1
|
Onan D, Özder M, Sipahi Mİ, Poyraz N, Apaydın C, Erel-Akbaba G, Akbaba H. Microfluidics Based Particle and Droplet Generation for Gene and Drug Delivery Approaches. J Biomed Mater Res B Appl Biomater 2025; 113:e35530. [PMID: 39840932 DOI: 10.1002/jbm.b.35530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/28/2024] [Accepted: 12/26/2024] [Indexed: 01/23/2025]
Abstract
Microfluidics-based droplets have emerged as a powerful technology for biomedical research, offering precise control over droplet size and structure, optimal mixing of solutions, and prevention of cross-contamination. It is a major branch of microfluidic technology with applications in diagnostic testing, imaging, separation, and gene amplification. This review discusses the different aspects of microfluidic devices, droplet generation techniques, droplet types, and the production of micro/nano particles, along with their advantages and limitations. Passive and active methods for droplet formation are discussed, as well as the manipulation of droplet shape and content. This review also highlights the potential applications of droplet microfluidics in tissue engineering, cancer therapy, and drug delivery systems. The use of microfluidics in the production of lipid nanoparticles and polymeric microparticles is also presented, with emphasis on their potential in drug delivery and biomedical research. Finally, the contributions of microfluidics to vaccines, gene therapy, personalized medicine, and future perspectives are discussed, emphasizing the need for continuous innovation and integration with other technologies, such as AI and wearable devices, to further enhance its potential in personalized medicine and drug delivery. However, it is also noted that challenges in commercialization and widespread adoption still need to be addressed.
Collapse
Affiliation(s)
- Deniz Onan
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Melike Özder
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Meryem İrem Sipahi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Nazlıcan Poyraz
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Ceylin Apaydın
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Gülşah Erel-Akbaba
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | - Hasan Akbaba
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| |
Collapse
|
2
|
Zöller K, Haddadzadegan S, Lindner S, Veider F, Bernkop-Schnürch A. Design of charge converting lipid nanoparticles via a microfluidic coating technique. Drug Deliv Transl Res 2024; 14:3173-3185. [PMID: 38381318 PMCID: PMC11445316 DOI: 10.1007/s13346-024-01538-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
It was the aim of this study to design charge converting lipid nanoparticles (LNP) via a microfluidic mixing technique used for the preparation and coating of LNP. LNP consisting of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol, N-(carbonyl-methoxypolyethyleneglycol-2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine (MPEG-2000-DSPE), and various cationic surfactants were prepared at diverging flow rate ratios (FRR) via microfluidic mixing. Utilizing a second chip in the microfluidic set-up, LNP were coated with polyoxyethylene (9) nonylphenol monophosphate ester (PNPP). LNP were examined for their stability in different physiologically relevant media as well as for hemolytic and cytotoxic effects. Finally, phosphate release and charge conversion of PNPP-coated LNP were evaluated after incubation with alkaline phosphatase and on Caco2-cells. LNP produced at an FRR of 5:1 exhibited a size between 80 and 150 nm and a positive zeta potential. Coating with PNPP within the second chip led to LNP exhibiting a negative zeta potential. After incubation with 1 U/ml alkaline phosphatase for 4 h, zeta potential of the LNP containing 1,2-dioleoyloxy-3-trimethylammonium-propane chloride (DOTAP) as cationic component shifted from - 35 mV to approximately + 5 mV. LNP prepared with other cationic surfactants remained slightly negative after enzymatic phosphate cleavage. Manufacturing of LNP containing PNPP and DOTAP via connection of two chips in a microfluidic instrument proves to show efficient change in zeta potential from negative to positive after incubation with alkaline phosphatase.
Collapse
Affiliation(s)
- Katrin Zöller
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Soheil Haddadzadegan
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
- Thiomatrix Forschungs- und Beratungs GmbH, Research Center Innsbruck, Trientlgasse 65, 6020, Innsbruck, Austria
| | - Sera Lindner
- Thiomatrix Forschungs- und Beratungs GmbH, Research Center Innsbruck, Trientlgasse 65, 6020, Innsbruck, Austria
| | - Florina Veider
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria.
