1
|
Matsunami K, Ryckaert A, Vanhoorne V, Kumar A. Mathematical models of dissolution testing: Challenges and opportunities toward real-time release testing. Int J Pharm 2025; 669:125002. [PMID: 39622305 DOI: 10.1016/j.ijpharm.2024.125002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/05/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
Real-time release testing (RTRt) of tablet dissolution can significantly improve manufacturing efficiency along with the adoption of continuous manufacturing in the pharmaceutical industry. To assure product quality without destructive testing, models for RTRt should be sufficiently reliable and robust. Whereas mechanistic models have merits of broader applicability and interpretability, data-driven models have been common approaches due to computational speed. This paper discusses challenges and opportunities in the application of mechanistic models for dissolution testing to enable RTRt of solid dosage. After a comprehensive literature review on mechanistic dissolution models and RTRt, the potential benefits and challenges of mechanistic models are presented. Compared to data-driven models, mechanistic models require less experimental data that can reduce time and cost for RTRt development. However, to enable the implementation of mechanistic models in RTRt, computational time should be short either by using a simple mechanistic model or by applying surrogate models.
Collapse
Affiliation(s)
- Kensaku Matsunami
- Pharmaceutical Engineering Research Group (PharmaEng), Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Oost-Vlaanderen, Belgium.
| | - Alexander Ryckaert
- Pharmaceutical Engineering Research Group (PharmaEng), Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Oost-Vlaanderen, Belgium
| | - Valérie Vanhoorne
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Oost-Vlaanderen, Belgium
| | - Ashish Kumar
- Pharmaceutical Engineering Research Group (PharmaEng), Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Oost-Vlaanderen, Belgium
| |
Collapse
|
2
|
Ferdoush S, Gonzalez M. A two-stage mechanistic reduced-order model of pharmaceutical tablet dissolution: Population balance modeling and tablet wetting functions. Int J Pharm 2024; 664:124635. [PMID: 39187035 DOI: 10.1016/j.ijpharm.2024.124635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/24/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
We propose a two-stage reduced-order model (ROM) of pharmaceutical tablet dissolution that is comprised of (i) a mechanistic dissolution function of the active pharmaceutical ingredient (API) and (ii) a tablet wetting function. The former is derived from a population balance model, using a high-resolution finite volume algorithm for a given API crystal size distribution and dissolution rate coefficient. The latter is obtained from the mechanistic understanding of water penetration inside a porous tablet, and it estimates the rate at which the API is exposed to the buffer solution for a given formulation and the dimensions of the tablet, contact angle, and surface tension between the solid and liquid phases, liquid viscosity, and mean effective capillary radius of the pore solid structure. In turn, the two-stage model is mechanistic in nature and one-way coupled by means of convolution in time to capture the start time of the API dissolution process as water uptake, swelling, and disintegration take place. The two-stage model correlates dissolution profiles with critical process parameters (CPPs), critical material attributes (CMAs), and other crucial critical quality attributes (CQAs). We demonstrate the model's versatility and effectiveness in predicting the dissolution profiles of diverse pharmaceutical formulations. Specifically, we formulate and fabricate acetaminophen and lomustine solid tablets using different API content and size distributions, characterize their dissolution behavior, and estimate capillary radius as a function of tablet porosity. The estimations generated by the proposed models consistently match the experimental data across all cases investigated in this study.
