur J Pharm Sci 2023; 188:106518. [PMID: 37419290 DOI: 10.1016/j.ejps.2023.106518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/05/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Dissolving microneedles have become a focal point in transdermal drug delivery. They have the advantages of painless, rapid drug delivery and high drug utilization. The purpose of this study was to evaluate the efficacy of Tofacitinib citrate microneedles in arthritis treatment, assess the dose-effect relationship, and determine the cumulative penetration during percutaneous injection. In this study, block copolymer was utilized to prepare the dissolving microneedles. The microneedles were characterized through skin permeation tests, dissolution tests, treatment effect evaluations, and Western blot experiments. In vivo dissolution experiments revealed that the soluble microneedles completely dissolved within 2.5 min, while in vitro skin permeation experiments demonstrated the highest unit area of skin permeation of the microneedles reached 2118.13 mg/cm2. The inhibition of Tofacitinib microneedle on joint swelling in rats with Rheumatoid arthritis was better than Ketoprofen and close to that of oral Tofacitinib. Western-blot experiment comfirmed the Tofacitinib microneedle's inhibitory effect on the JAK-STAT3 pathway in rats with Rheumatoid arthritis. In conclusion, Tofacitinib microneedles effectively inhibited arthritis in rats, demonstrating potential for Rheumatoid arthritis treatment.
Collapse
Affiliation(s)
- Xiumei Jiang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, 310013, China
| | - Pu Chen
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, 310013, China
| | - Wenxin Niu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, 310013, China
| | - Renhua Fang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, 310013, China
| | - Hang Chen
- Collaborative Innovation Center of Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yue An
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, 310013, China
| | - Weiqing Wang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, 310013, China
| | - Changzhao Jiang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, 310013, China.
| | - Jincui Ye
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, 310013, China.
| |
Collapse
|
12
|
Guan Y, Yan A, Qiang W, Ruan R, Yang C, Ma K, Sun H, Liu M, Zhu H. Selective Delivery of Tofacitinib Citrate to Hair Follicles Using Lipid-Coated Calcium Carbonate Nanocarrier Controls Chemotherapy-Induced Alopecia Areata. Int J Mol Sci 2023; 24:ijms24098427. [PMID: 37176141 PMCID: PMC10179728 DOI: 10.3390/ijms24098427] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Chemotherapy-induced alopecia (CIA) is one of the common side effects in cancer treatment. The psychological distress caused by hair loss may cause patients to discontinue chemotherapy, affecting the efficacy of the treatment. The JAK inhibitor, Tofacitinib citrate (TFC), showed huge potential in therapeutic applications for treating baldness, but the systemic adverse effects of oral administration and low absorption rate at the target site limited its widespread application in alopecia. To overcome these problems, we designed phospholipid-calcium carbonate hybrid nanoparticles (PL/ACC NPs) for a topical application to target deliver TFC. The results proved that PL/ACC-TFC NPs showed excellent pH sensitivity and transdermal penetration in vitro. PL/ACC NPs offered an efficient follicular targeting approach to deliver TFC in a Cyclophosphamide (CYP)-induced alopecia areata mouse model. Compared to the topical application of TFC solution, PL/ACC-TFC NPs significantly inhibited apoptosis of mouse hair follicles and accelerated hair growth. These findings support that PL/ACC-TFC NPs has the potential for topical application in preventing and mitigating CYP-induced Alopecia areata.