- Thiomatrix Forschungs- und Beratungs GmbH, Research Center Innsbruck, Trientlgasse 65, 6020, Innsbruck, Austria.
| |
Collapse
|
3
|
Dembski S, Schwarz T, Oppmann M, Bandesha ST, Schmid J, Wenderoth S, Mandel K, Hansmann J. Establishing and testing a robot-based platform to enable the automated production of nanoparticles in a flexible and modular way. Sci Rep 2023; 13:11440. [PMID: 37454142 DOI: 10.1038/s41598-023-38535-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
Robotic systems facilitate relatively simple human-robot interaction for non-robot experts, providing the flexibility to implement different processes. In this context, shorter process times, as well as an increased product and process quality could be achieved. Robots short time-consuming processes, take over ergonomically unfavorable tasks and work efficiently all the time. In addition, flexible production is possible while maintaining or even increasing safety. This study describes the successful development of a dual-arm robot-based modular infrastructure and the establishment of an automated process for the reproducible production of nanoparticles. As proof of concept, a manual synthesis protocol for silica nanoparticle preparation with a diameter of about 200 nm as building blocks for photonic crystals was translated into a fully automated process. All devices and components of the automated system were optimized and adapted according to the synthesis requirements. To demonstrate the benefit of the automated nanoparticle production, manual (synthesis done by lab technicians) and automated syntheses were benchmarked. To this end, different processing parameters (time of synthesis procedure, accuracy of dosage etc.) and the properties of the produced nanoparticles were compared. We demonstrate that the use of the robot not only increased the synthesis accuracy and reproducibility but reduced the personnel time and costs up to 75%.
Collapse
Affiliation(s)
- Sofia Dembski
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany.
- Department of Tissue Engineering and Regenerative Medicine TERM, University Hospital Würzburg, Röntgenring 11, 97070, Würzburg, Germany.
| | - Thomas Schwarz
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Maximilian Oppmann
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | | | - Jörn Schmid
- Goldfuß Engineering GmbH, Laboratory Automation, 72336, Balingen, Germany
| | - Sarah Wenderoth
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Karl Mandel
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91058, Erlangen, Germany
| | - Jan Hansmann
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
- Faculty of Electrical Engineering, University of Applied Sciences Würzburg-Schweinfurt, 97421, Schweinfurt, Germany
| |
Collapse
|
4
|
Han JY, La Fiandra JN, DeVoe DL. Microfluidic vortex focusing for high throughput synthesis of size-tunable liposomes. Nat Commun 2022; 13:6997. [PMID: 36384946 PMCID: PMC9668976 DOI: 10.1038/s41467-022-34750-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022] Open
Abstract
Control over vesicle size during nanoscale liposome synthesis is critical for defining the pharmaceutical properties of liposomal nanomedicines. Microfluidic technologies capable of size-tunable liposome generation have been widely explored, but scaling these microfluidic platforms for high production throughput without sacrificing size control has proven challenging. Here we describe a microfluidic-enabled process in which highly vortical flow is established around an axisymmetric stream of solvated lipids, simultaneously focusing the lipids while inducing rapid convective and diffusive mixing through application of the vortical flow field. By adjusting the individual buffer and lipid flow rates within the system, the microfluidic vortex focusing technique is capable of generating liposomes with precisely controlled size and low size variance, and may be operated up to the laminar flow limit for high throughput vesicle production. The reliable formation of liposomes as small as 27 nm and mass production rates over 20 g/h is demonstrated, offering a path toward production-scale liposome synthesis using a single continuous-flow vortex focusing device.
Collapse
Affiliation(s)
- Jung Yeon Han
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
- Department of Bionanotechnology, Gachon University, Seongnam-si, South Korea
| | - Joseph N La Fiandra
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Don L DeVoe
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA.
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA.
