1
|
Kumar KP, Madhusoodanan M, Pangath M, Menon D. Innovative landscapes in intraperitoneal therapy of ovarian cancer. Drug Deliv Transl Res 2025; 15:1877-1906. [PMID: 39888579 DOI: 10.1007/s13346-024-01765-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 02/01/2025]
Abstract
Epithelial ovarian cancer is the most prevalent gynecological malignancy, characterized by high mortality rates due to its late-stage diagnosis and frequent recurrence. The current standard of care for ovarian cancer is a combination of debulking surgery followed by the conventional mode of chemotherapy. Despite significant advances in therapeutic modalities, the overall survival rate of EOC continues to be poor, mainly because low concentrations of the chemotherapeutics reach the peritoneum, which is the primary site of ovarian cancer, leading to disease relapse. Here, intraperitoneal chemotherapy gains advantage due to its ability to deliver the drug molecules directly to the peritoneal cavity and provide localized and sustained effects. This is facilitated by the use of diverse kinds of nano or micron sized delivery systems, which help in transporting drugs, vaccines, antibodies and genes appropriately to the peritoneum for its desired function. This review article delves on how intraperitoneal delivery impacts the therapy of epithelial ovarian cancer spanning the conventional therapeutic modes to the recent nanoinnovations in chemotherapy, immunotherapy and gene therapy.
Collapse
Affiliation(s)
- Krishna Pradeep Kumar
- Amrita School of Nanosciences & Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Maneesha Madhusoodanan
- Amrita School of Nanosciences & Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Meghna Pangath
- Amrita School of Nanosciences & Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Deepthy Menon
- Amrita School of Nanosciences & Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India.
| |
Collapse
|
2
|
Sun H, Zhong Z. Bioresponsive Polymeric Nanoparticles: From Design, Targeted Therapy to Cancer Immunotherapy. Biomacromolecules 2025; 26:33-42. [PMID: 39667037 DOI: 10.1021/acs.biomac.4c01257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Bioresponsive polymeric nanoparticles (NPs) that are capable of delivering and releasing therapeutics and biotherapeutics to target sites have attracted vivid interest in cancer therapy and immunotherapy. In contrast to enthusiastic evolution in the academic world, the clinical translation of these smart systems is scarce, partly due to concerns about safety, stability, complexity, and scalability. The moderate targetability, responsivity, and benefits are other concerns. In the past 17 years, we have devoted ourselves to exploring elegant strategies to address the above basic and translational problems by introducing diverse functional groups and/or targeting ligands to safe biomedical materials, such as biodegradable polymers and water-soluble polymers. This minimal modification is critical for further clinical translation. We have tailor-made various bioresponsive NPs including shell-sheddable and/or acid-sensitive biodegradable NPs, disulfide-cross-linked biodegradable micelles and polymersomes, and blood-brain barrier (BBB)-permeable NPs, to target different tumors. This perspective provides an overview of our work path toward targeted nanomedicines and personalized vaccines, which might inspire clinical translation and future research on cancer therapy.
Collapse
Affiliation(s)
- Huanli Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, PR China
- International College of Pharmaceutical Innovation, Soochow University, Suzhou, 215222, PR China
| |
Collapse
|
3
|
Cai Z, Liu B, Cai Q, Gou J, Tang X. Advances in microsphere-based therapies for peritoneal carcinomatosis: challenges, innovations, and future prospects. Expert Opin Drug Deliv 2025; 22:31-46. [PMID: 39641971 DOI: 10.1080/17425247.2024.2439462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/09/2024] [Accepted: 12/04/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION Clinical outcomes for the treatment of peritoneal carcinomatosis (PC) have remained suboptimal. Microsphere-based intraperitoneal chemotherapy has shown considerable potential in preclinical studies. However, due to the complications associated with peritoneal adhesions, there has been a lack of comprehensive reviews focusing on the progress of microsphere applications in the treatment of PC. AREAS COVERED We provide an overview of the current clinical treatment strategies for PC and analyze the potential advantages of microspheres in this context. Regarding the issue of peritoneal adhesions induced by microspheres, we investigate the underlying mechanisms and propose possible solutions. Furthermore, we outline the future directions for the development of microsphere-based therapies in the treatment of PC. EXPERT OPINION Microspheres formulated with highly biocompatible materials to the peritoneum, such as sodium alginate, gelatin, or genipin, or with an optimal particle size (4 ~ 30 μm) and lower molecular weights (10 ~ 57 kDa), can prevent peritoneal adhesions and improve drug distribution. To further enhance the antitumor efficacy, enhancing the tumor penetration capability and specificity of microspheres, optimizing intraperitoneal distribution, and addressing tumor resistance have demonstrated significant potential in preclinical studies, offering new therapeutic prospects for the treatment of PC.