Collapse
Affiliation(s)
- Shumaiya Ferdoush
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Marcial Gonzalez
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA; Ray W. Herrick Laboratories, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
3
|
Wu Z, Li H, Li S, Chen G, Tang X, Liu S, Wang Y. Molecular mechanism underlying coencapsulating chrysophanol and hesperidin in octenylsuccinated β-glucan aggregates for improving their corelease and bioaccessibility. Int J Biol Macromol 2024; 276:133902. [PMID: 39029835 DOI: 10.1016/j.ijbiomac.2024.133902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
Chrysophanol and hesperidin are natural nutraceuticals that exhibit synergistic bioactivities, but their hydrophobicity limits their applications, and it is unclear whether coencapsulation can improve their solubility and release behaviors. The objective of this work was to coencapsulate chrysophanol and hesperidin by octenylsuccinated β-glucan aggregates (OSβG-Agg) and to reveal how coencapsulation improves their release and bioaccessibility. Mechanisms underlying the hypothesis of beneficial effects in coloading, corelease and bioaccessibility were revealed. The solubilization of OSβG-Agg was due to hydrogen-bonding among β-glucan moieties of OSβG and hydroxyl groups of chrysophanol and hesperidin and hydrophobic interactions among octenyl chains of OSβG and hydrophobic moieties of chrysophanol and hesperidin. Structural analyses confirmed the hypothesis that chrysophanol molecules were nearly embedded deeper into the interior of hydrophobic domains, and most of hesperidin molecules were incorporated into the exterior of the hydrophobic domains of OSβG-Agg due to the strength of these interactions, but they interacted in OSβG-Agg with a dense and compact structure rather than existing in isolation. The combined effects delayed their release and enhanced their bioaccessibility because of dynamic equilibrium between the favorable interactions and unfavorable structural erosion and relaxation of OSβG-Agg. Overall, OSβG-Agg is effective at codelivering hydrophobic phenolics for functional foods and pharmaceuticals.
Collapse
Affiliation(s)
- Zhen Wu
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 402760, PR China; Chongqing Key Laboratory of Innovative Chinese Medicine and Health Intervention, Chongqing 400065, PR China.
| | - Hong Li
- National Key Laboratory of Market Supervision (Condiment Supervision Technology), Chongqing Institute for Food and Drug Control, Chongqing 401121, PR China
| | - Sheng Li
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 402760, PR China; Chongqing Key Laboratory of Innovative Chinese Medicine and Health Intervention, Chongqing 400065, PR China
| | - Gang Chen
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 402760, PR China; Chongqing Key Laboratory of Innovative Chinese Medicine and Health Intervention, Chongqing 400065, PR China
| | - Xin Tang
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 402760, PR China; Chongqing Key Laboratory of Innovative Chinese Medicine and Health Intervention, Chongqing 400065, PR China
| | - Simei Liu
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 402760, PR China
| | - Yongde Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 402760, PR China; Chongqing Key Laboratory of Innovative Chinese Medicine and Health Intervention, Chongqing 400065, PR China.
| |
Collapse
|
4
|
Bachawala S, Lagare RB, Delaney AB, Nagy ZK, Reklaitis GV, Gonzalez M. Rational Function-Based Approach for Integrating Tableting Reduced-Order Models with Upstream Unit Operations: Dry Granulation Case Study. Pharmaceuticals (Basel) 2024; 17:1158. [PMID: 39338321 PMCID: PMC11434797 DOI: 10.3390/ph17091158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
We present a systematic and automatic approach for integrating tableting reduced-order models with upstream unit operations. The approach not only identifies the upstream critical material attributes and process parameters that describe the coupling to the first order and, possibly, the second order, but it also selects the mathematical form of such coupling and estimates its parameters. Specifically, we propose that the coupling can be generally described by normalized bivariate rational functions. We demonstrate this approach for dry granulation, a unit operation commonly used to enhance the flowability of pharmaceutical powders by increasing granule size distribution, which, inevitably, negatively impacts tabletability by reducing the particle porosity and imparting plastic work. Granules of different densities and size distributions are made with a 10% w/w acetaminophen and 90% w/w microcrystalline cellulose formulation, and tablets with a wide range of relative densities are fabricated. This approach is based on product and process understanding, and, in turn, it is not only essential to enabling the end-to-end integration, control, and optimization of dry granulation and tableting processes, but it also offers insight into the granule properties that have a dominant effect on each of the four stages of powder compaction, namely die filling, compaction, unloading, and ejection.