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
| |
Collapse
|
5
|
Bondu C, Yen FT. Nanoliposomes, from food industry to nutraceuticals: Interests and uses. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Iacobazzi RM, Arduino I, Di Fonte R, Lopedota AA, Serratì S, Racaniello G, Bruno V, Laquintana V, Lee BC, Silvestris N, Leonetti F, Denora N, Porcelli L, Azzariti A. Microfluidic-Assisted Preparation of Targeted pH-Responsive Polymeric Micelles Improves Gemcitabine Effectiveness in PDAC: In Vitro Insights. Cancers (Basel) 2021; 14:cancers14010005. [PMID: 35008170 PMCID: PMC8750671 DOI: 10.3390/cancers14010005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary This research suggests a new potential therapeutic approach to pancreatic ductal adenocarcinoma to improve drug effectiveness and overcome drug resistance. A double actively targeted gemcitabine delivery system, consisting of polymeric micelles, was developed by microfluidic technique to ensure a narrow size distribution, a good colloidal stability, and drug-encapsulation efficiency for the selective and controlled release of the loaded drug, in response to the pH variations and uPAR expression in tumors. In vitro studies assessed that the release of the drug in the acidic environment was higher than in the neutral one, and that the pH-responsive and uPAR-targeted polymeric micelles enhanced the antitumor properties of gemcitabine in models resembling the pancreatic tumor microenvironment. Abstract Pancreatic ductal adenocarcinoma (PDAC) represents a great challenge to the successful delivery of the anticancer drugs. The intrinsic characteristics of the PDAC microenvironment and drugs resistance make it suitable for therapeutic approaches with stimulus-responsive drug delivery systems (DDSs), such as pH, within the tumor microenvironment (TME). Moreover, the high expression of uPAR in PDAC can be exploited for a drug receptor-mediated active targeting strategy. Here, a pH-responsive and uPAR-targeted Gemcitabine (Gem) DDS, consisting of polymeric micelles (Gem@TpHResMic), was formulated by microfluidic technique to obtain a preparation characterized by a narrow size distribution, good colloidal stability, and high drug-encapsulation efficiency (EE%). The Gem@TpHResMic was able to perform a controlled Gem release in an acidic environment and to selectively target uPAR-expressing tumor cells. The Gem@TpHResMic displayed relevant cellular internalization and greater antitumor properties than free Gem in 2D and 3D models of pancreatic cancer, by generating massive damage to DNA, in terms of H2AX phosphorylation and apoptosis induction. Further investigation into the physiological model of PDAC, obtained by a co-culture of tumor spheroids and cancer-associated fibroblast (CAF), highlighted that the micellar system enhanced the antitumor potential of Gem, and was demonstrated to overcome the TME-dependent drug resistance. In vivo investigation is warranted to consider this new DDS as a new approach to overcome drug resistance in PDAC.
Collapse
Affiliation(s)
- Rosa Maria Iacobazzi
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (R.M.I.); (R.D.F.); (V.B.); (A.A.)
| | - Ilaria Arduino
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari, 70125 Bari, Italy; (I.A.); (A.A.L.); (G.R.); (V.L.); (F.L.)
| | - Roberta Di Fonte
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (R.M.I.); (R.D.F.); (V.B.); (A.A.)
| | - Angela Assunta Lopedota
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari, 70125 Bari, Italy; (I.A.); (A.A.L.); (G.R.); (V.L.); (F.L.)
| | - Simona Serratì
- Laboratory of Nanotechnology, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy;
| | - Giuseppe Racaniello
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari, 70125 Bari, Italy; (I.A.); (A.A.L.); (G.R.); (V.L.); (F.L.)
| | - Viviana Bruno
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (R.M.I.); (R.D.F.); (V.B.); (A.A.)
| | - Valentino Laquintana
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari, 70125 Bari, Italy; (I.A.); (A.A.L.); (G.R.); (V.L.); (F.L.)
| | - Byung-Chul Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea;
| | - Nicola Silvestris
- Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
- Department of Biomedical Sciences Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Francesco Leonetti
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari, 70125 Bari, Italy; (I.A.); (A.A.L.); (G.R.); (V.L.); (F.L.)
| | - Nunzio Denora
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari, 70125 Bari, Italy; (I.A.); (A.A.L.); (G.R.); (V.L.); (F.L.)
- Correspondence: (N.D.); (L.P.); Tel.: +39-0805442767 (N.D.); +39-0805555986 (L.P.)
| | - Letizia Porcelli
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (R.M.I.); (R.D.F.); (V.B.); (A.A.)
- Correspondence: (N.D.); (L.P.); Tel.: +39-0805442767 (N.D.); +39-0805555986 (L.P.)
| | - Amalia Azzariti
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (R.M.I.); (R.D.F.); (V.B.); (A.A.)