Collapse
Affiliation(s)
- Zhitao Cai
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Boyuan Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Qing Cai
- Department of Formulation, Zhuhai Livzon Microsphere Technology Co. Ltd, Zhuhai, China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
4
|
Stribbling SM, Beach C, Ryan AJ. Orthotopic and metastatic tumour models in preclinical cancer research. Pharmacol Ther 2024; 257:108631. [PMID: 38467308 PMCID: PMC11781865 DOI: 10.1016/j.pharmthera.2024.108631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/27/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Mouse models of disease play a pivotal role at all stages of cancer drug development. Cell-line derived subcutaneous tumour models are predominant in early drug discovery, but there is growing recognition of the importance of the more complex orthotopic and metastatic tumour models for understanding both target biology in the correct tissue context, and the impact of the tumour microenvironment and the immune system in responses to treatment. The aim of this review is to highlight the value that orthotopic and metastatic models bring to the study of tumour biology and drug development while pointing out those models that are most likely to be encountered in the literature. Important developments in orthotopic models, such as the increasing use of early passage patient material (PDXs, organoids) and humanised mouse models are discussed, as these approaches have the potential to increase the predictive value of preclinical studies, and ultimately improve the success rate of anticancer drugs in clinical trials.
Collapse
Affiliation(s)
- Stephen M Stribbling
- Department of Chemistry, University College London, Gower Street, London WC1E 6BT, UK.
| | - Callum Beach
- Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Anderson J Ryan
- Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK; Fast Biopharma, Aston Rowant, Oxfordshire, OX49 5SW, UK.
| |
Collapse
|
5
|
Keyvani V, Mollazadeh S, Riahi E, Mahmoudian RA, Tabari M, Lagzian E, Ghorbani E, Akbarzade H, Gholami AS, Gataa IS, Hassanian SM, Ferns GA, Khazaei M, Avan A, Anvari K. The Application of Nanotechnological Therapeutic Platforms against Gynecological Cancers. Curr Pharm Des 2024; 30:975-987. [PMID: 38500284 DOI: 10.2174/0113816128291955240306112558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
Gynecological cancers (GCs), ovarian, cervical, and endometrial/uterine cancers, are often associated with poor outcomes. Despite the development of several therapeutic modalities against GCs, the effectiveness of the current therapeutic approaches is limited due to their side effects, low therapeutic index, short halflife, and resistance to therapy. To overcome these limitations, nano delivery-based approaches have been introduced with the potential of targeted delivery, reduced toxicity, controlled release, and improved bioavailability of various cargos. This review summarizes the application of different nanoplatforms, such as lipid-based, metal- based, and polymeric nanoparticles, to improve the chemo/radio treatments of GC. In the following work, the use of nanoformulated agents to fight GCs has been mentioned in various clinical trials. Although nanosystems have their own challenges, the knowledge highlighted in this article could provide deep insight into translations of NPs approaches to overcome GCs.
