1
|
Paul M, Ghosh B, Biswas S. Human Serum Albumin-Oxaliplatin (Pt(IV)) prodrug nanoparticles with dual reduction sensitivity as effective nanomedicine for triple-negative breast cancer. Int J Biol Macromol 2024; 256:128281. [PMID: 37992920 DOI: 10.1016/j.ijbiomac.2023.128281] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
Nanomedicines have emerged as a potential strategy to reduce the toxic effect of drugs administered via conventional approaches. Nanomedicines undergo passive and active targeting of the tumor tissues, thereby causing localized drug delivery and reducing drug demand and side effects. Here, we prepared reduction-sensitive oxaliplatin-conjugated human serum albumin nanoparticles with a small size, uniform surfaces, and a satisfactory encapsulation coefficient. The findings of cellular studies demonstrate that utilizing human serum albumin is effective for active tumor targeting. The presence of glutathione-sensitive disulfide linkers in the crosslinking agent and between Pt(IV) and HSA provided dual reduction sensitivity. Cytotoxicity and cell death were enhanced compared to free Oxaliplatin. The outcomes demonstrate that the approach maximized Oxaliplatin's ability to control tumor growth, induced apoptosis, and reduced drug resistance. Therefore, for the first time, our results imply that OXA-SS-HSA NPs were biocompatible, smart, and effective anticancer nanomedicine for triple-negative breast cancer therapy.
Collapse
Affiliation(s)
- Milan Paul
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Balaram Ghosh
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India.
| |
Collapse
|
2
|
Hegde AR, Paul M, Kumbham S, Roy AA, Ahmad SF, Parekh H, Biswas S, Mutalik S. Ameliorative anticancer effect of dendrimeric peptide modified liposomes of letrozole: In vitro and in vivo performance evaluations. Int J Pharm 2023; 648:123582. [PMID: 37940082 DOI: 10.1016/j.ijpharm.2023.123582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/23/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
Letrozole (LTZ) loaded dendrimeric nano-liposomes were prepared for targeted delivery to breast cancer cells. Surface modification with cationic peptide dendrimers (PDs) and a cancer specific ligand, transferrin (Tf), was attempted. Arginine-terminated PD (D-1) and Arginine-terminated, lipidated PD (D-2) were synthesized using Solid Phase Peptide Synthesis, purified by preparative HPLC and characterized using 1HNMR, MS and DSC analyses. Surface modification of drug loaded liposomes with Tf and/or PD was carried out. Formulations were characterized using FTIR, DSC, 1HNMR, XRD and TEM. Tf-conjugated LTZ liposomes (LTf) and Tf/D-2-conjugated LTZ liposomes (LTfD-2) showed greater cytotoxic potential (IC50 = 95.03 µg/mL and 23.75 µg/mL respectively) with enhanced cellular uptake in MCF7 cells compared to plain LTZ. Blocking studies of Tf (Tf-receptor mediated internalization) revealed decreased uptake of LTf and LTfD-2 confirming the role of Tf in uptake of Tf-conjugated liposomes. Intravenous treatment with LTfD-2 caused highest reduction in tumor volumes of female BALB/c-nude mice (145 mm3) compared to plain LTZ (605 mm3) and unconjugated LTZ liposomes (LP) (300 mm3). In vivo biodistribution studies revealed higher fluorescence in tumor tissue and liver of LTfD-2 treated mice than LTf or LP treatment. Immunohistochemical studies revealed greater apoptotic potential of LTfD-2 as indicated by TUNEL assay and ROS detection assay. The study reveals the superior therapeutic efficacy of the developed LTZ liposomal nanocarriers using PDs to enhance the transfection efficiency in addition to modifying the surface characteristics by attaching a targeting ligand for active drug targeting to breast cancer cells.