- Laboratory of Nanotechnology, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy;
| |
Collapse
|
7
|
Terada T, Kanou M, Hashimoto Y, Tanimoto M, Sugimoto M. Microfluidic Preparation of Nanoparticles Using Poly(ethylene Glycol)-distearoylphosphatidylethanolamine for Solubilizing Poorly Soluble Drugs. J Pharm Sci 2021; 111:1709-1718. [PMID: 34863973 DOI: 10.1016/j.xphs.2021.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
Microfluidic systems have shown promise for the production of nanoparticles from mixtures of aqueous and organic solutions, including liposomes, oil-in-water nanoemulsions, and lipid nanoparticles. They offer important practical advantages, including low reagent consumption, parallelization, and automation, and are ideally suited to high-throughput optimization and scale-up. In this study, we developed a new method for the formulation of nanoparticles of poorly soluble drug compounds. The nanoparticles, prepared by microfluidic mixing using only poly(ethylene glycol)-distearoylphosphatidylethanolamine (PEG-DSPE), were highly stable and uniform in size. By mixing an organic solution of poorly soluble cyclosporine A and PEG-DSPE with water in the microfluidic device, amorphous cyclosporine A nanoparticles (CsA-NPs), with an encapsulation efficiency of approximately 90% and a particle size of 100-200 nm, were obtained. Analysis of the microfluidic process parameters revealed that particle size distribution was significantly controlled by the flow rate ratio. The obtained CsA-NPs were stable for up to 150 days at room temperature, and the pharmacokinetic profile was similar to that of the commercial formulation containing Cremophor EL, which has been reported to induce serious adverse effects after intravenous administration. These findings provide a useful technical platform for the safe solubilization of poorly soluble compounds and their subsequent pharmaceutical development.
Collapse
Affiliation(s)
- Takeshi Terada
- Pharmaceutical Research Department, Mitsubishi Tanabe Pharma Corporation, 3-16-89, Kashima, Yodogawa-ku, Osaka-shi, Osaka, 532-8505, Japan..
| | - Masahito Kanou
- Pharmaceutical Research Department, Mitsubishi Tanabe Pharma Corporation, 3-16-89, Kashima, Yodogawa-ku, Osaka-shi, Osaka, 532-8505, Japan
| | - Yousuke Hashimoto
- Pharmaceutical Research Department, Mitsubishi Tanabe Pharma Corporation, 3-16-89, Kashima, Yodogawa-ku, Osaka-shi, Osaka, 532-8505, Japan
| | - Masahiko Tanimoto
- Pharmaceutical Research Department, Mitsubishi Tanabe Pharma Corporation, 3-16-89, Kashima, Yodogawa-ku, Osaka-shi, Osaka, 532-8505, Japan
| | - Masaaki Sugimoto
- Pharmaceutical Research Department, Mitsubishi Tanabe Pharma Corporation, 3-16-89, Kashima, Yodogawa-ku, Osaka-shi, Osaka, 532-8505, Japan
| |
Collapse
|
8
|
Microfluidic preparation and in vitro evaluation of iRGD-functionalized solid lipid nanoparticles for targeted delivery of paclitaxel to tumor cells. Int J Pharm 2021; 610:121246. [PMID: 34737115 DOI: 10.1016/j.ijpharm.2021.121246] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 01/22/2023]
Abstract
Solid lipid nanoparticles (SLNs) can combine the advantages of different colloidal carriers and prevent some of their disadvantages. The production of nanoparticles by means of microfluidics represents a successful platform for industrial scale-up of nanoparticle manufacture in a reproducible way. The realisation of a microfluidic technique to obtain SLNs in a continuous and reproducible manner encouraged us to create surface functionalised SLNs for targeted drug release using the same procedure. A tumor homing peptide, iRGD, owning a cryptic C-end Rule (CendR) motif is responsible for neuropilin-1 (NRP-1) binding and for triggering extravasation and tumor penetration of the peptide. In this study, the Paclitaxel loaded-SLNs produced by microfluidics were functionalized with the iRGD peptide. The SLNs proved to be stable in aqueous medium andwere characterized by a Z-average under 150 nm, a polydispersity index below 0.2, a zeta-potential between -20 and -35 mV and a drug encapsulation efficiency around 40%. Moreover, in vitro cytotoxic effects and cellular uptake have been assessed using 2D and 3D tumour models of U87 glioblastoma cell lines. Overall, these results demonstrate that the surface functionalization of SLNs with iRGD allow better cellular uptake and cytotoxicity ability.
Collapse
|
9
|
Laskar P, Dufès C. Emergence of cationic polyamine dendrimersomes: design, stimuli sensitivity and potential biomedical applications. NANOSCALE ADVANCES 2021; 3:6007-6026. [PMID: 34765868 PMCID: PMC8548884 DOI: 10.1039/d1na00536g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/30/2021] [Indexed: 06/01/2023]
Abstract
For decades, self-assembled lipid vesicles have been widely used in clinics as nanoscale delivery systems for various biomedical applications, including treatment of various diseases. Due to their core-shell architecture and versatile nature, they have been successfully used as carriers for the delivery of a wide range of therapeutic cargos, including drugs and nucleic acids, in cancer treatment. Recently, surface-modified polyamine dendrimer-based vesicles, or dendrimersomes, have emerged as promising alternatives to lipid vesicles for various biomedical applications, due to their ease of synthesis, non-immunogenicity, stability in circulation and lower size polydispersity. This mini-review provides an overview of the recent advances resulting from the use of biomimetic hydrophobically-modified polyamine-based dendrimersomes towards biomedical applications, focusing mainly on the two most widely used polyamine dendrimers, namely polyamidoamine (PAMAM) and poly(propylene imine) (PPI) dendrimers.