Collapse
Affiliation(s)
- Yeneng Guan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Aqin Yan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Wei Qiang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Rui Ruan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Chaobo Yang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Kai Ma
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Hongmei Sun
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Mingxing Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Hongda Zhu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
13
|
Gorantla S, Rao Puppala E, Naidu V, Saha RN, Singhvi G. Design of chondroitin sulphate coated proglycosomes for localized delivery of tofacitinib for the treatment of rheumatoid arthritis. Eur J Pharm Biopharm 2023; 186:43-54. [PMID: 36940886 DOI: 10.1016/j.ejpb.2023.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 03/23/2023]
Abstract
Long-term oral tofacitinib (TOF) administration has been linked to serious side effects majorly immunological suppression. The aim of this work was to enhance the therapeutic efficacy of TOF by chondroitin sulphate (CS) coated proglycosomes through the anchoring of high-affinity CS to CD44 receptors on immune cells in the inflammatory region. The CS was coated onto the TOF-loaded proglycosomes (CS-TOF-PG) formulations and they were evaluated for in vitro drug release, ex vivo (permeation, dermatokinetics) studies. In vivo efficacy studies were carried out in Freund's complete adjuvant (CFA) induced arthritis model. The optimized CS-TOF-PG showed particle sizes of 181.13 ± 7.21 nm with an entrapment efficiency of 78.85 ± 3.65 %. Ex-vivo studies of CS-TOF-PG gel exhibited 1.5-fold high flux and 1.4-fold dermal retention compared to FD-gel. The efficacy study revealed that CS-TOF-PG showed a significant (P < 0.001) reduction in inflammation in arthritic rat paws compared to the TOF oral and FD gel. The current study ensured that the CS-TOF-PG topical gel system would provide a safe and effective formulation for localization and site-specific delivery of TOF at the RA site and overcome the adverse effects associated with the TOF.
Collapse
Affiliation(s)
- Srividya Gorantla
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India - 333031
| | - Eswara Rao Puppala
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India, 781101
| | - Vgm Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India, 781101
| | - Ranendra N Saha
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India - 333031
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India - 333031.
| |
Collapse
|
14
|
Dandekar AA, Garimella HT, German CL, Banga AK. Microneedle Mediated Iontophoretic Delivery of Tofacitinib Citrate. Pharm Res 2023; 40:735-747. [PMID: 35174431 PMCID: PMC9378741 DOI: 10.1007/s11095-022-03190-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/03/2022] [Indexed: 10/19/2022]
Abstract
PURPOSE To investigate in vitro transdermal delivery of tofacitinib citrate across human skin using microporation by microneedles and iontophoresis alone and in combination. METHODS In vitro permeation studies were conducted using vertical Franz diffusion cells. Microneedles composed of polyvinyl alcohol and carboxymethyl cellulose were fabricated and successfully characterized using scanning electron microscopy. The microchannels created were further characterized using histology, dye binding study, scanning electron microscopy, and confocal microscopy studies. The effect of microporation on delivery of tofacitinib citrate was evaluated alone and in combination with iontophoresis. In addition, the effect of current density on iontophoretic delivery was also investigated. RESULTS Total delivery of tofacitinib citrate via passive permeation was found out to be 11.04 ± 1 μg/sq.cm. Microporation with microneedles resulted in significant enhancement where a 28-fold increase in delivery of tofacitinib citrate was observed with a total delivery of 314.7±33.32 μg/sq.cm. The characterization studies confirmed the formation of microchannels in the skin where successful disruption of stratum corneum was observed after applying microneedles. Anodal iontophoresis at 0.1 and 0.5 mA/sq.cm showed a total delivery of 18.56 μg/sq.cm and 62.07 μg/sq.cm, respectively. A combination of microneedle and iontophoresis at 0.5 mA/sq.cm showed the highest total delivery of 566.59 μg/sq.cm demonstrating a synergistic effect. A sharp increase in transdermal flux was observed for a combination of microneedles and iontophoresis. CONCLUSION This study demonstrates the use of microneedles and iontophoresis to deliver a therapeutic dose of tofacitinib citrate via transdermal route.
Collapse
Affiliation(s)
- Amruta A Dandekar
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, GA, 30341, USA
| | - Harsha T Garimella
- CFD Research Corporation, 701 McMillian Way NW, Huntsville, AL, 35806, USA
| | - Carrie L German
- CFD Research Corporation, 701 McMillian Way NW, Huntsville, AL, 35806, USA
| | - Ajay K Banga
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, GA, 30341, USA.