Collapse
Affiliation(s)
- Vahideh Keyvani
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Espanta Riahi
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Mashhad, Iran
- Department of Biology, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | - Reihaneh Alsadat Mahmoudian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoomeh Tabari
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elmira Lagzian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Ghorbani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Akbarzade
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir-Sadra Gholami
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane 4059, Australia
| | - Kazem Anvari
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Liu X, Liu G, Mao Y, Luo J, Cao Y, Tan W, Li W, Yu H, Jia X, Li H. Engineering extracellular vesicles mimetics for targeted chemotherapy of drug-resistant ovary cancer. Nanomedicine (Lond) 2024; 19:25-41. [PMID: 38059464 DOI: 10.2217/nnm-2023-0289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Aim: To develop nanocarriers for targeting the delivery of chemotherapeutics to overcome multidrug-resistant ovarian cancer. Materials & methods: Doxorubicin-loaded nanovesicles were obtained through serial extrusion, followed by loading of P-glycoprotein siRNA and folic acid. The targeting ability and anticancer efficacy of the nanovesicles were evaluated. Results: The doxorubicin-loaded nanovesicles showed a high production yield. The presence of P-glycoprotein siRNA and folic acid resulted in reversed drug resistance and tumor targeting. This nanoplatform tremendously inhibited the viability of multidrug-resistant ovarian cancer cells, which was able to target tumor tissue and suppress tumor growth without adverse effects. Conclusion: These bioengineered nanovesicles could serve as novel extracellular vesicles mimetics for chemotherapeutics delivery to overcome multidrug resistance.
Collapse
Affiliation(s)
- Xiaoguang Liu
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity & Child Health Care Hospital, Nanjing, 210001, China
| | - Guangquan Liu
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity & Child Health Care Hospital, Nanjing, 210001, China
| | - Yinghua Mao
- Centre for Diseases Prevention & Control of Eastern Theater, Nanjing, 210002, China
| | - Jie Luo
- Department of Healthcare, General Hospital of Eastern Theater Command, Nanjing, 210002, China
| | - Yongping Cao
- Centre for Diseases Prevention & Control of Eastern Theater, Nanjing, 210002, China
| | - Weilong Tan
- Centre for Diseases Prevention & Control of Eastern Theater, Nanjing, 210002, China
| | - Wenhao Li
- Centre for Diseases Prevention & Control of Eastern Theater, Nanjing, 210002, China
| | - Huanhuan Yu
- Department of Clinical Pharmacy, General Hospital of Eastern Theater Command, Nanjing, 210002, China
| | - Xuemei Jia
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity & Child Health Care Hospital, Nanjing, 210001, China
| | - Hong Li
- Centre for Diseases Prevention & Control of Eastern Theater, Nanjing, 210002, China
| |
Collapse
|
7
|
Huang Y, Li C, Zhang X, Zhang M, Ma Y, Qin D, Tang S, Fei W, Qin J. Nanotechnology-integrated ovarian cancer metastasis therapy: Insights from the metastatic mechanisms into administration routes and therapy strategies. Int J Pharm 2023; 636:122827. [PMID: 36925023 DOI: 10.1016/j.ijpharm.2023.122827] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
Ovarian cancer is a kind of malignant tumour which locates in the pelvic cavity without typical clinical symptoms in the early stages. Most patients are diagnosed in the late stage while about 60 % of them have suffered from the cancer cells spreading in the abdominal cavity. The high recurrence rate and mortality seriously damage the reproductive needs and health of women. Although recent advances in therapeutic regimes and other adjuvant therapies improved the overall survival of ovarian cancer, overcoming metastasis has still been a challenge and is necessary for achieving cure of ovarian cancer. To present potential targets and new strategies for curbing the occurrence of ovarian metastasis and the treatment of ovarian cancer after metastasis, the first section of this paper explained the metastatic mechanisms of ovarian cancer comprehensively. Nanomedicine, not limited to drug delivery, offers opportunities for metastatic ovarian cancer therapy. The second section of this paper emphasized the advantages of various administration routes of nanodrugs in metastatic ovarian cancer therapy. Furthermore, the third section of this paper focused on advances in nanotechnology-integrated strategies for targeting metastatic ovarian cancer based on the metastatic mechanisms of ovarian cancer. Finally, the challenges and prospects of nanotherapeutics for ovarian cancer metastasis therapy were evaluated. In general, the greatest emphasis on using nanotechnology-based strategies provides avenues for improving metastatic ovarian cancer outcomes in the future.
Collapse
Affiliation(s)
- Yu Huang
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chaoqun Li
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Xiao Zhang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Meng Zhang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Yidan Ma
- Department of Pharmacy, Yipeng Medical Care Center, Hangzhou 311225, China
| | - Dongxu Qin
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Sangsang Tang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Weidong Fei
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.
| | - Jiale Qin
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.
| |
Collapse
|