Collapse
Affiliation(s)
- Partha Laskar
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley McAllen TX 78504 USA
| | - Christine Dufès
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
| |
Collapse
|
10
|
Chiesa E, Greco A, Riva F, Dorati R, Conti B, Modena T, Genta I. Hyaluronic Acid-Based Nanoparticles for Protein Delivery: Systematic Examination of Microfluidic Production Conditions. Pharmaceutics 2021; 13:1565. [PMID: 34683858 PMCID: PMC8539066 DOI: 10.3390/pharmaceutics13101565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Hyaluronic acid-based nanoparticles (HA NPs) can be used to deliver a protein cargo to cells overexpressing HA receptors such as CD44 since they combine the low toxicity of the carrier and the retention of the protein integrity with the receptor-mediated internalization. HA properties play a crucial but sometimes unclear role in managing the formation and stability of the meshwork, cell interactions, and ultimately the protein entrapment efficacy. Nowadays, microfluidic is an innovative technology that allows to overcome limits linked to the NPs production, guaranteeing reproducibility and control of individual batches. Taking advantage of this technique, in this research work, the role of HA weight average molecular weight (Mw) in NPs formation inside a microfluidic device has been specifically faced. Based on the relationship between polymer Mw and solution viscosity, a methodological approach has been proposed to ensure critical quality attributes (size of 200 nm, PDI ≤ 0.3) to NPs made by HA with different Mw (280, 540, 710 and 820 kDa). The feasibility of the protein encapsulation was demonstrated by using Myoglobin, as a model neutral protein, with an encapsulation efficiency always higher than 50%. Lastly, all NPs samples were successfully internalized by CD44-expressing cells.
Collapse
Affiliation(s)
- Enrica Chiesa
- Department of Surgery, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Antonietta Greco
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (A.G.); (R.D.); (B.C.); (T.M.)
| | - Federica Riva
- Department of Public Health, Experimental and Forensic Medicine, Histology and Embryology Unit, University of Pavia, 27100 Pavia, Italy;
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (A.G.); (R.D.); (B.C.); (T.M.)
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (A.G.); (R.D.); (B.C.); (T.M.)
| | - Tiziana Modena
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (A.G.); (R.D.); (B.C.); (T.M.)
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (A.G.); (R.D.); (B.C.); (T.M.)
| |
Collapse
|
11
|
Liu X, Meng H. Consideration for the scale‐up manufacture of nanotherapeutics—A critical step for technology transfer. VIEW 2021. [DOI: 10.1002/viw.20200190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Xiangsheng Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology Beijing P. R. China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences Hangzhou Zhejiang P. R. China
| | - Huan Meng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology Beijing P. R. China
| |
Collapse
|
12
|
Egorov E, Pieters C, Korach-Rechtman H, Shklover J, Schroeder A. Robotics, microfluidics, nanotechnology and AI in the synthesis and evaluation of liposomes and polymeric drug delivery systems. Drug Deliv Transl Res 2021; 11:345-352. [PMID: 33585972 PMCID: PMC7882236 DOI: 10.1007/s13346-021-00929-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 01/20/2023]
Abstract
The field of nanotechnology and personalised medicine is undergoing drastic changes in the approach and efficiency of experimentation. The COVID-19 pandemic has spiralled into mass stagnation of major laboratories around the globe and led to increased investment into remote systems for nanoparticle experiments. A significant number of laboratories now operate using automated systems; however, the extension to nanoparticle preparation and artificial intelligence-dependent databases holds great translational promise. The strive to combine automation with artificial intelligence (AI) grants the ability to optimise targeted therapeutic nanoparticles for unique cell types and patients. In this perspective, the current and future trends of automated approaches to nanomedicine synthesis are discussed and compared with traditional methods.
Collapse
Affiliation(s)
- Egor Egorov
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, 32000, Haifa, Israel
| | - Calvin Pieters
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, 32000, Haifa, Israel
| | - Hila Korach-Rechtman
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, 32000, Haifa, Israel
| | - Jeny Shklover
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, 32000, Haifa, Israel
| | - Avi Schroeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, 32000, Haifa, Israel.
| |
Collapse
|