| |
Collapse
|
15
|
Kumar P, Ashawat MS, Pandit V, Singh Verma CP, Ankalgi AD, Kumar M. Recent Trends in Nanocarriers for the Management of Atopic Dermatitis. Pharm Nanotechnol 2023; 11:397-409. [PMID: 36998138 DOI: 10.2174/2211738511666230330115229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/07/2023] [Accepted: 01/25/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is a pruritic inflammatory skin condition with increasing global prevalence, almost affecting 15% to 30% of children and 5% of adults. AD results due to a complex interaction between the impaired skin barrier function, allergens, and immunological cells. Topical corticosteroids or calcineurin inhibitors in the form of creams or ointments are the mainstay of therapy, but they have low skin penetration and skin barrier repair efficiency. OBJECTIVE The above limitations of conventional dosage forms have motivated the development of nanoformulations of drugs for improved penetration and deposition in the skin for better management of AD. METHODS Databases, such as Pubmed, Elsevier, and Google Scholar, were reviewed for the investigations or reviews published related to the title. RESULTS The present review discusses the advantages of nanoformulations for the management of AD. Further, it also discusses the various types of topically investigated nanoformulations, i.e., polymeric nanoparticles, inorganic nanoparticles, solid lipid nanoparticles, liposomes, ethosomes, transfersomes, cubosomes, and nanoemulsion for the management of atopic dermatitis. In addition, it also discusses advancements in nanoformulations, such as nanofibres, nanosponges, micelles, and nanoformulations embedded textiles development for the management of AD. CONCLUSION The nanoformulations of drugs can be a better alternative for the topical management of AD with enhanced skin penetration and deposition of drugs with reduced systemic side effects and better patient compliance.
Collapse
Affiliation(s)
- Pravin Kumar
- Laureate Institute of Pharmacy, VPO-Kathog, Jwalamukhi, Kangra, H.P, 176031, India
| | | | - Vinay Pandit
- Laureate Institute of Pharmacy, VPO-Kathog, Jwalamukhi, Kangra, H.P, 176031, India
| | | | - Amar Deep Ankalgi
- Laureate Institute of Pharmacy, VPO-Kathog, Jwalamukhi, Kangra, H.P, 176031, India
| | - Manish Kumar
- M.M. College of Pharmacy, Maharshi Markendeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| |
Collapse
|
16
|
Zhang Y, Gao Z, Chao S, Lu W, Zhang P. Transdermal delivery of inflammatory factors regulated drugs for rheumatoid arthritis. Drug Deliv 2022; 29:1934-1950. [PMID: 35757855 PMCID: PMC9246099 DOI: 10.1080/10717544.2022.2089295] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Rheumatoid arthritis is a chronic autoimmune disease, with the features of recurrent chronic inflammation of synovial tissue, destruction of cartilage, and bone erosion, which further affects joints tissue, organs, and systems, and eventually leads to irreversible joint deformities and body dysfunction. Therapeutic drugs for rheumatoid arthritis mainly reduce inflammation through regulating inflammatory factors. Transdermal administration is gradually being applied to the treatment of rheumatoid arthritis, which can allow the drug to overcome the skin stratum corneum barrier, reduce gastrointestinal side effects, and avoid the first-pass effect, thus improving bioavailability and relieving inflammation. This paper reviewed the latest research progress of transdermal drug delivery in the treatment of rheumatoid arthritis, and discussed in detail the dosage forms such as gel (microemulsion gel, nanoemulsion gel, nanomicelle gel, sanaplastic nano-vesiclegel, ethosomal gel, transfersomal gel, nanoparticles gel), patch, drug microneedles, nanostructured lipid carrier, transfersomes, lyotropic liquid crystal, and drug loaded electrospinning nanofibers, which provide inspiration for the rich dosage forms of transdermal drug delivery systems for rheumatoid arthritis.