Collapse
Affiliation(s)
- Sunidhi Bachawala
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Rexonni B Lagare
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Abigail B Delaney
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Zoltan K Nagy
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Gintaras V Reklaitis
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Marcial Gonzalez
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Ray W. Herrick Laboratories, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
5
|
Maclean N, Armstrong JA, Carroll MA, Salehian M, Mann J, Reynolds G, Johnston B, Markl D. Flexible modelling of the dissolution performance of directly compressed tablets. Int J Pharm 2024; 656:124084. [PMID: 38580072 DOI: 10.1016/j.ijpharm.2024.124084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
In this study, a compartmental disintegration and dissolution model is proposed for the prediction and evaluation of the dissolution performance of directly compressed tablets. This dissolution model uses three compartments (Bound, Disintegrated, and Dissolved) to describe the state of each particle of active pharmaceutical ingredient. The disintegration of the tablet is captured by three fitting parameters. Two disintegration parameters, β0 and βt,0, describe the initial disintegration rate and the change in disintegration rate, respectively. A third parameter, α, describes the effect of the volume of dissolved drug on the disintegration process. As the tablet disintegrates, particles become available for dissolution. The dissolution rate is determined by the Nernst-Brunner equation, whilst taking into account the hydrodynamic effects within the vessel of a USP II (paddle) apparatus. This model uses the raw material properties of the active pharmaceutical ingredient (solubility, particle size distribution, true density), lending it towards early development activities during which time the amount of drug substance available may be limited. Additionally, the strong correlations between the fitting parameters and the tablet porosity indicate the potential to isolate the manufacturing effects and thus implement the model as part of a real-time release testing strategy for a continuous direct compression line.
Collapse
Affiliation(s)
- Natalie Maclean
- Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Glasgow, UK; Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - John A Armstrong
- Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Glasgow, UK; Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Mark A Carroll
- Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Glasgow, UK; Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Mohammad Salehian
- Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Glasgow, UK; Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - James Mann
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Gavin Reynolds
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Blair Johnston
- Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Glasgow, UK; Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Daniel Markl
- Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Glasgow, UK; Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
6
|
Ferdoush S, Kzam SB, Martins PHC, Dewanckele J, Gonzalez M. Fast time-resolved micro-CT imaging of pharmaceutical tablets: Insights into water uptake and disintegration. Int J Pharm 2023; 648:123565. [PMID: 37918497 PMCID: PMC10786181 DOI: 10.1016/j.ijpharm.2023.123565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/23/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
We use dynamic micro-computed tomography (micro-CT) with a high temporal resolution to visualize water penetration through the porous network of immediate-release pharmaceutical solid tablets and characterize dynamic swelling and disintegration mechanisms. We process the micro-CT images using two theoretical scenarios that reflect different paths of pore structure evolution: a scenario where tablet porosity remains constant during the swelling process and a scenario where the tablet porosity progressively diminishes and eventually closes during the swelling process. We calculate the time evolution of the volume of water absorbed by the tablet and, specifically, absorbed by the excipients and the pore structure, as well as the formation and evolution of cracks. In turn, the three-dimensional disintegration pattern of the tablets is reconstructed. Restricting attention to the limiting scenario where tablet porosity is assumed fixed during the swelling process, we couple liquid penetration due to capillary pressure described by the Lucas-Washburn theory with the first-order swelling kinetics of the excipients to provide a physical interpretation of the experimental observations. We estimate model parameters that are in agreement with values reported in the literature, and we demonstrate that water penetration is dominated by intra-particle porosity rather than inter-particle porosity.
Collapse
Affiliation(s)
- Shumaiya Ferdoush
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Sarah Bu Kzam
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Pedro H C Martins
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | | | - Marcial Gonzalez
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA; Ray W. Herrick Laboratories, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|