Collapse
Affiliation(s)
- Aswathi R Hegde
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India; Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, Karnataka, India
| | - Milan Paul
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, Telangana State, India
| | - Soniya Kumbham
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, Telangana State, India
| | - Amrita Arup Roy
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Harendra Parekh
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, Telangana State, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| |
Collapse
|
3
|
Yuan Y, Wang Z, Su S, Mi Y, Li Q, Dong F, Tan W, Guo Z. Redox-sensitive self-assembled micelles based on low molecular weight chitosan-lipoic acid conjugates for the delivery of doxorubicin: Effect of substitution degree of lipoic acid. Int J Biol Macromol 2023; 247:125849. [PMID: 37460070 DOI: 10.1016/j.ijbiomac.2023.125849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/01/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Amphiphilic low molecular weight chitosan-lipoic acid (LC-LA) conjugates with different degrees of substitution (DS) of LA were synthesized by N, N'‑carbonyldiimidazole (CDI) catalysis to self-assemble into redox-sensitive micelles. Critical micelle concentration (CMC), size, zeta potential, biocompatibility and redox-sensitive behavior of blank micelles were investigated. The results indicated that blank micelles with low CMC, nanoscale size and positive zeta potential showed excellent biocompatibility and redox-sensitive behavior. Doxorubicin (Dox) loaded micelles were prepared by encapsulating Dox into blank micelles. The loading ability, trigger-release behavior, antitumor activity and cellular uptake of Dox loaded micelles were studied. The results demonstrated that Dox loaded micelles with superior loading ability exhibited redox-trigger behavior, strong antitumor activity and increased cellular uptake efficiency against A549 cell. Besides, the effect of DS of LA on above properties was estimated. An increase in DS of LA reduced the CMC and cumulative release amount of Dox, but improved the loading efficiency, antitumor activity, and cellular uptake of Dox loaded micelles, which resulted from stronger interaction of hydrophobic groups in micelles with the DS of LA increased. Overall, self-assembled LC-LA micelles with good biosecurity and redox-sensitive behavior hold promising application prospects in Dox delivery and improving cancer therapeutic effect of Dox.
Collapse
Affiliation(s)
- Yuting Yuan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhenhua Wang
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Shengjia Su
- Shandong Saline-Alkali Land Modern Agriculture Company, Dongying 257300, China
| | - Yingqi Mi
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fang Dong
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
4
|
Sun Y, Zhang Y, Guo X, Wang Y, He P, Xiao C. Oxidation Responsive PEGylated Polyamino Acid Bearing Thioether Pendants for Enhanced Anticancer Drug Delivery. Macromol Biosci 2023; 23:e2200498. [PMID: 36610012 DOI: 10.1002/mabi.202200498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/21/2022] [Indexed: 01/09/2023]
Abstract
Reactive oxygen species (ROS) in biological tissues are in a state of dynamic balance. However, many diseases such as cancer and inflammation, are accompanied by a long-term increase in ROS. This situation inspires researchers to use ROS-sensitive nanocarriers for a site-specific release of cargo in pathological areas. Polyamino acid materials with good biodegradability, biocompatibility, and regular secondary structure are widely used in the biomedical field. Herein, a new oxidation responsive PEGylated polyamino acid is synthesised for anticancer drug delivery by ring-opening polymerisation of N-carboxyanhydrides bearing thioether pendants. The obtained block copolymer mPEG-b-PMLG self-assembles into spherical nanoparticles (NPs) in water with diameter ≈68.3 nm. NMR measurement demonstrated that the hydrophobic thioether pendants in the NPs can be selectively oxidised to hydrophilic sulfoxide groups by H2 O2 , which will lead to the disassociation of NPs. In vitro drug release results indicated that the encapsulated Nile red is selectively released in the trigger of 10 mM H2 O2 in PBS. Finally, anticancer drug doxorubicin (DOX) is encapsulated to the NPs, and the obtained NPs/DOX exhibits an improved antitumor efficacy in 4T1 tumour-bearing mice and lower cardiotoxicity than free DOX. These results indicates that the mPEG-b-PMLG NPs are promising for anticancer drug delivery.
Collapse
Affiliation(s)
- Yitao Sun
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Yu Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Xin Guo
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Yanping Wang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Pan He
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
- Engineering Research Center of Optoelectronic Functional Materials, Ministry of Education, Changchun, 130022, P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
5
|
Chaudhuri A, Ramesh K, Kumar DN, Dehari D, Singh S, Kumar D, Agrawal AK. Polymeric micelles: A novel drug delivery system for the treatment of breast cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
6
|
Ch S, Paul M, Ghosh B, Biswas S. Rebuttal, Replying to the "Letter to the Editor" entitled "Questionable micelle formation of the double hydrophilic block copolymer PEG-pHPMA". Int J Pharm 2022; 626:122148. [PMID: 36130860 DOI: 10.1016/j.ijpharm.2022.122148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Sanjay Ch
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Telangana 500078, India
| | - Milan Paul
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Telangana 500078, India
| | - Balaram Ghosh
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Telangana 500078, India.
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Telangana 500078, India.
| |
Collapse
|
7
|
Questionable micelle formation of the double hydrophilic block copolymer PEG-pHPMA. Int J Pharm 2022; 626:122147. [PMID: 36058772 DOI: 10.1016/j.ijpharm.2022.122147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Yin W, Tian L, Wang S, Zhang D, Guo S, Lang M. Co-delivery systems of paclitaxel prodrug for targeted synergistic therapy of breast cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|