Collapse
Affiliation(s)
- Yanyan Zhang
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Zhaoju Gao
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Shushu Chao
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Wenjuan Lu
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Pingping Zhang
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| |
Collapse
|
17
|
Partoazar A, Kianvash N, Goudarzi R. New concepts in wound targeting through liposome-based nanocarriers (LBNs). J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Gorantla S, Puppala ER, Naidu V, Saha RN, Singhvi G. Hyaluronic acid-coated proglycosomes for topical delivery of tofacitinib in rheumatoid arthritis condition: Formulation design, in vitro, ex vivo characterization, and in vivo efficacy studies. Int J Biol Macromol 2022; 224:207-222. [DOI: 10.1016/j.ijbiomac.2022.10.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
19
|
Nishal S, Jhawat V, Phaugat P, Dutt R. In-vitro characterization oftofacitinibloaded novel nanoemulgel fortopical delivery for the management of rheumatic arthritis. Drug Dev Ind Pharm 2022; 48:374-383. [PMID: 36039045 DOI: 10.1080/03639045.2022.2119572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The purpose of the current study is to prepare the tofacitinibnanoemulgelfor topical administration with optimized particle size, high loading efficiency, and better penetration through the skin for the treatment of rheumatic arthritis. The topical delivery of this drugavoids the hazards associated with oral delivery like upper respiratory tract infections and neutropenia. Theformulationswere prepared usingthe high-energy ultrasonication method. Oleic acid, tween 80, andpropylene glycol were used to prepare tofacitinibnanoemulsionwhich is then homogenized with carbopol-934 hydrogel to get the nanoemulgel loaded with tofacitinib.The concentration of independent variables such as X1 (oil phase), X2 (surfactant), and X3 (cosurfactant) wasoptimized using theBox-Behnken design to check its impact on dependent variables such as Y1 (particle size), and Y2(loading efficiency) of the nanoemulsion.The minimumparticle size of 106.3 ± 2.8nm and maximum loading efficiency of 19.3 ± 1.8%were obtained for nanoemulsion. The nanoemulgels were evaluated for different organoleptic and physicochemical stability which were found within the normal range. The in-vitro release studies showed 89.64 ± 0.97% cumulative release of tofacitinib from nanoemulgel over the period of 24 hours.The drug release data were fitted in different kinetic models and it followed Higuchi and Korsmeyer- Peppas model clearly showing the non-fickian drug release from matrix system. As a result, the tofacitinib nanoemulgel that have been produced could be a viable delivery mechanism for topical route.
Collapse
Affiliation(s)
- Suchitra Nishal
- School of Medical and Allied Sciences, GD Goenka University, Gurugram, India
| | - Vikas Jhawat
- School of Medical and Allied Sciences, GD Goenka University, Gurugram, India
| | - Parmita Phaugat
- School of Medical and Allied Sciences, GD Goenka University, Gurugram, India
| | - Rohit Dutt
- School of Medical and Allied Sciences, GD Goenka University, Gurugram, India
| |
Collapse
|
20
|
Kumari SD, Chevala NT, Jitta SR, Kumar L, Verma R, Jose J. Design and Development of Naringin Loaded Proposomal Gel for Wound Healing. J Cosmet Dermatol 2022; 21:5187-5202. [PMID: 35486446 DOI: 10.1111/jocd.15029] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND The injuries or wounds caused by various means will impact human lives severely. An increase in the demand for wounds or burns was observed. For better wound healing and to combat the free radical effect on the healing process, wounds must be treated with multifunctional or multipurpose dressing or gel or any other type of biomaterial. OBJECTIVES The study aims to develop, optimize, and evaluate the naringin-loaded proposomal gel (PPG) for quick wound healing. METHODS The central composite design was employed for the optimization of proposomes. Naringin-loaded proposomes were evaluated for percentage entrapment efficiency (EE), the particle size of proposomes (PsP), and the zeta potential of proposomes (ZpP). The change in drug release profile was studied by dissolution. Furthermore, naringin and naringin-loaded proposomes, antioxidant activity was determined by 2,2- diphenyl-1-picrylhydrazyl hydrate (DPPH) reagent and ascorbic acid as a reference standard. Different gel bases were prepared, and based on various parameters, the G2 (0.6 % Carbopol 974) gel base was selected for naringin proposomes loading. The naringin-loaded PPG was evaluated for various in vitro and in vivo wound healing properties. RESULTS The optimized naringin-loaded proposomes showed extended drug release (90.78 ± 2.19%) for 72 h. The naringin-loaded PPG improved the permeability of naringin, which showed 28.91 ± 2.81% of drug release after 96 h, and the drug solution showed 9.05 ± 0.92%. IC50 values of antioxidant activity of naringin and naringin proposomes were found to be 337.31 μg/ mL and 201.86 μg/ mL, respectively. The naringin-loaded PPG showed better-wound closure on the 15th day (3.32%) compared to proposomal solution (4.75%) or naringin topical gel (4.2%). CONCLUSION Based on the obtained results, we conclude naringin-loaded PPG can be an alternative strategic approach to deliver the naringin for quick wound healing.
Collapse
Affiliation(s)
- Shifali D Kumari
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, 576 104, Udupi, Karnataka, India
| | - Naga Thirumalesh Chevala
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, 576 104, Udupi, Karnataka, India
| | - Srinivas Reddy Jitta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, 576 104, Udupi, Karnataka, India
| | - Lalit Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, 576 104, Udupi, Karnataka, India
| | - Ruchi Verma
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, 576 104, Udupi, Karnataka, India
| | - Jobin Jose
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed to be University), 575 018, Karnataka, India
| |
Collapse
|
21
|
Vaz VM, Jitta SR, Verma R, Kumar L. Hesperetin loaded proposomal gel for topical antioxidant activity. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Kathuria H, Handral HK, Cha S, Nguyen DTP, Cai J, Cao T, Wu C, Kang L. Enhancement of Skin Delivery of Drugs Using Proposome Depends on Drug Lipophilicity. Pharmaceutics 2021; 13:1457. [PMID: 34575533 PMCID: PMC8469902 DOI: 10.3390/pharmaceutics13091457] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/15/2021] [Accepted: 08/27/2021] [Indexed: 01/06/2023] Open
Abstract
The study aims to investigate the propylene glycol-based liposomes named 'proposomes' in enhancing skin permeation of drugs with different physicochemical properties. Ibuprofen, tofacitinib citrate, rhodamine B, and lidocaine were loaded into proposomes. These drug formulations were analyzed for particle size, zeta potential, polydispersity index, entrapment efficiency, and in vitro skin permeation. The confocal laser scanning microscopy was performed on skin treated with calcein and rhodamine B laden proposomes. The transdermal delivery relative to physicochemical properties of drugs such as logP, melting point, molecular weight, solubility, etc., were analyzed. We tested the safety of the proposomes using reconstructed human skin tissue equivalents, which were fabricated in-house. We also used human cadaver skin samples as a control. The proposomes had an average diameter of 128 to 148 nm. The drug's entrapment efficiencies were in the range of 42.9-52.7%, translating into the significant enhancement of drug permeation through the skin. The enhancement ratio was 1.4 to 4.0, and linearly correlated to logP, molecular weight, and melting point. Confocal imaging also showed higher skin permeation of calcein and rhodamine B in proposome than in solution. The proposome was found safe for skin application. The enhancement of skin delivery of drugs through proposomes was dependent on the lipophilicity of the drug. The entrapment efficiency was positively correlated with logP of the drug, which led to high drug absorption.
Collapse
Affiliation(s)
- Himanshu Kathuria
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore; (H.K.); (S.C.); (D.T.P.N.)
| | - Harish K. Handral
- Stem Cell Bioprocessing, Bioprocessing Technology Institute, A*STAR, Singapore 138668, Singapore;
| | - Saera Cha
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore; (H.K.); (S.C.); (D.T.P.N.)
| | - Diep T. P. Nguyen
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore; (H.K.); (S.C.); (D.T.P.N.)
| | - Junyu Cai
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
| | - Tong Cao
- Faculty of Dentistry, National University of Singapore, Singapore 119085, Singapore;
| | - Chunyong Wu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China
| | - Lifeng Kang
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
| |
Collapse
|
23
|
Cárcamo-Martínez Á, Mallon B, Anjani QK, Domínguez-Robles J, Utomo E, Vora LK, Tekko IA, Larrañeta E, Donnelly RF. Enhancing intradermal delivery of tofacitinib citrate: Comparison between powder-loaded hollow microneedle arrays and dissolving microneedle arrays. Int J Pharm 2020; 593:120152. [PMID: 33301867 DOI: 10.1016/j.ijpharm.2020.120152] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023]
Abstract
Autoimmune-mediated inflammatory skin diseases, such as psoriasis, alopecia areata, and vitiligo, have been reported as the 4th leading cause of nonfatal disease burden worldwide. This is mainly related to the poor quality of life experienced by these patients. Although topical and systemic steroids represent the most common treatment, the variability in success rates and side effects often lead to treatment discontinuation. Recent off-label clinical studies using oral Janus Kinase (JAK) inhibitors (e.g., ruxolitinib, tofacitinib, baraticinib) have shown promising results. However, frequent side effects, such as infections and blood clots have been reported. Therefore, the aim of this research was to enhance the intradermal delivery of tofacitinib citrate with MN arrays. Using crosslinked hydrogels containing modifying agents (urea, sorbitol and sodium chloride), hollow MN arrays were fabricated and then loaded with tofacitinib citrate. Their efficiency in intradermal delivery of tofacitinib was compared with dissolving MN arrays and a control (Aqueous cream BP), using neonatal porcine skin. Despite the fact that the hydrogel was only present on the outer surface, hollow MN arrays showed comparable resistance to compression values and insertion capabilities to dissolving MN arrays. Although hollow MN arrays containing NaCl in the formulation led to slightly higher depositions of tofacitinib in epidermis and dermis of neonatal porcine skin when compared to a control cream, dissolving MN arrays showed superiority in terms of tofacitinib deposition in the dermis. Indeed, at 24 h of the study, control cream and dissolving MN arrays delivered 143.98 ug/cm2 and 835 ug/cm2 of drug in the dermis, respectively, confirming the enhanced intradermal drug delivery capacity of MN arrays and their potential for treatment of autoimmune skin diseases.
Collapse
Affiliation(s)
- Álvaro Cárcamo-Martínez
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Brónach Mallon
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Emilia Utomo
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Lalit K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ismael A Tekko
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
24
|
Murthy A, Ravi PR, Kathuria H, Vats R. Self-assembled lecithin-chitosan nanoparticles improve the oral bioavailability and alter the pharmacokinetics of raloxifene. Int J Pharm 2020; 588:119731. [PMID: 32763388 DOI: 10.1016/j.ijpharm.2020.119731] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 12/12/2022]
Abstract
In this study, we report the development and evaluation of soy lecithin-chitosan hybrid nanoparticles to improve the oral bioavailability of raloxifene hydrochloride. The nanoparticles were formed by interaction of negatively charged soy lecithin with positively charged chitosan. The ratio of soy lecithin to chitosan was critical for the charge, and hence the size of the nanoparticles. The optimal soy lecithin to chitosan ratio was 20:1 to obtain nanoparticles with particle size of 208 ± 3 nm, a ζ-potential of 36 ± 2 mV and an entrapment efficiency of 73 ± 3%. The nanoparticles were also characterized by differential scanning calorimetry and FT-IR spectrophotometer. In-vitro drug release was assessed using dialysis bag method in pH 7.4 buffer. The drug loaded nanoparticles did not cause significant reduction in the cell viability at low doses. Pharmacokinetic studies in female Wistar rats showed significant improvement (~4.2 folds) in the oral bioavailability of the drug when loaded into nanoparticles. Further, the modified everted gut sac study showed that these nanoparticles are taken up by active endocytic processes in the intestine. The ex-vivo mucoadhesion studies proved that the nanoparticles get bound to the mucus layer of the intestine, which in turn correlates with reduced excretion of the drug in faeces. In conclusion, the proposed nanoparticles appear promising for effective oral delivery of poorly bioavailable drugs like raloxifene hydrochloride.
Collapse
Affiliation(s)
- Aditya Murthy
- BITS-Pilani Hyderabad Campus, Jawahar Nagar, Ranga Reddy (Dist.), Andhra Pradesh, India
| | - Punna Rao Ravi
- BITS-Pilani Hyderabad Campus, Jawahar Nagar, Ranga Reddy (Dist.), Andhra Pradesh, India.
| | - Himanshu Kathuria
- BITS-Pilani Hyderabad Campus, Jawahar Nagar, Ranga Reddy (Dist.), Andhra Pradesh, India; Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Rahul Vats
- BITS-Pilani Hyderabad Campus, Jawahar Nagar, Ranga Reddy (Dist.), Andhra Pradesh, India
| |
Collapse
|